\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On one-lee weight and two-lee weight $ \mathbb{Z}_2\mathbb{Z}_4[u] $ additive codes and their constructions

  • * Corresponding author: Huazhang Wu

    * Corresponding author: Huazhang Wu 

The research is supported by the Open Fund Research of Fund of Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University

Abstract / Introduction Full Text(HTML) Figure(0) / Table(3) Related Papers Cited by
  • This paper mainly study $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes. A Gray map from $ \mathbb{Z}_{2}^{\alpha}\times\mathbb{Z}_{4}^{\beta}[u] $ to $ \mathbb{Z}_{4}^{\alpha+2\beta} $ is defined, and we prove that is a weight preserving and distance preserving map. A MacWilliams-type identity between the Lee weight enumerator of a $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive code and its dual is proved. Some properties of one-weight $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes and two-weight projective $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes are discussed. As main results, some construction methods for one-weight and two-weight $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes are studied, meanwhile several examples are presented to illustrate the methods.

    Mathematics Subject Classification: Primary: 94B05, 94B15, 94B60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  One-weight $ \mathbb{Z}_{2}\mathbb{Z}_{4}[u] $-additive codes

    Cases Weight Remark
    $ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0 $ $ 8k_{1} $ $ a+4a_{7}=2k_{1} $
    $ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L} ((2+u)\mathbf{c})=0 $ $ 4k_{3} $ $ a+4a_{7}=2k_{3} $
    $ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0 $ $ 4k_{2} $ $ a+4a_{7}=2k_{2} $
    $ w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0 $ $ 4k_{1} $ $ a+4a_{7}=2k_{1} $
    $ w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L} ((2 +u)\mathbf{c})=0 $ / /
    $ w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L} ((2 +u)\mathbf{c})=0 $ / /
    $ w_{L}(\mathbf{c})=w_{L} ((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=0 $ / /
    $ w_{L}(\mathbf{c})\neq0,w_{L} ((2 +u)\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})=0 $ $ a+4a_{7} $ /
     | Show Table
    DownLoad: CSV

    Table 2.  Two-weight $\mathbb{Z}_{2}\mathbb{Z}_{4}[u]$-additive codes

    Cases $m_{1}$ $m_{2}$ Remark
    $w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{3})$ $8k_{1}$ $a=2k_{3}-4a_{7},k_{1}\neq k_{3}$
    $w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{1}$ $a=2k_{2}-4a_{7},k_{1}\neq k_{2}$
    $w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{2}$ $a=2k_{1}-4a_{7},k_{1}\neq k_{2}$
    $w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0$ $a+6k_{1}+4a_{7}$ $8k_{1}$ $a+4a_{7}\neq2k_{1}$
    $w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{2}$ $a=4k_{2}-2k_{1}-4a_{7},k_{1}\neq k_{2}$
    $w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0$ $4(k_{1}+k_{2})$ $8k_{1}$ $a=4k_{1}-2k_{2}-4a_{7},k_{1}\neq k_{2}$
    $w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})\neq0$ $4(k_{1}+k_{3})$ $8k_{1}$ $a=4k_{1}-2k_{3}-4a_{7},k_{1}\neq k_{3}$
    $w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ / / /
    $w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ / / /
    $w_{L}(u\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})=0$ $a+2k_{3}+4a_{7}$ $4k_{3}$ $a+4a_{7}\neq2k_{3}$
    $w_{L}(\mathbf{c})=w_{L}(u\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ / / /
    $w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ / / /
    $w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}(2\mathbf{c})=0$ $a+2k_{2}+4a_{7}$ $4k_{2}$ $a+4a_{7}\neq2k_{2}$
    $w_{L}(\mathbf{c})=w_{L}(2\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ / / /
    $w_{L}(\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ / / /
    $w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(\mathbf{c})\neq0,w_{L}(u\mathbf{c})=0$ $a+2k_{1}+4a_{7}$ $4k_{1}$ $a+4a_{7}\neq2k_{1}$
    $w_{L}(\mathbf{c})\neq0,w_{L}(u\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}((2 +u)\mathbf{c})=0$ / / /
    $w_{L}(\mathbf{c})\neq0,w_{L}(2\mathbf{c})\neq0,w_{L}(u\mathbf{c})=w_{L}((2 +u)\mathbf{c})=0$ / / /
    $w_{L}(\mathbf{c})\neq0,w_{L}((2 +u)\mathbf{c})\neq0,w_{L}(2\mathbf{c})=w_{L}(u\mathbf{c})=0$ / / /
     | Show Table
    DownLoad: CSV

    Table 3.  Code parameters comparison

    Examples Length of $\Phi(\mathcal{C})$ Size of $\Phi(\mathcal{C})$ Lee weight of $\Phi(\mathcal{C})$ Lee weight in Database in http://www.Z4codes.info/ Remark
    Ex. 5.3 (i) 8 4 8 8/10 As good as in Database
    Ex. 5.3 (ii) 10 2 12 / New value
    Ex. 5.5 (i) 32 4 32 32/42 As good as in Database
    Ex. 5.5 (ii) 30 4 32 30/40 Better than Database
    Ex. 5.5 (iii) 62 4 64 82
    Ex. 5.7 36 8 32 / New value
    Ex. 6.2 (i) 9 4 6 and 12 9/12 Optimal as per Database
    Ex. 6.2 (ii) 16 4 8 and 16 16/21 Optimal as per Database
    Ex. 6.4 (i) 18 4 16 and 20 18/24 Improves on Database
    Ex. 6.4 (ii) 11 4 12 and 13 11/14 Improves on Database
    Ex. 6.6 46 8 36 and 48 / New value
     | Show Table
    DownLoad: CSV
  • [1] T. AbualrubI. Siap and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.  doi: 10.1109/TIT.2014.2299791.
    [2] I. AydogduT. Abualrub and I. Siap, On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.  doi: 10.1080/00207160.2013.859854.
    [3] I. Aydogdu and I. Siap, The structure of $\mathbb{Z}_{2}\mathbb{Z}_{2^{s}}$-additive codes: Bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013), 2271-2278.  doi: 10.12785/amis/070617.
    [4] A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186. 
    [5] J. BorgesC. Fernández-CárdobaJ. PujólJ. Rifà and M. Villanueva, $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes: Generator matrices and duality, Des. Codes Cryptogr., 54 (2010), 167-179.  doi: 10.1007/s10623-009-9316-9.
    [6] J. BorgesC. Fernández-Cárdoba and R. Ten-Valls, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Info. Theory, 62 (2016), 6348-6354.  doi: 10.1109/TIT.2016.2611528.
    [7] I. BouyulievV. FackW. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78.  doi: 10.1007/s10623-006-0019-1.
    [8] A. E. Brouwer, Some new two-weight codes and strongly regular graphs, Discrete Appl. Math., 10 (1985), 111-114.  doi: 10.1016/0166-218X(85)90062-9.
    [9] R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18 (1986), 97-122.  doi: 10.1112/blms/18.2.97.
    [10] C. Carlet, One-weight $\mathbb{Z}_{4}$-linear codes, Springer Berlin, (2000), 57–72.
    [11] F. D. Clerck and M. Delanote, Two-weight codes, partial geometries and Steiner systems, Des. Codes Cryptogr., 21 (2000), 87-98.  doi: 10.1023/A:1008383510488.
    [12] P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep., Supplement, 1973.
    [13] A. R. HammonsP. V. KumarA. R. CalderbankN. Sloane and P. Solé, The $\mathbb{Z}_{4}$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.  doi: 10.1109/18.312154.
    [14] H. RifàJ. Rifà and L. Ronquilloy, Perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, Comput. Res. Reposit, 26 (2010), 696-701. 
    [15] J. Rifà and L. Ronquillo, Product perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, International Symposium on Information Theory & Its Applications, (2010), 17–20.
    [16] M. SariV. Siap and I. Siap, One-homogeneous weight codes over finite chain rings, Bull. Korean Math. Soc., 52 (2015), 2011-2023.  doi: 10.4134/BKMS.2015.52.6.2011.
    [17] M. J. ShiC. C. WangR. S. WuY. Hu and Y. Q. Chang, One-weight and two-weight $\mathbb{Z}_{2}\mathbb{Z}_{2}[u, v]$-additive codes, Cryptogr. Commun., 12 (2020), 443-454.  doi: 10.1007/s12095-019-00391-5.
    [18] M. J. ShiL. L. Xu and G. Yang, A note on one weight and two weight projective $\mathbb{Z}_{4}$-codes, IEEE Trans. Inf. Theory, 63 (2017), 177-182.  doi: 10.1109/TIT.2016.2628408.
    [19] Z. X. Wan, Quaternary Codes, Singapore, World Scientific, 1997. doi: 10.1142/3603.
    [20] J. A. Wood, The structure of linear codes of constant weight, Trans. Amer. Math. Soc., 354 (2002), 1007-1026.  doi: 10.1090/S0002-9947-01-02905-1.
  • 加载中

Tables(3)

SHARE

Article Metrics

HTML views(2999) PDF downloads(582) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return