In this paper we study subspace codes with constant intersection dimension (SCIDs). We investigate the largest possible dimension spanned by such a code that can yield non-sunflower codes, and classify the examples attaining equality in that bound as one of two infinite families. We also construct a new infinite family of primitive SCIDs.
Citation: |
[1] | D. Bartoli and F. Pavese, A note on equidistant subspace codes, Discrete Appl. Math., 198 (2016), 291-296. doi: 10.1016/j.dam.2015.06.017. |
[2] | A. Beutelspacher, J. Eisfeld and J. Müller, On sets of planes in ${\text{PG}}(d,q)$ intersecting mutually in one point, Geom. Dedicata, 78 (1999), 143-159. doi: 10.1023/A:1005294416997. |
[3] | J. Eisfeld, On sets of $n$-dimensional subspaces of projective spaces intersecting mutually in an $(n-2)$-dimensional subspace, Discrete Math., 255 (2002), 81-85. doi: 10.1016/S0012-365X(01)00390-9. |
[4] | T. Etzion and N. Raviv, Equidistant codes in the Grassmannian, Discrete Appl. Math., 186 (2015), 87-97. doi: 10.1016/j.dam.2015.01.024. |
[5] | R. Koetter and F. R. Kschischang, Coding for errors and erasures in random network coding, IEEE Trans. Inform. Theory, 54 (2008), 3579-3591. doi: 10.1109/TIT.2008.926449. |
[6] | K. Metsch and L. Storme, Partial $t$-spreads in ${\text{PG}}(2t+1,q)$, Des. Codes Cryptogr., 18 (1999), 199-216. doi: 10.1023/A:1008305824113. |
[7] | B. Segre, Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane, Ann. Mat. Pura Appl., 64 (1964), 1-76. doi: 10.1007/BF02410047. |