[1]
|
T. Abualrub, I. Siap and N. Aydin, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, IEEE Trans. Inform. Theory, 60 (2014), 1508-1514.
doi: 10.1109/TIT.2014.2299791.
|
[2]
|
I. Aydogdu, T. Abualrub and I. Siap, On $\mathbb{Z}_{2}\mathbb{Z}_{2}[u]$-additive codes, Int. J. Comput. Math., 92 (2015), 1806-1814.
doi: 10.1080/00207160.2013.859854.
|
[3]
|
I. Aydogdu and I. Siap, The structure of $\mathbb{Z}_{2}\mathbb{Z}_{2^{s}}$-additive codes: Bounds on the minimum distance, Appl. Math. Inf. Sci., 7 (2013), 2271-2278.
doi: 10.12785/amis/070617.
|
[4]
|
A. Bonisoli, Every equidistant linear code is a sequence of dual Hamming codes, Ars Combin., 18 (1984), 181-186.
|
[5]
|
J. Borges, C. Fernández-Cárdoba, J. Pujól, J. Rifà and M. Villanueva, $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes: Generator matrices and duality, Des. Codes Cryptogr., 54 (2010), 167-179.
doi: 10.1007/s10623-009-9316-9.
|
[6]
|
J. Borges, C. Fernández-Cárdoba and R. Ten-Valls, $\mathbb{Z}_2\mathbb{Z}_4$-additive cyclic codes, generator polynomials and dual codes, IEEE Trans. Info. Theory, 62 (2016), 6348-6354.
doi: 10.1109/TIT.2016.2611528.
|
[7]
|
I. Bouyuliev, V. Fack, W. Willems and J. Winne, Projective two-weight codes with small parameters and their corresponding graphs, Des. Codes Cryptogr., 41 (2006), 59-78.
doi: 10.1007/s10623-006-0019-1.
|
[8]
|
A. E. Brouwer, Some new two-weight codes and strongly regular graphs, Discrete Appl. Math., 10 (1985), 111-114.
doi: 10.1016/0166-218X(85)90062-9.
|
[9]
|
R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. Lond. Math. Soc., 18 (1986), 97-122.
doi: 10.1112/blms/18.2.97.
|
[10]
|
C. Carlet, One-weight $\mathbb{Z}_{4}$-linear codes, Springer Berlin, (2000), 57–72.
|
[11]
|
F. D. Clerck and M. Delanote, Two-weight codes, partial geometries and Steiner systems, Des. Codes Cryptogr., 21 (2000), 87-98.
doi: 10.1023/A:1008383510488.
|
[12]
|
P. Delsarte, An Algebraic Approach to the Association Schemes of Coding Theory, Philips Res. Rep., Supplement, 1973.
|
[13]
|
A. R. Hammons, P. V. Kumar, A. R. Calderbank, N. Sloane and P. Solé, The $\mathbb{Z}_{4}$-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40 (1994), 301-319.
doi: 10.1109/18.312154.
|
[14]
|
H. Rifà, J. Rifà and L. Ronquilloy, Perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, Comput. Res. Reposit, 26 (2010), 696-701.
|
[15]
|
J. Rifà and L. Ronquillo, Product perfect $\mathbb{Z}_{2}\mathbb{Z}_{4}$-linear codes in steganography, International Symposium on Information Theory & Its Applications, (2010), 17–20.
|
[16]
|
M. Sari, V. Siap and I. Siap, One-homogeneous weight codes over finite chain rings, Bull. Korean Math. Soc., 52 (2015), 2011-2023.
doi: 10.4134/BKMS.2015.52.6.2011.
|
[17]
|
M. J. Shi, C. C. Wang, R. S. Wu, Y. Hu and Y. Q. Chang, One-weight and two-weight $\mathbb{Z}_{2}\mathbb{Z}_{2}[u, v]$-additive codes, Cryptogr. Commun., 12 (2020), 443-454.
doi: 10.1007/s12095-019-00391-5.
|
[18]
|
M. J. Shi, L. L. Xu and G. Yang, A note on one weight and two weight projective $\mathbb{Z}_{4}$-codes, IEEE Trans. Inf. Theory, 63 (2017), 177-182.
doi: 10.1109/TIT.2016.2628408.
|
[19]
|
Z. X. Wan, Quaternary Codes, Singapore, World Scientific, 1997.
doi: 10.1142/3603.
|
[20]
|
J. A. Wood, The structure of linear codes of constant weight, Trans. Amer. Math. Soc., 354 (2002), 1007-1026.
doi: 10.1090/S0002-9947-01-02905-1.
|