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Abstract

This paper contains two results on the number fσ/τ of standard skew Young
tableaux of shape σ/τ . The first concerns generating functions for certain classes
of “periodic” shapes related to work of Gessel-Viennot and Baryshnikov-Romik.
The second result gives an evaluation of the skew Schur function sλ/µ(x) at x =

(1, 1/22k , 1/32k , . . . ) for k = 1, 2, 3 in terms of fσ/τ for a certain skew shape σ/τ
depending on λ/µ.

1 Introduction

We assume familiarity with the basic theory of symmetric functions and tableaux from [6,
Chap. 7]. Baryshnikov and Romik [1] obtain explicit formulas for the number of standard
Young tableaux of certain skew shapes which they call diagonal strips. As the strips
become thicker, their formulas becomes more and more complicated. In the next section
we give simple generating functions for certain classes of diagonal strips of arbitrarily
large thickness. Our results are neither a subset nor superset of those of Baryshnikov and
Romik. Our results in Section 2 were also obtained in unpublished work of Gessel and
Viennot [3, §11], but our approach is more straightforward.

In Section 3 we obtain a formula for the evaluation of skew Schur functions sλ/µ(x)
at x = (1, 1/22k, 1/32k, . . . ) for k = 1, 2, 3. These formulas have the following form. Let
n = |λ/µ| (the number of squares in the diagram of λ/µ), and choose m ≥ λ1. Then

sλ/µ(1, 1/22k, 1/32k, . . . ) = c(n, m)fσ/τπ2n,
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where σ/τ is a certain skew shape depending on λ/µ and m. Moreover, fσ/τ denotes the
number of standard Young tableaux of shape σ/τ and c(n, m) is a simple explicit function.
The special case σ/τ = (1) (the unique partition of 1) gives the Riemann zeta function
evaluations ζ(2) = π2/6, ζ(4) = π4/90, and ζ(6) = π6/945. The main tool for our results
on both diagonal strips and sλ/µ(1, 1/22k, 1/32k, . . . ) is the Jacobi-Trudi identity and its
dual version.

The computation of sλ/µ(1, 1/22k, 1/32k, . . . ) for all λ and µ is equivalent to the com-
putation of certain multiple zeta values. As explained in Section 3, in principle there is
no problem in computing this very special case of multiple zeta values. Our contribution
is to give an explicit formula involving skew Schur functions when k = 1, 2, 3.

Let us recall the Jacobi-Trudi identity and its connection with skew SYT. Write ℓ(λ)
for the length (number of parts) of λ. If ℓ(λ) ≤ m and µ ⊆ λ, then the Jacobi-Trudi
asserts that

sλ/µ = det[hλi−µj−i+j]
m
i,j=1, (1.1)

where hr denotes a complete symmetric function (with h0 = 1 and hr = 0 for r < 0).
Let |λ/µ| = n. It is an immediate consequence of the combinatorial definition of sλ/µ [6,
Def. 7.10.1] that fλ/µ is the coefficient of x1x2 · · ·xn in sλ/µ. By taking the coefficient of
x1x2 · · ·xn in equation (1.1), or equivalently by applying the exponential specialization
[6, §7.8], we obtain the well-known formula [6, Cor. 7.16.3] of Aitken:

fλ/µ = n! det[1/(λi − µj − i + j)!]mi,j=1. (1.2)

Similarly for λ1 ≤ m we have the dual Jacobi-Trudi identity

sλ/µ = det[eλ′

i
−µ′

j
−i+j ]

m
i,j=1, (1.3)

where er denotes an elementary symmetric function (with e0 = 1 and er = 0 for r < 0)
and ′ denotes the conjugate partition.

2 Diagonal strips

We begin with some connections between generating functions and determinants.

Lemma 2.1. Let ai, i ∈ Z, be elements of some commutative ring with 1, with a0 = 1
and ai = 0 for i < 0. Let f(k) = det[aj−i+1]

k
1. In particular, f(0) = 1. Then

∑

k≥0

f(k)xk =
1

1 − a1x + a2x2 − · · ·
.

Proof. This is a well-known result, implicit in [5, Prop. 2.6]. The terms in the expansion
of the determinant coincide with those in the expansion of

1

1 − a1x + a2x2 − · · ·
= 1 + F (x) + F (x)2 + · · · ,

where F (x) = a1x − a2x
2 + · · · .
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Figure 1: The partition σ(5, 4, 3, 4)

Corollary 2.2. Suppose that in Lemma 2.1 we drop the condition a0 = 1, say a0 = α.

Then
∑

k≥0

f(k)xk =
1

1 +
∑

i≥1(−1)iαi−1aixi
.

Proof. The case α = 0 is clear (and uninteresting), where we interpret 00 = 1 for the
summand indexed by i = 1, so assume α 6= 0. Let Ak = [aj−i+1]

k
1, and let D be the

diagonal matrix diag(α, α2, . . . , αk). Then D−1AD = [αj−iaj−i+1]. Note that the (j+1, j)-
entry is equal to 1. Since det A = det D−1AD, the proof follows from Lemma 2.1.

Corollary 2.3. Suppose that in Corollary 2.2 we let the first row of the matrix be arbi-

trary, i.e., let Mk = (mij)
k
1 be the k × k matrix defined by

m1j = bj

mij = aj−i+1, i ≥ 2,

where a0 = α and ai = 0 for i < 0. Let g(k) = det Mk. Then

∑

k≥1

g(k)xk =

∑

j≥1(−1)j−1αj−1bjx
j

1 +
∑

i≥1(−1)iαi−1aixi
.

Proof. If we remove the first row and ith column from M , then we obtain a matrix

Mi =

[

B C
0 An−k

]

, where B is an upper triangular (i − 1) × (i − 1) matrix with α’s on

the diagonal. Hence when we expand det M along the first row, we get

det M = b1(det Ak−1) − αb2(det Ak−2) + · · ·+ (−1)k−1αk−1bk(det A0).

The proof therefore follows from Corollary 2.2.
We now define the class of skew partitions of interest to us. For positive integers

a, b, c, n, define σ(a, b, c, n) to be the skew partition whose Young diagram has a squares
in the first row, b squares in the other (nonempty) rows, and n rows in all. Moreover,
each row begins c − 1 columns to the left of the row above, with b ≥ c. For instance,
Figure 1 shows the shape σ(5, 4, 3, 4). Thus sσ(a,b,c,n) denotes the Schur function of shape
σ(a, b, c, n). As above, let hm denote the mth complete symmetric function.
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Theorem 2.4. Fix a, b, c with c ≤ b < 2c. Then

∑

n≥1

sσ(a,b,c,n)x
n =

∑

n≥1(−1)n−1hn−1
b−c ha+(n−1)cx

n

1 −
∑

n≥1(−1)n−1hn−1
b−c hb+(n−1)cxn

.

Proof. The Jacobi-Trudi matrix (1.1) has the form of Corollary 2.3 with m1j = ha+(j−1)b,
ai = hb+(i−1)c. In particular, α = a0 = b − c. The condition b < 2c is equivalent to ai = 0
for i < 0. Hence the proof follows from Corollary 2.3.

Applying the exponential specialization, or just using Aitken’s formula (1.2) directly,
yields the following corollary.

Corollary 2.5. Fix a, b, c with c ≤ b < 2c. Then

∑

n≥1

fσ(a,b,c,n) xn

(a + (n − 1)b)!
=

∑

n≥1(−1)n−1 xn

(b−c)!(b+(n−1)c)!

1 −
∑

n≥1(−1)n−1 xn

(b−c)!(a+(n−1)c)!

.

For example, setting (a, b, c) = (5, 4, 3) gives

∑

n≥1

fσ(5,4,3,n) xn

(4n + 1)!
=

∑

n≥1(−1)n−1 xn

(3n+2)!

1 −
∑

n≥1(−1)n−1 xn

(3n+1)!

.

Note the curious appearance of the denominators (4n + 1)!, (3n + 2)!, and (3n + 1)!. It is
unusual to have exponential generating function identities with (an + b)! and (cn + d)! in
the denominators, where one of a and c does not divide the other.

Note the special case σ(3, 3, 2, n). Corollary 2.5 can be written in the form

∑

n≥0

fσ(3,3,2,n) x2n

(3n)!
=

x

sin x
. (2.1)

This case was known to Gessel and Viennot [3, §11]. The number fλ/µ is not affected by
conjugating (transposing) the shape. Baryshnikov and Romik [1, Thm. 1] consider the
conjugate shape σ(3, 3, 2, n)′, and their result for this shape is equivalent to equation (2.1).
They state their generating function as x(cot(x/2)− cot(x)), and not in the simpler form
x/ sin(x). Let us note, however, that the more general shapes considered by Baryshnikov
and Romik are not covered by our results. It would be interesting to find a common
generalization. In principle the technique of Baryshnikov and Romik applies to any shape
σ(a, b, c, n), but the computations become very complicated.

3 A generalization of ζ(2), ζ(4) and ζ(6)

The Riemann zeta function is defined by ζ(s) =
∑

n≥1 n−s for ℜ(s) > 1. It is well-known
that if k is a positive integer then

ζ(2k) = (−1)k+1B2k(2π)2k

2(2k)!
,
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where B2k denotes a Bernoulli number. Note that

ζ(2k) = p1(1, 1/22k, 1/32k, . . . ) = pk(1, 1/22, 1/32, . . . ),

where pj =
∑

xj
i , the jth power sum symmetric function. This formula suggests looking

at f(1, 1/22k, 1/32k, . . . ) for other symmetric functions f . In principle there is no problem:
expand f in terms of power sums, say f =

∑

λ cλpλ. Then

f(1, 1/2s, 1/3s, . . . ) =
∑

λ

cλζ(λ1s)ζ(λ2s) · · · ζ(λℓs),

where λ = (λ1, . . . , λℓ) with λ1 ≥ · · · ≥ λℓ > 0. In particular, if f is homogeneous of
degree n then f(1, 1/22k, 1/33k, . . . ) = απ2kn, where α ∈ Q. See Hoffman [4]. We may
ask, however, whether there is a simple description of α for a suitable choice of f . Here we
consider the case where f = sλ/µ, a skew Schur function. We will give a simple expression
for sλ/µ(1, 1/22k, 1/33k, . . . ) for k = 1, 2, 3 in terms of the number fσ/τ of SYT of a certain
skew shape σ/τ . The proof breaks down for k ≥ 4, and there does not seem to be an
analogous formula in this case.

The basic idea is to expand sλ/µ as a polynomial in the elementary symmetric functions
ej , then to evaluate ej(1, 1/2k, 1/3k, . . . ) and interpret the resulting expression in terms
of fσ/τ . The expansion of sλ/µ in terms of ej ’s is given by the dual Jacobi-Trudi identity
(1.3), so we next turn to the evaluation of ej(1, 1/22k, 1/32k, . . . ) for k = 1, 2, 3.

Lemma 3.6. We have:

(a)

ej(1, 1/22, 1/32, . . . ) =
π2j

(2j + 1)!

(b)

ej(1, 1/24, 1/34, . . . ) =
22j+1π4j

(4j + 2)!

(c)

ej(1, 1/26, 1/36, . . . ) =
6 · 26jπ6j

(6j + 3)!
.

Proof. (a) The Weierstrass product for the function sin(πz)/πz takes the form

sin(πz)

πz
=

∏

k≥1

(

1 −
z2

k2

)

. (3.1)

Consider the Taylor series expansion at z = 0. On the one hand, the coefficient
of z2j in sin(πz)/πz is (−1)jπ2j/(2j − 1)!. On the other hand, by equation (3.1)
this coefficient is (−1)jej(1, 1/22, 1/32, . . . ), and the proof follows. This result was
known to Euler [2], with essentially the same proof (though without sufficient rigor).
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Figure 2: The skew shape (4(2, 2, 1) + 2γ3 + 3δ3)/(4(1, 0, 0) + 3δ3)

(b) We have

∏

k≥1

(

1 −
z4

k4

)

=
∏

k≥1

(

1 −
z2

k2

) (

1 +
z2

k2

)

=
sin(πz)

πz

sin(πiz)

πiz

=
cos((1 − i)πz) − cos((1 + i)πz)

2π2iz2

=
∑

n≥0

(−1)j22j+1π4j z4j

(4j + 2)!
,

from which the proof follows.

(c) Let ω = e2πi/3. We have

∏

k≥1

(

1 −
z6

k6

)

=
∏

k≥1

(

1 −
z2

k2

) (

1 −
ωz2

k2

) (

1 −
ω2z2

k2

)

=
sin πz

πz
·
sin πωz

πωz
·
sin πω2z

πω2z

= −
1

4π3z3
(sin(2πz) + sin(2πωz) + sin(2πω2z))

=
∑

j≥0

(−1)j6 · 26jπ6j z6j

(6j + 3)!
,

from which the proof follows.

Let λ and µ be partitions of length at most m. Let δm = (m − 1, m − 2, . . . , 0) and
γm = 〈1m〉, the partition with m parts equal to 1. For instance, if λ = (2, 2, 1) and
µ = (1, 0, 0) then 4λ + 2γ2 + 3δ3 = (16, 13, 6) and 4µ + 3δ3 = (10, 3, 0). The diagram of
the skew shape (4λ + 2γ3 + 3δ3)/(4µ + 3δ3) is shown in Figure 2.

Theorem 3.7. For any skew shape λ/µ where λ1 ≤ m and |λ/µ| = n, the following

formulas hold.

(a) sλ/µ(1, 1/22, 1/32, . . . ) =
π2nf (2λ′+γm+δm)/(2µ′+δm)

(2n + m)!

the electronic journal of combinatorics 18(2) (2011), #p16 6



(b) sλ/µ(1, 1/24, 1/34, . . . ) =
2m+2nπ4nf (4λ′+2γm+3δm)/(4µ′+3δm)

(4n + 2m)!

(c) sλ/µ(1, 1/26, 1/36, . . . ) =
6m26nπ6nf (6λ′+3γm+5δm)/(6µ′+5δm)

(6n + 3m)!

Proof. (a) By equation (1.3) and Lemma 3.6(a) we have

sλ/µ(1, 1/22, 1/32, . . . ) = det[eλ′

i
−µ′

j
−i+j(1, 1/22, 1/32, · · · )]mi,j=1

= det[π2(λ′

i−µ′

j−i+j)/(2(λ′
i − µ′

j − i + j) + 1)!]mi,j=1

= π2n det[1/(2(λ′
i − µ′

j − i + j) + 1)!]mi,j=1.

Now

2(λ′
i − µ′

j − i + j) + 1 = (2λ′
i − 2µ′

j + 1 + (m − i) − (m − j)) − i + j

= (2λ′ + γm + δm)i − (2µ′ + δm)j − i + j,

and the proof follows from equation (1.2).

(b) Similarly to (a) we have

sλ/µ(1, 1/24, 1/34, . . . ) = det[eλ′

i
−µ′

j
−i+j(1, 1/24, 1/34, · · · )]mi,j=1

= det[22(λ′

i
−µ′

j
−i+j)+1π4(λ′

i
−µ′

j
−i+j)/

(4(λ′
i − µ′

j − i + j) + 2)!]mi,j=1

= 22n+mπ2n det[1/(4(λ′
i − µ′

j − i + j) + 2)!]mi,j=1.

Now

4(λ′
i − µ′

j − i + j) + 2 = (4λ′
i − 4µ′

j + 2 + 3(m − i) − 3(m − j)) − i + j

= (4λ′ + 2γm + 3δm)i − (4µ′ + 3δm)j − i + j,

and the proof follows from equation (1.2).

(c) Analogous to (b).

It is natural to ask about k ≥ 4, i.e., the evaluation of sλ/µ(1, 1/22k, 1/32k, . . . ) for
k ≥ 4. Our method appears to break down. The trigonometric identities needed for
k = 2, 3 do not seem to have an analogue for k ≥ 4. Indeed, ej(1, 1/28, 1/38, . . . ) does not
have the form a(j)π16j where a(j) is a rational number whose numerator and denominator
can be factored into small primes. Also a problem is the case e1(1, 1/22k, 1/32k, . . . ), since
in general there is no simple formula for Bernoulli numbers. We can still ask, however,
whether there is a simple combinatorial interpretation of sλ/µ(1, 1/22k, 1/32k, . . . ) after
suitable normalization.
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