[1]
|
B. Alspach and T. D. Parsons, A construction for vertex-transitive graphs, Canad. J. Math., 34 (1982), 307-318.
doi: 10.4153/CJM-1982-020-8.
|
[2]
|
Z. R. Bogdanowicz, Pancyclicity of connected circulant graphs, J. Graph Theory, 22 (1996), 167-174.
doi: 10.1002/(SICI)1097-0118(199606)22:2<167::AID-JGT7>3.0.CO;2-L.
|
[3]
|
W. Bosma, J. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symb. Comput., 24 (1997), 235-265.
doi: 10.1006/jsco.1996.0125.
|
[4]
|
A. R. Calderbank, E. M. Rains, P. M. Shor and N. J. A. Sloane, Quantum error correction via codes over $GF(4)$, IEEE Trans. Inform. Theory, 44 (1998), 1369-1387.
doi: 10.1109/18.681315.
|
[5]
|
L. E. Danielsen and M. G. Parker, On the classification of all self-dual additive codes over $GF(4)$ of length up to $12$, J. Combin. Theory, Ser. A, 113 (2006), 1351-1367.
doi: 10.1016/j.jcta.2005.12.004.
|
[6]
|
A. Einstein, B. Podolsky and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 47 (1935), 777-780.
doi: 10.1103/PhysRev.47.777.
|
[7]
|
M. F. Ezerman, Quantum Error-Control Codes, Chapter 27 in W. C. Huffman, J.-L. Kim and P Solé (Eds.), Concise Encyclopedia of Coding Theory, 1$^st$ edition, Chapman and Hall (CRC Press), Boca Raton, 2021.
doi: 10.1201/9781315147901.
|
[8]
|
M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, 2007, accessed on 2021-04-30.
|
[9]
|
M. Grassl, Algebraic quantum codes: Linking quantum mechanics and discrete mathematics, Int. J. Comput. Math.: Comput. Syst. Theory, 6 (2021), 243-259.
doi: 10.1080/23799927.2020.1850530.
|
[10]
|
M. Grassl and M. Harada, New self-dual additive $\mathbb{F}_4$-codes constructed from circulant graphs, Discrete Math., 340 (2017), 399-403.
doi: 10.1016/j.disc.2016.08.023.
|
[11]
|
T. A. Gulliver and J-L. Kim, Circulant based extremal additive self-dual codes over $GF(4)$, IEEE Trans. Inform. Theory, 50 (2004), 359-366.
doi: 10.1109/TIT.2003.822616.
|
[12]
|
J. Hackl, TikZ-network manual, preprint, arXiv: 1709.06005. Source code at https://github.com/hackl/tikz-network.
|
[13]
|
C. H. Li, S. J. Song and D. J. Wang, A characterization of metacirculants, J. Combin. Theory, Ser. A, 120 (2013), 39-48.
doi: 10.1016/j.jcta.2012.06.010.
|
[14]
|
D. Marušič, On $2$-arc-transitivity of Cayley graphs, J. Combin. Theory, Ser. B, 96 (2006), 761-764.
doi: 10.1016/j.jctb.2006.01.003.
|
[15]
|
È. A. Monakhova, A survey on undirected circulant graphs, Discrete Math. Algorithms Appl., 4 (2012), 1250002, 30pp.
doi: 10.1142/S1793830912500024.
|
[16]
|
G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, Heidelberg, 2006.
doi: 10.1007/3-540-30731-1.
|
[17]
|
K. Saito, Self-dual additive $\mathbb{F}_4$-codes of lengths up to $40$ represented by circulant graphs, Adv. Math. Commun., 13 (2019), 213-220.
doi: 10.3934/amc.2019014.
|
[18]
|
D. Schlingemann, Stabilizer codes can be realized as graph codes, Quantum Info. Comput., 2 (2002), 307-323.
doi: 10.26421/QIC2.4-4.
|
[19]
|
Z. Varbanov, Additive circulant graph codes over $GF(4)$, Math. Maced., 6 (2008), 73-79.
|
[20]
|
A. Vardy, The intractability of computing the minimum distance of a code, IEEE Trans. Inform. Theory, 43 (1997), 1757-1766.
doi: 10.1109/18.641542.
|