[1]
|
N. Aydin and T. Asamov, The Database of $\mathbb{Z}_4$ Codes, Available from: http://www.z4codes.info.
|
[2]
|
R. K. Bandi and M. Bhaintwal, A note on cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, Discrete Mathematics, Algorithms and Applications, 8 (2016), 1650017.
doi: 10.1142/S1793830916500178.
|
[3]
|
R. K. Bandi and M. Bhaintwal, Cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, In the Proceedings of IWSDA'15, (2015), 47-52.
|
[4]
|
S. D. Berman, Semisimple cyclic and abelian codes II, Kibernetika, 3 (1967), 17-23.
doi: 10.1007/BF01119999.
|
[5]
|
Y. Cao and Q. Li, Cyclic codes of odd length over $\frac{\mathbb{Z}_u[u]}{\langle u^k \rangle}$, Cryptogr. Comm., 9 (2017), 599-624.
doi: 10.1007/s12095-016-0204-7.
|
[6]
|
J. Gao, F. W. Fu, L. Xiao and R. K. Bandi, Some results on cyclic codes over $\mathbb{Z}_q+u\mathbb{Z}_q$, Discrete Mathematics, Algorithms and Applications, 7 (2015), 1550058.
doi: 10.1142/S1793830915500585.
|
[7]
|
A. Hammons, P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Solé, The $\mathbb{Z}_4$ linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154.
|
[8]
|
P. Langevin and P. Solé, Duadic $\mathbb{Z}_4$-codes, Finite Fields Appl., 6 (2000), 309-326.
doi: 10.1006/ffta.2000.0285.
|
[9]
|
S. Ling and P. Solé, Duadic codes over $\mathbb{F}_2+u\mathbb{F}_2$, Appl. Algebra Engrg. Comm. Comput., 12 (2000), 365-389.
doi: 10.1007/s002000100079.
|
[10]
|
S. Ling and P. Solé, Duadic codes over $\mathbb{Z}_2k$, IEEE Trans. Inform. Theory, 47 (2000), 1581-1588.
doi: 10.1109/18.923740.
|
[11]
|
R. Luo and U. Parampalli, Self-dual cyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, In the Proceedings of IWSDA'15, (2015), 57-61.
|
[12]
|
F. J. MacWilliams, Binary codes which are ideals in the group algebra of an Abelian group, Bell Syst. Tech. J., 49 (1970), 987-1011.
doi: 10.1002/j.1538-7305.1970.tb01812.x.
|
[13]
|
B. S. Rajan and M. U. Siddiqui, Transform domain characterzation of cyclic codes over $\mathbb{Z}_m$, Appl. Algebra Engrg. Comm. Comput., 5 (1994), 261-275.
doi: 10.1007/BF01225641.
|
[14]
|
B. S. Rajan and M. U. Siddiqui, A generalized DFT for Abelian codes over $\mathbb{Z}_m$, IEEE Trans. Inform. Theory, 40 (1994), 2082-2090.
doi: 10.1109/18.340486.
|
[15]
|
M. Shi, L. Qian, L. Sok and P. Solé, On constacyclic codes over $\frac{\mathbb{Z}_4[u]}{\langle u^2-1 \rangle}$ and their Gray images, Finite Fields Appl., 45 (2017), 86-95.
doi: 10.1016/j.ffa.2016.11.016.
|
[16]
|
M. Shi, D. Wang, J. Gao and B. Wu, Construction of one-Gray weight codes and two-Gray weight codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, J. Syst. Sci. Complex, 29 (2016), 1472-1484.
doi: 10.1007/s11424-016-5286-y.
|
[17]
|
P. Solé, Codes over Rings, Proceedings of the Cimpa Summer School, Ankara, Turkey, 2008, 18-29.
doi: 10.1142/7140.
|
[18]
|
E. Speigel, Codes over $\mathbb{Z}_m$, Inform. Control, 35 (1977), 48-51.
doi: 10.1016/S0019-9958(77)90526-5.
|
[19]
|
Z. X. Wan, Finite Fields and Galois Rings, World Scientific Pub. Co. Inc., Singapore, 2012.
|
[20]
|
B. Yildiz and S. Karadeniz, Linear codes over $\mathbb{Z}_4+u\mathbb{Z}_4$, MacWilliams identities, projections, and formally self-dual codes, Finite Fields Appl., 27, 24-40, (2014)
doi: 10.1016/j.ffa.2013.12.007.
|
[21]
|
B. Yildiz and N. Aydin, On cyclic codes over $\mathbb{Z}_4 + u\mathbb{Z}_4$ and their $\mathbb{Z}_4$-images, Int. J. Inf. Coding Theory, 2 (2014), 226-237.
doi: 10.1504/IJICOT.2014.066107.
|
[22]
|
http://magma.maths.usyd.edu.au/magma/.
|