Citation: |
[1] |
R. Albert and A. L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys., 74 (2002), 47-97.doi: 10.1103/RevModPhys.74.47. |
[2] |
J. Anez, T. De La Barra and B. Perez, Dual graph representation of transport networks, Trans. Res. B, 30 (1996), 209-216. |
[3] |
C. Balbuena, D. Ferrero, X. Marcote and I. Pelayo, Algebraic properties of a digraph and its line digraph, J. of Interconnection Networks, 4 (2003), 377-393.doi: 10.1142/S0219265903000933. |
[4] |
S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D. U. Hwang, Complex networks: Structure and dynamics, Physics Reports, 424 (2006), 175-308.doi: 10.1016/j.physrep.2005.10.009. |
[5] |
P. Bonacich, Factoring and weighing approaches to status scores and clique information, J. Math. Soc., 2 (1972), 113.doi: 10.1080/0022250X.1972.9989806. |
[6] |
P. Bonacich and P. Lloyd, Eigenvectors-like measures of centrality for asymetric relations, Soc. Netw., 23 (2001), 191.doi: 10.1016/S0378-8733(01)00038-7. |
[7] |
L. Collatz and U. Sinogowitz, Spektren endlicher grafen, Abh. Math. Sem. University Hamburg., 21 (1957), 63-77.doi: 10.1007/BF02941924. |
[8] |
R. Criado, J. Flores, A. García del Amo and M. Romance, Analytical relationships between metric and centrality measures of a network and its dual, J. Comput. Appl. Math., 235 (2011), 1775-1780.doi: 10.1016/j.cam.2010.04.011. |
[9] |
R. Criado, J. Flores, A. García del Amo and M. Romance, Centrality and measure of irregularity, Preprint, 2011. |
[10] |
P. Crucitti, V. Latora and S. Porta, Centrality in networks of urban streets, Chaos, 16 (2006), 015113.doi: 10.1063/1.2150162. |
[11] |
P. Crucitti, V. Latora and S. Porta, Centrality measures in spatial networks of urban streets, Phys. Rev. E, 73 (2006), 036125.doi: 10.1103/PhysRevE.73.036125. |
[12] |
C. J. L. Gross and J. Yellen, "Handbook of Graph Theory," CRC Press, New Jersey, 2004. |
[13] |
V. Latora and M. Marchiori, Efficient behavior of small-world networks, Phys. Rev. Lett., 87 (2001), 198701.doi: 10.1103/PhysRevLett.87.198701. |
[14] |
R. L. Hemminger and L. W. Beineke, Line graphs and line digraphs, in "Selected Topics in Graph Theory" (eds. L. W. Beineke and R. J. Wilson), Academic Press Inc., (1978), pp. 271305. |
[15] |
M. B. Hua, R. Jianga, R. Wang and Q. S. Wu, Urban traffic simulated from the dual representation: Flow, crisis and congestion, Physics Letters A, 373 (2009), 2007-2011. |
[16] |
M. E. and J. Newman, The structure and function of complex networks, SIAM Review, 45 (2003), 167-256.doi: 10.1137/S003614450342480. |
[17] |
M. E. and J. Newman, "Networks: An Introduction," Oxford Univ. Press, Oxford, 2010. |
[18] |
M. E., J. Newman, A. L. Barabási and D. J. Watts, "The Structure and Dynamics of Networks," Princeton Univ. Press, Princeton, New Jersey, 2006. |
[19] |
P. Ren, R. C. Wilson and E. R. Hancock, Characteristic polynomial analysis on matrix representations on graphs, LNCS, 5534/2009 (2009), 243-252. |
[20] |
P. Ren, R. C. Wilson and E. R. Hancock, Graph characterization via Ihara coefficients, EEE Trans. on Neural Networks, 22 (2011), 233-245. |
[21] |
D. Volchenkov and Ph. Blanchard, Transport networks revisited: Why dual graphs?, arXiv:0710.5494. |
[22] |
S. Wasserman and K. Faust, "Social Networks Analysis," Cambridge Univ. Press, 1994. |