We present a cryptanalysis of a signature scheme HIMQ-3 due to Kyung-Ah Shim et al [
Citation: |
[1] | M. Albrecht, G. Bard and C. Pernet, Efficient dense Gaussian elimination over the finite field with two elements, preprint, arXiv: 1111.6549. |
[2] | H. Cohn, R. Kleinberg, B. Szegedy and C. Umans, Group-theoretic algorithms for matrix multiplication, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), (2005), 379–388. doi: 10.1109/SFCS.2005.39. |
[3] | D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, Journal of symbolic computation, 9 (1990), 251-280. doi: 10.1016/S0747-7171(08)80013-2. |
[4] | J. Ding and D. Schmidt, Rainbow, a new multivariable polynomial signature scheme, International Conference on Applied Cryptography and Network Security Springer, (2005), 164–175. doi: 10.1007/11496137_12. |
[5] | National Institute of Standards and Technology, Submission Requirements and Evaluation Criteria for the Post-Quantum Cryptography Standardization Process, 2017. Available from: https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf. |
[6] | J. T. Ding, C. Wolf and B.-Y. Yang, $l$-invertible cycles for $M$ultivariate $Q$uadratic $(MQ)$ public key cryptography, Public Key Cryptography-PKC 2007, Lecture Notes in Comput. Sci., Springer, Berlin, 4450 (2007), 226-281. doi: 10.1007/978-3-540-71677-8_18. |
[7] | J. Dumas and C. Pernet, Computational linear algebra over finite fields, preprint, arXiv: 1204.3735. |
[8] | A. Kipnis, J. Patarin and L. Goubin, Unbalanced oil and vinegar signature schemes, Advances in Cryptology—EUROCRYPT '99 (Prague), Lecture Notes in Comput. Sci., Springer, Berlin, 1592 (1999), 206-222. doi: 10.1007/3-540-48910-X_15. |
[9] | J. Patarin, The oil and vinegar algorithm for signatures, in Dagstuhl Workshop on Cryptography, (1997). |
[10] | K. Shim, C. Park and A. Kim, Himq-3: A high speed signature scheme based on multivariate quadratic equations, (2017). |
[11] | P. W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Review, 41 (1999), 303-332. doi: 10.1137/S0036144598347011. |
[12] | V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, 13 (1969), 354-356. doi: 10.1007/BF02165411. |
[13] | V. V. Williams, Breaking the Coppersmith-Winograd barrier, CiteSeer, Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.228.9947&rep=rep1&type=pdf. |