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Abstract

A graph class G has linear growth if, for each graph G ∈ G and every positive
integer r, every subgraph of G with radius at most r contains O(r) vertices. In this
paper, we show that every graph class with linear growth has bounded treewidth.
Mathematics Subject Classifications: 05C83, 05C62

1 Introduction

The growth of a (possibly infinite) graph1 G is the function fG : N→ N ∪ {∞} where fG(r)
is the supremum of |V (H)| taken over all subgraphs H of G with radius at most r.
Growth in graphs is an important topic in group theory [17, 18, 20, 21, 31, 36, 40], where
growth of a finitely generated group is defined through the growth of the corresponding
Cayley graphs. Growth of graphs also appears in metric geometry [28], algebraic graph
theory [15, 16, 24–26, 39], and in models of random infinite planar graphs [1, 12]. A
graph class G has linear/quadratic/polynomial/exponential growth if sup{fG(r) : G ∈ G}
is bounded from above and below by a linear/quadratic/polynomial/exponential function
of r.

This paper focuses on graph classes with linear growth. Linear growth has previously
been studied in the context of infinite vertex-transitive graphs [15, 16, 24–26, 39]. Notably,
Imrich and Seifter [25] characterised when an infinite vertex-transitive graph has linear
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1We consider undirected graphs G with vertex-set V (G) and edge-set E(G). For integers m,n ∈ Z, let
[m,n] := {z ∈ Z : m 6 z 6 n} and [n] := [1, n]. Let N be the set of positive integers. Let log be the
natural logarithm loge.
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growth in terms of its automorphism group. We take a more structural and less algebraic
approach, and prove that graph classes with linear growth have a tree-like structure.

To formalise this result, we need the following definition. A tree-decomposition of a
graph G is a collection (Bx ⊆ V (G) : x ∈ V (T )) of subsets of V (G) (called bags) indexed
by the nodes of a tree T , such that:

• for every edge uv ∈ E(G), some bag Bx contains both u and v, and
• for every vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Bx} induces a non-empty subtree

of T .
The width of a tree-decomposition is the size of the largest bag, minus 1. The treewidth
of a graph G, denoted by tw(G), is the smallest integer w for which there is a tree-
decomposition of G of width w, or ∞ if no such w exists. Treewidth can be thought of
as measuring how structurally similar a graph is to a tree. Indeed, a connected graph
has treewidth 1 if and only if it is a tree. Treewidth is of fundamental importance in
structural and algorithmic graph theory; see [4, 22, 32] for surveys.

Our main result shows that graphs with linear growth have bounded treewidth.

Theorem 1. For any c > 1, every graph G with growth fG(r) 6 cr has treewidth at
most 49c2 + 30c.

It suffices to prove Theorem 1 for finite graphs, since for k ∈ N, an infinite graph has
treewidth at most k if and only if every finite subgraph has treewidth at most k (see
[37, 38]).

Theorem 1 is proved in section 2, where we also prove an Ω(c log c) lower bound on
the treewidth in Theorem 1. section 3 considers graphs with linear growth in proper
minor-closed graph classes. In this case, we improve the upper bound on the treewidth
in Theorem 1 to O(c). section 4 explores the product structure of graphs with linear
growth. Combining Theorem 1 with results from the literature, we show that graphs
with linear growth are subgraphs of bounded ‘blow-ups’ of trees with bounded maximum
degree, which is a qualitative strengthening of Theorem 1. This section also presents two
conjectures about the product structure of graphs with linear and polynomial growth.
Finally, section 5 studies the growth of subdivisions of graphs. We show that a finite
graph with bounded treewidth and bounded maximum degree has a subdivision with
linear growth. We also show that for any superlinear function f with f(r) > 1 + ∆r,
every finite graph with maximum degree ∆ (regardless of its treewidth) has a subdivision
with growth bounded above by f . These results show that, for instance, in Theorem 1,
“treewidth” cannot be replaced by “pathwidth”, while “cr” cannot be replaced by “cr1+ε”.

Graphs with bounded treewidth have many attractive properties, and Theorem 1
implies that all such properties hold for graphs of linear growth. To conclude this intro-
duction, we give one such example. A k-stack layout of a graph G is a pair (6, ϕ) where
6 is a linear ordering on V (G) and ϕ : E(G)→ [k] is a function such that ϕ(ux) 6= ϕ(vy)
for any two edges ux, vy ∈ E(G) with u < v < x < y. The stack-number of a (possibly
infinite) graph G is the minimum integer k > 0 such that there exists a k-stack layout
of G, or ∞ if no such k exists. This topic is widely studied; see [2, 3, 9, 10, 42, 43] for
example.
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Eppstein, Hickingbotham, Merker, Norin, Seweryn, and Wood [13] recently showed
that Pn � Pn � Pn, which has growth (2r + 1)3, has unbounded stack-number (as n→∞).
Motivated by this discovery, they asked whether graphs of quadratic or of linear growth
have bounded stack-number. Ganley and Heath [14] showed that every finite graph with
treewidth k has stack-number at most k + 1. Theorem 1 thus implies a positive answer
to the second part of this question.

Theorem 2. For any c > 1, every graph G with growth fG(r) 6 cr has stack-number at
most 49c2 + 30c+ 1.

As before, it suffices to prove Theorem 2 for finite graphs, since a standard compactness
argument shows that for k ∈ N, an infinite graph has stack-number at most k if and only
if every finite subgraph has stack-number at most k (see appendix A).

For the remainder of the paper, we assume that every graph is finite.

2 Growth and Treewidth

This section proves our main result, Theorem 1, as well as a lower bound for the growth
of the class of graphs of tree-width at most c, Theorem 8.

The key tool we use is that of balanced separations. A separation of a graph G is
a pair (A,B) of subsets of V (G) such that A ∪B = V (G) and no edge of G has one
end in A \B and the other in B \ A. The order of the separation (A,B) is |A ∩B|.
For α ∈ [2

3
, 1), a separation (A,B) of a graph on n vertices is α-balanced if |A| 6 αn

and |B| 6 αn. The α-separation number sepα(G) of a graph G is the smallest integer s
such that every subgraph of G has an α-balanced separation of order at most s.

Robertson and Seymour [33] showed that sep2/3(G) 6 tw(G) + 1. Dvořák and
Norin [11] established the following converse.

Theorem 3 ([11]). For every graph G, tw(G) 6 15 sep2/3(G).

The next two lemmas are folklore. The first one enables us to work in the more general
setting of α-balanced separation.

Lemma 4. For every α ∈ [2
3
, 1) and every graph G, sep2/3(G) 6 dlogα(2

3
)e sepα(G).

Proof. Let H be a subgraph of G and let n := |V (H)|. Let (A1, B1) be an α-
balanced separation of H with order at most sepα(G). For i ∈ N, we iteratively con-
struct some max{2

3
, αi}-balanced separation (Ai, Bi) of H with order at most i sepα(G).

If max{|Ai \ Bi|, |Bi \ Ai|} 6 2
3
n, then (Ai, Bi) is a 2

3
-balanced separation of H and we

set (Ai+1, Bi+1) := (Ai, Bi). Otherwise, we may assume that |Bi \ Ai| > 2
3
n. Let (Ci, Di)

be an α-balanced separation of H[Bi \ Ai] with order at most sepα(G). Without loss
of generality, assume that |Di| > |Ci| and hence |Di| > n

3
. Set Ai+1 := Ai ∪ Ci and

Bi+1 := Di ∪ (Ai ∩ Bi). Thus |Bi+1 \ Ai+1| 6 α|Bi \ Ai| 6 αi+1n and |Ai+1 ∩ Bi+1| 6
|Ai ∩ Bi| + sepα(G) 6 (i + 1) sepα(G) and |Ai+1 \ Bi+1| 6 n− |Di| < 2

3
n, so (Ai+1, Bi+1)

is as desired.
Now (Ai, Bi) with i = dlogα(2

3
)e is a 2

3
-balanced separation of H of order at most

i sepα(G), as required.
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Lemma 5. For every α ∈ [2
3
, 1) and every graph G, if every connected subgraph of G has

an α-balanced separation of order less than c, then sepα(G) < c.

Proof. Consider a subgraph H of G. Let n := |V (H)|. We prove that H has an α-
balanced separation of order less than c by induction on the number of components of
H. If H is connected, then the claim holds by assumption. So assume that H has at
least two components and let J be the smallest component of H. If |V (H) \ V (J)| 6 2

3
n,

then (V (H) \ V (J), V (J)) is an α-balanced separation of H of order 0. So assume that
|V (H) \ V (J)| > 2

3
n. By induction, H − V (J) has an α-balanced separation (A,B) of

order less than c such that |A| > n
3
. Therefore, since |(B ∪ V (J)) \ A| 6 2n

3
6 αn and

A∩V (J) = ∅, it follows that (A,B∪V (J)) is an α-balanced separation of H of order less
than c, as required.

The next lemma is the heart of this paper.

Lemma 6. For c > 1, every graph G with growth fG(r) 6 cr satisfies

sep(1− 1
4c

)(G) < 2c.

Proof. Consider a connected subgraph H of G and note that fH(r) 6 fG(r) 6 cr. Let
n := |V (H)|. Let v ∈ V (H), let p := max{distH(v, w) : w ∈ V (H)}, and let Vi :=
{w ∈ V (H) : distH(v, w) = i} for i ∈ [0, p]. Let R := {i ∈ [p] : |Vi| > 2c} and
S := {i ∈ [p] : |Vi| < 2c}. Since H has radius at most p,

2c|R| 6
∑
i∈R

|Vi| 6 n 6 cp,

Therefore |R| 6 p
2
and |S| = p− |R| > p

2
. Let j be the minimum element of S such that

|S ∩ [0, j]| > |S|
2
. Let A :=

⋃
i∈[0,j] Vi and B :=

⋃
i∈[j,p] Vi. Then |A ∩B| = |Vj| < 2c and

|A| > |S|
2
>
p

4
>

n

4c
and |B| > |S|

2
>
p

4
>

n

4c
.

Since Vj separates A \B and B \A, there is no edge of H with one end in A \B and the
other in B \A. Moreover, since |A| > n

4c
and |B| > n

4c
, it follows that |A \B| 6 (1− 1

4c
)n

and |B \A| 6 (1− 1
4c

)n. Thus (A,B) is a (1− 1
4c

)-balanced separation of H of order less
than 2c. Since 1− 1

4c
> 2

3
, the result follows by Lemma 5.

We are now ready to prove our main theorem which we restate for convenience.

Theorem 1. For any c > 1, every graph G with growth fG(r) 6 cr has treewidth at
most 49c2 + 30c.

Proof. Let G be a graph with growth fG(r) 6 cr. By Lemmas 4 and 6,

sep2/3(G) 6
⌈
log(1− 1

4c
)

(
2
3

)⌉
sep(1− 1

4c
)(G) 6

⌈
log(1− 1

4c
)

(
2
3

)⌉
2c.
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Note that log(1− 1
4c

)(
2
3
) =

log( 3
2

)

log(4c)−log(4c−1)
. Additionally, by the mean value theorem there is

some x ∈ (4c−1, 4c) such that x−1 = log(4c)− log(4c−1). Combining these observations
with Theorem 3 yields

tw(G) 6 15 sep2/3(G) 6 30
⌈
log
(

3
2

)
x
⌉
c 6 30

(
log
(

3
2

)
4c+ 1

)
c 6 49c2 + 30c.

We conclude this section by showing that the function 49c2 +30c in Theorem 1 cannot
be replaced by any function in o(c log c). For a vertex v in a graph G, the r-ball at v is
the set Br(v) := {w ∈ V (G) : distG(v, w) 6 r}.

Lemma 7. There is an absolute constant β > 0 such that, for every integer k > 2, there
is a cubic graph G with treewidth at least k and growth fG(r) 6 βkr

log k
.

Proof. Grohe and Marx [19] proved there is an absolute constant α ∈ (0, 1) such that
for every even integer n > 4 there is an n-vertex cubic graph with treewidth at least
αn. Apply this result with n := max{2d k

2α
e, 4} to obtain a cubic graph G with treewidth

at least k. Let v ∈ V (G) and r ∈ N, and consider the ball Br(v). Since G is cubic,
|Br(v)|

r
6 min{n

r
, 3 · 2r

r
}, which is maximised when n = 3 ·2r. Thus |Br(v)|

r
6 n

log2(n/3)
6 βk

log k
,

for some absolute constant β, as required.

Theorem 8. If g is any function such that for any c > 1, every graph G of growth
fG(r) 6 cr has treewidth at most g(c), then g(c) ∈ Ω(c log c).

Proof. By Lemma 7, there is an absolute constant β > 0 such that for every k ∈ N there
is a cubic graph G with treewidth at least k and growth fG(r) 6 βkr

log k
. Let k be sufficiently

large so that log k > β. Let c := βk
log k

. It follows that kβ > c log c and fG(r) 6 cr. Hence
c log c
β
6 k 6 tw(G) 6 g(c), and g(c) ∈ Ω(c log c), as desired.

3 Growth and Minors

This section studies growth in proper minor-closed graph classes. A graph H is a minor
of a graph G if H is isomorphic to a graph obtained from a subgraph of G by contracting
edges. A graph class G is minor-closed if for every G ∈ G every minor of G is also in
G. A minor-closed class G is proper if some graph is not in G. A graph parameter λ is
minor-monotone if λ(H) 6 λ(G) whenever H is a minor of G.

Grid graphs are the key examples here. For n ∈ N, the n × n grid is the graph with
vertex set {(v1, v2) : v1, v2 ∈ [n]} where (v1, v2) and (u1, u2) are adjacent if v1 = u1 and
|v2 − u2| = 1, or v2 = u2 and |v1 − u1| = 1. This graph has treewidth n (see [22]), and
is a canonical example of a graph with large treewidth in the sense that every graph G
with sufficiently large treewidth contains the n× n grid as a minor [34]. Since treewidth
is minor-monotone, Theorem 1 implies that any graph G with growth fG(r) 6 cr cannot
contain the n × n grid as a minor, where n = d49c2 + 30ce. We prove this directly with
n = d2ce.
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Theorem 9. For any c > 1, every graph G with growth fG(r) 6 cr does not contain the
d2ce × d2ce grid as a minor.

Proof. It is sufficient to consider the case when 2c ∈ N. Suppose for contradiction that G
is a graph with growth fG(r) 6 cr that contains a 2c × 2c grid as a minor. Thus, there
is a collection H := {Hi,j : (i, j) ∈ [2c]2} of pairwise vertex-disjoint connected subgraphs
of G such that for every i ∈ [2c] and j ∈ [2c − 1] there is an edge between Hi,j and
Hi,j+1 and an edge between Hj,i and Hj+1,i. For each i ∈ [2c], let Ri :=

⋃
j∈[2c] V (Hi,j)

and Ci :=
⋃
j∈[2c] V (Hj,i). Without loss of generality, there exists x ∈ [2c] such that

s := |Rx| 6 |Ci| for all i ∈ [2c]. Let v be a vertex in Rx.
We claim that |B2s−1(v) ∩ Ci| > s for each i ∈ [2c]. Since G[Rx] is connected, Rx ⊆

Bs−1(v), so Bs−1(v) contains a vertex of Ci. If Ci ⊆ B2s−1(v) then |B2s−1(v)∩Ci| = |Ci| >
|Rx| = s, as claimed. Otherwise, since Ci is connected, Ci intersects Bj(v) \ Bj−1(v) for
each j ∈ [s − 1, 2s], implying |B2s−1(v) ∩ Ci| > s, which proves the claim. Since Ci is
disjoint from Ci′ for all distinct i, i′ ∈ [2c], we find that 2cs 6 |B2s−1(v)| 6 c(2s − 1),
which is the desired contradiction.

Demaine and Hajiaghayi [5] showed that for any fixed graph H, every H-minor-free
graph G with treewidth k contains an Ω(k)× Ω(k) grid as a minor (see [27] for explicit
bounds). In this case, Theorem 9 implies the following improvement on Theorem 1.

Corollary 10. For any c > 1 and any fixed graph H, every H-minor-free graph G with
growth fG(r) 6 cr has treewidth at most O(c).

In the case of planar graphs, Robertson, Seymour, and Thomas [35] showed that every
planar graph containing no n× n-grid minor has treewidth at most 6n − 5. Theorem 9
thus implies:

Corollary 11. For any c ∈ N, every planar graph G with growth fG(r) 6 cr has treewidth
at most 12c+ 1.

Recall that Theorem 8 provides an Ω(c log c) lower bound on the treewidth of graphs G
with growth fG(r) 6 cr. Thus to conclude the O(c) upper bounds in Corollaries 10 and 11,
it is essential to make some assumption such as excluding a fixed minor.

4 Product Structure

Much of the research on the growth of finite graphs has centred around polynomial growth.
In this setting, Krauthgamer and Lee [28] showed that every graph G of growth fG(r) 6 rd

(for r > 2) is isomorphic to a subgraph of the strong product of O(d log d) sufficiently long
paths. Here the strong product G � H of graphs G and H is the graph with vertex-set
V (G) × V (H) with an edge between two vertices (v, w) and (v′, w′) if vv′ ∈ E(G) and
w = w′ or ww′ ∈ E(H), or v = v′ and ww′ ∈ E(H). Note that G � Kt is simply the
graph obtained from G by replacing each vertex of G by a copy of Kt and replacing each
edge of G by Kt,t between the corresponding copies of Kt, sometimes called a blow-up of
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G. The following result, due to a referee of [7] and refined in [8, 41], allows us to describe
graphs of linear growth as subgraphs of blow-ups of trees.

Lemma 12 ([7, 8, 41]). For k,∆ ∈ N, any graph with treewidth less than k and maximum
degree ∆ is isomorphic to a subgraph of T �K18k∆ for some tree T .

A graph G with growth fG(r) 6 cr has maximum degree at most c − 1. Thus the
following result2 is a consequence of Theorem 1 and Lemma 12.

Theorem 13. For any c > 1, every graph G with growth fG(r) 6 cr is isomorphic to a
subgraph of T �Kb882c3c for some tree T .

The graph T � Kb882c3c preserves the boundedness of the treewidth of G. However,
the growth of T � Kb882c3c is at least the growth of T which can be exponential, for
example if T is a complete binary tree. This leads us to conjecture the following rough
characterisation of graphs of linear growth.

Conjecture 14. There exist functions g : R→ N and h : R→ R such that for any c > 1,
every graph G with growth fG(r) 6 cr is isomorphic to a subgraph of T �Kg(c) for some
tree T with growth fT (r) 6 h(c)r.

This conjecture (if true) would approximately characterise graphs of linear growth in
the sense that every subgraph H of T �Kg(c) has growth fH(r) 6 g(c)h(c)r ∈ O(r).

More generally, for graphs of polynomial growth, we conjecture the following rough
characterisation.

Conjecture 15. There exist functions g : R× N→ N and h : R× N→ R such that for
any c > 1 and d ∈ N, every graph G with growth fG(r) 6 crd is isomorphic to a subgraph
of T1 � · · ·� Td �Kg(c,d), where each Ti is a tree of growth fTi(r) 6 h(c, d)r.

Again, this conjecture (if true) would approximately characterise graphs of degree-d
polynomial growth in the sense that if H is a subgraph of T1 � · · · � Td � Kg(c,d), then
fH(r) 6 g(c, d) (h(c, d)r)d ∈ O(rd).

5 Growth and Subdivisions

This section considers the growth of subdivisions of graphs. A graph G̃ is a subdivision
of a graph G if G̃ can be obtained from G by replacing each edge vw by a path Pvw with
endpoints v and w (internally disjoint from the rest of G̃). If each of these paths has the
same length, then G̃ is said to be uniform.

Let G be a graph class with bounded degree and bounded treewidth. Theorem 17 below
shows that there is a graph class G̃ with linear growth where for every graph G ∈ G, there
is a subdivision of G contained in G̃. By Lemma 12, we can obtain Theorem 17 from the
following result.

2It follows from a result of Kuske and Lohrey [29] (or Huynh, Mohar, Šámal, Thomassen, and Wood [23]
in the countable case) that Theorem 13 also holds for infinite graphs.
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Lemma 16. For any k,∆ ∈ N, any ε > 0, any tree T , and any subgraph G of T �Kk

with maximum degree at most ∆, there is a subdivision G̃ of G with growth fG̃(r) 6
(k∆ + ε)r + 1.

Proof. Let n := |V (T )|, let V (T ) = {vi : i ∈ [0, n − 1]}, and let V (Kk) = {wi : i ∈ [k]}.
For each edge e = (va, wb)(vc, wd) ∈ E(G), let γ(e) := min{distT (v0, va), distT (v0, vc)}.
For every i ∈ [0, n − 1], let `(i) be the number of edges e of G with γ(e) > i. Let
g : N → N be a function such that g(n) = 1 and εg(r) > 2g(r + 1)`(r) + |V (G)| for all
r ∈ [0, n − 1]. Let G̃ be the subdivision of G obtained by replacing each edge e ∈ E(G)
by a path of length 2g(γ(e)).

For a vertex v ∈ V (G̃) and a positive integer r, consider the ball Br(v) in G̃. If there
is no edge xy ∈ E(G) such that x, y ∈ Br(v) \ {v}, then G̃[Br(v)] is a subdivision of a
star and |Br(v)| 6 1 + ∆r, as required.

Otherwise, let h := min{γ(xy) : xy ∈ E(G), x, y ∈ Br(v) \ {v}}. Note that r > g(h).
Let S1 be the set of subdivision vertices of edges e ∈ E(G) with γ(e) 6 h, and let S2 be
the set of subdivision vertices of edges e ∈ E(G) with γ(e) > h. By the definition of g,
we have that |S2|+ |V (G)| 6 εr. Since G̃[Br(v)] is connected and by the definition of h,
there is no vertex (vi, wj) ∈ V (G)∩Br(v) such that vi is at distance less than h from v0 in
T . Hence Br(v) contains subdivision vertices of at most k∆ edges e of G with γ(e) 6 h.

Suppose that r < 2g(h), and note that v is a subdivision vertex of some edge x0y0 ∈
E(G) with γ(x0y0) 6 h. Consider an edge xy ∈ E(G) \ {x0y0} such that γ(e) 6 h. Note
that the total number of subdivision vertices of xy or x0y0 contained in Br(v) is at most
2r, and that Br(v) contains at least as many subdivision vertices of x0y0 as of xy. It
follows that |Br(v) ∩ S1| 6 k∆r.

Now suppose that r > 2g(h). In this case, every edge e ∈ E(G) with γ(e) = h has
fewer than r subdivision vertices and Br(v) contains at most r subdivision vertices of each
edge e ∈ E(G) with γ(e) < h, and so again |Br(v) ∩ S1| 6 k∆r. Hence in both cases
|Br(v)| 6 (k∆ + ε)r, as required.

The following theorem is a direct consequence of Lemmas 12 and 16.

Theorem 17. For any k,∆ ∈ N and ε > 0, every graph G with maximum degree ∆ and
treewidth less than k has a subdivision G̃ with growth fG̃(r) 6 (18k∆2 + ε)r + 1.

Note that the growth of any subdivision G̃ of a graph G depends on the maximum
degree ∆ of G (since fG̃(1) > ∆ + 1). We now show that every graph G with bounded
treewidth is a minor of a graph G′ with linear growth where the growth of G′ does not
depend on the maximum degree of G. Markov and Shi [30] proved that every graph G
is a minor of some graph G′ with maximum degree 3 and treewidth at most tw(G) + 1.
Theorem 17 applied to G′ gives the following result.

Corollary 18. For every k ∈ N and ε > 0, every graph G with treewidth less than k is a
minor of some graph G̃ with growth fG̃(r) 6 (162(k + 1) + ε)r + 1.

Theorem 17 implies that Theorem 1 is best possible in the sense that treewidth can-
not be replaced by any parameter that is unbounded for graphs of bounded treewidth
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and bounded maximum degree, and does not decrease when taking subdivisions. As an
example, pathwidth3 is a graph parameter that is unbounded on trees with maximum
degree 3 and does not decrease when taking subdivisions. In particular, there is a class
of trees that has linear growth and unbounded pathwidth. Thus, “treewidth” cannot be
replaced by “pathwidth” in Theorem 1.

Finally, consider subdividing graphs with bounded maximum degree without the as-
sumption of bounded treewidth. While Theorem 1 implies that we cannot obtain linear
growth in this more general setting, we can get arbitrarily close in the following sense. A
function f : N→ R is superlinear if f(x)

x
→∞ as x→∞. We now show that for every

superlinear function f with f(r) > 1 + ∆r, every graph with maximum degree at most ∆
admits a subdivision of growth at most f .

Theorem 19. For any ∆ ∈ N and any superlinear function f : N→ R with
f(r) > ∆r + 1, every graph G with maximum degree ∆ has a uniform subdivision G̃ with
growth fG̃(r) 6 f(r).

Proof. Let m := |E(G)|, n := |V (G)|, and let ` ∈ N be such that f(r) > 2rm+ n for
all r > ` (which exists since f is superlinear). Let G̃ be obtained from G by subdivid-
ing every edge 2` times. Now consider r ∈ N and a vertex v ∈ V (G̃). If r > `, then
|Br(v)| 6 |V (G̃)| 6 2`m+ n 6 f(r). If r 6 `, then G̃[Br(v)] is isomorphic to a subdivi-
sion of a star, so |Br(v)| 6 1 + ∆r 6 f(r), as required.

As mentioned above, every graph is a minor of some graph of maximum degree 3.
Hence we have the following immediate corollary of Theorem 19.

Corollary 20. For any superlinear function f : N → R with f(r) > 1 + 3r, every graph
G is a minor of a graph G̃ with growth fG̃(r) 6 f(r).

Corollary 20 shows that, for any superlinear function f with f(r) > 1+3r, any minor-
monotone graph parameter that is unbounded on the class of all graphs is also unbounded
on the class of graphs G with fG(r) 6 f(r). For example, “cr” cannot be replaced by
“cr1+ε” in Theorem 1.
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A Stack-number of infinite graphs

The following result is proved via a standard compactness argument.

Proposition 21. For k ∈ N, a graph G has stack-number at most k if and only if every
finite subgraph of G has stack-number at most k.

First, we introduce a version of the compactness principle in combinatorics; see [6,
Appendix A]. A partially ordered set (P ,6) is directed if any two elements have a com-
mon upper bound; that is, for any p, q ∈ P there exists r ∈ P with p 6 r and q 6 r. A
directed inverse system consists of a directed poset P , a family of sets (Sp : p ∈ P), and
for all p, q ∈ P with p < q a map gq,p : Sq → Sp such that the maps are compatible; that
is, gq,p ◦ gr,q = gr,p for all p, q, r ∈ P with p < q < r. The inverse limit of such a directed
inverse system is the set

lim
←−

(Sp : p ∈ P) =

{
(sp : p ∈ P) ∈

∏
p∈P

Sp : gq,p(sq) = sp for all p, q ∈ P with p < q

}
.

Lemma 22 (Generalised Infinity Lemma [6, Appendix A]). The inverse limit of any di-
rected inverse system of non-empty finite sets is non-empty.

Proof of Proposition 21. For a linear order 6 on a set X and a subset Y ⊆ X, let 6 �Y
denote the restriction of 6 to Y . Similarly for a function ϕ with domain X and a
subset Y ⊆ X, let ϕ�Y denote the restriction of ϕ to Y .

(=⇒) Clearly (6 �V (H), ϕ�E(H)) is a k-stack layout for any k-stack layout (6, ϕ)
of G and any subgraph H of G.

(⇐=) Let P be the set of finite subsets of V (G) and consider the directed poset (P ,⊆).
For every finite set X ⊆ V (G), let SX be the set of all k-stack layouts of G[X].
For Y ⊆ X ∈ P and (6, ϕ) ∈ SX , let gX,Y (6, ϕ) := (6 �Y, ϕ�E(G[Y ])), and note that
gX,Y (6, ϕ) ∈ SY . Moreover, for Z ⊆ Y ⊆ X ∈ P and (6, ϕ) ∈ SX ,

gY,Z(gX,Y (6, ϕ)) = ((6 �Y )�Z, (ϕ�E(G[Y ]))�E(G[Z]))) = (6 �Z, ϕ�E(G[Z]))

= gX,Z(6, ϕ).

Hence, we have a directed inverse system of non-empty finite sets. By the Generalised
Infinity Lemma, there is an element

(
(6X , ϕX) ∈ SX : X ∈ P

)
in the inverse limit. De-

fine a relation 6 on V (G) by setting v 6 w if v 6{v,w} w for v, w ∈ V (G), and define a
function ϕ on E(G) by setting ϕ(vw) := ϕ{v,w}(vw) for vw ∈ E(G). By the compatibility
of the maps gX,Y , we have that 6 is a linear order on V (G) and (6 �X,ϕ�E(G[X])) ∈ SX
for all X ∈ P . Now any two edges ux and vy with u < v < x < y are assigned distinct
colours since (6 �X,ϕ�E(G[X])) ∈ SX for X = {u, v, x, y}. Hence (6, ϕ) is a k-stack
layout of G.
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