\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Deep neural network approach to forward-inverse problems

  • * Corresponding author: Hyung Ju Hwang

    * Corresponding author: Hyung Ju Hwang 
Abstract / Introduction Full Text(HTML) Figure(7) / Table(3) Related Papers Cited by
  • In this paper, we construct approximated solutions of Differential Equations (DEs) using the Deep Neural Network (DNN). Furthermore, we present an architecture that includes the process of finding model parameters through experimental data, the inverse problem. That is, we provide a unified framework of DNN architecture that approximates an analytic solution and its model parameters simultaneously. The architecture consists of a feed forward DNN with non-linear activation functions depending on DEs, automatic differentiation [2], reduction of order, and gradient based optimization method. We also prove theoretically that the proposed DNN solution converges to an analytic solution in a suitable function space for fundamental DEs. Finally, we perform numerical experiments to validate the robustness of our simplistic DNN architecture for 1D transport equation, 2D heat equation, 2D wave equation, and the Lotka-Volterra system.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Network architecture

    Figure 2.  Experimental result for 1D transport equation

    Figure 3.  Experimental result for 2D heat equation with $ u(0,x,y) = x(1-x)y(1-y) $

    Figure 4.  Experimental result for 2D heat equation with $ u(0,x,y) = 1 \text{, if } (x,y) \in \Omega, 0 \text{, otherwise} $

    Figure 5.  Experimental result for 2D wave equation

    Figure 6.  Experimental result for Lotka-Volterra equation

    Figure 7.  Experimental result for CFL condition

    Algorithm 1: Training
    1: procedure train(number of epochs)
    2:   Initialize the nerural network.
    3:   For number of epochs do
    4:     sample $ z^1, z^2,..., z^m $ from uniform distribution over $ \Omega $
    5:     sample $ z_I^1, z_I^2,..., z_I^m $ from uniform distribution over $ \{0\} \times\Omega $
    6:     sample $ z_B^1, z_B^2,..., z_B^m $ from uniform distribution over $ \partial\Omega $
    7:     sample k observation points $ z_O^1, z_O^2,..., z_O^k $
    8:     Find the true value $ u_j = u_p(z_O^j) $ for $ j=1,2,...,k $
    9:     Update the neural network by descending its stochastic gradient :
    $\begin{equation} \nonumber \nabla_{w, b} [\frac{1}{m} \sum\limits_{i = 1}^m [L_p(u_N)(z^i)^2 + (u_N(z_I^i)-f(z_I^i))^2 + (u_N(z_B^i)-g(z_B^i))^2] + \frac{1}{k}\sum\limits_{j = 1}^k (u_N(z_O^j)-u_j)^2] \end{equation}$
    10:   end for
    11: end procedure
     | Show Table
    DownLoad: CSV

    Table 1.  Information of grid and observation points

    Data Generation
    Grid Range Number of Grid Points Number of Observations
    1D Transport $ (t,x) \in [0,1]\times[0,1] $ $ 17 \times 100 $ 17
    2D Heat $ (t,x,y) \in [0,1]\times[0,1]\times[0,1] $ $ 100 \times 100 \times 100 $ 13
    2D Wave $ (t,x,y) \in [0,1]\times[0,1]\times[0,1] $ $ 100 \times 100 \times 100 $ 61
    Lotka-Volterra $ t \in [0,100] $ 20,000 40
     | Show Table
    DownLoad: CSV

    Table 2.  Neural network architecture

    Neural Network Architecture
    Fully Connected Layers Activation Functions Learning Rate
    1D Transport 2(input)-128-256-128-1(output) ReLU $ 10^{-5} $
    2D Heat 3(input)-128-128-1(output) Sin, Sigmoid $ 10^{-5} $
    2D Wave 3(input)-128-256-128-1(output) Sin, Tanh $ 10^{-5} $
    Lotka-Volterra 1(input)-64-64-2(output) Sin $ 10^{-4} $
     | Show Table
    DownLoad: CSV
  • [1] W. ArloffK. R. B. Schmitt and L. J. Venstrom, A parameter estimation method for stiff ordinary differential equations using particle swarm optimisation, Int. J. Comput. Sci. Math., 9 (2018), 419-432.  doi: 10.1504/IJCSM.2018.095506.
    [2] A. G. Baydin, B. A. Pearlmutter, A. A. Radul and J. M. Siskind, Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18 (2017), 43pp.
    [3] J. Berg and K. Nystr{ö}m, Neural network augmented inverse problems for PDEs, preprint, arXiv: 1712.09685.
    [4] J. Berg and K. Nystr{ö}m, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing, 317 (2018), 28-41.  doi: 10.1016/j.neucom.2018.06.056.
    [5] G. Chavet, Nonlinear Least Squares for Inverse Problems. Theoretical Foundations and Step-By-Step Guide for Applications, Scientific Computation, Springer, New York, 2009. doi: 10.1007/978-90-481-2785-6.
    [6] N. E. Cotter, The Stone-Weierstrass theorem and its application to neural networks, IEEE Trans. Neural Networks, 1 (1990), 290-295.  doi: 10.1109/72.80265.
    [7] R. CourantK. Friedrichs and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Develop., 11 (1967), 215-234.  doi: 10.1147/rd.112.0215.
    [8] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303-314.  doi: 10.1007/BF02551274.
    [9] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.
    [10] G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, Proceedings of Chamonix, 1997 (1996), 1-8. 
    [11] K. HornikM. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.  doi: 10.1016/0893-6080(89)90020-8.
    [12] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
    [13] I. E. LagarisA. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Networks, 9 (1998), 987-1000.  doi: 10.1109/72.712178.
    [14] I. E. LagarisA. C. Likas and D. G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Networks, 11 (2000), 1041-1049.  doi: 10.1109/72.870037.
    [15] K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math., 2 (1944), 164-168.  doi: 10.1090/qam/10666.
    [16] L. JianyuL. SiweiQ. Yingjian and H. Yaping, Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural Networks, 16 (2003), 729-734.  doi: 10.1016/S0893-6080(03)00083-2.
    [17] J. Li and X. Li, Particle swarm optimization iterative identification algorithm and gradient iterative identification algorithm for Wiener systems with colored noise, Complexity, 2018 (2018), 8pp. doi: 10.1155/2018/7353171.
    [18] X. Li, Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer, Neurocomputing, 12 (1996), 327-343.  doi: 10.1016/0925-2312(95)00070-4.
    [19] D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11 (1963), 431-441.  doi: 10.1137/0111030.
    [20] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115-133.  doi: 10.1007/BF02478259.
    [21] A. Paszke, et al., Automatic differentiation in PyTorch, Computer Science, (2017).
    [22] M. RaissiP. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686-707.  doi: 10.1016/j.jcp.2018.10.045.
    [23] S. J. Reddi, S. Kale and S. Kumar, On the convergence of ADAM and beyond, preprint, arXiv: 1904.09237.
    [24] S. A. Sarra, Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math., 54 (2005), 79-94.  doi: 10.1016/j.apnum.2004.07.004.
    [25] P. Tsilifis, I. Bilionis, I. Katsounaros and N. Zabaras, Computationally efficient variational approximations for Bayesian inverse problems, J. Verif. Valid. Uncert., 1 (2016), 13pp. doi: 10.1115/1.4034102.
    [26] F. Yaman, V. G. Yakhno and R. Potthast, A survey on inverse problems for applied sciences, Math. Probl. Eng., 2013 (2013), 19pp. doi: 10.1155/2013/976837.
  • 加载中

Figures(7)

Tables(3)

SHARE

Article Metrics

HTML views(2659) PDF downloads(1637) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return