[1]
|
W. Arloff, K. R. B. Schmitt and L. J. Venstrom, A parameter estimation method for stiff ordinary differential equations using particle swarm optimisation, Int. J. Comput. Sci. Math., 9 (2018), 419-432.
doi: 10.1504/IJCSM.2018.095506.
|
[2]
|
A. G. Baydin, B. A. Pearlmutter, A. A. Radul and J. M. Siskind, Automatic differentiation in machine learning: A survey, J. Mach. Learn. Res., 18 (2017), 43pp.
|
[3]
|
J. Berg and K. Nystr{ö}m, Neural network augmented inverse problems for PDEs, preprint, arXiv: 1712.09685.
|
[4]
|
J. Berg and K. Nystr{ö}m, A unified deep artificial neural network approach to partial differential equations in complex geometries, Neurocomputing, 317 (2018), 28-41.
doi: 10.1016/j.neucom.2018.06.056.
|
[5]
|
G. Chavet, Nonlinear Least Squares for Inverse Problems. Theoretical Foundations and Step-By-Step Guide for Applications, Scientific Computation, Springer, New York, 2009.
doi: 10.1007/978-90-481-2785-6.
|
[6]
|
N. E. Cotter, The Stone-Weierstrass theorem and its application to neural networks, IEEE Trans. Neural Networks, 1 (1990), 290-295.
doi: 10.1109/72.80265.
|
[7]
|
R. Courant, K. Friedrichs and H. Lewy, On the partial difference equations of mathematical physics, IBM J. Res. Develop., 11 (1967), 215-234.
doi: 10.1147/rd.112.0215.
|
[8]
|
G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303-314.
doi: 10.1007/BF02551274.
|
[9]
|
L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010.
doi: 10.1090/gsm/019.
|
[10]
|
G. E. Fasshauer, Solving partial differential equations by collocation with radial basis functions, Proceedings of Chamonix, 1997 (1996), 1-8.
|
[11]
|
K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359-366.
doi: 10.1016/0893-6080(89)90020-8.
|
[12]
|
D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint, arXiv: 1412.6980.
|
[13]
|
I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Networks, 9 (1998), 987-1000.
doi: 10.1109/72.712178.
|
[14]
|
I. E. Lagaris, A. C. Likas and D. G. Papageorgiou, Neural-network methods for boundary value problems with irregular boundaries, IEEE Trans. Neural Networks, 11 (2000), 1041-1049.
doi: 10.1109/72.870037.
|
[15]
|
K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math., 2 (1944), 164-168.
doi: 10.1090/qam/10666.
|
[16]
|
L. Jianyu, L. Siwei, Q. Yingjian and H. Yaping, Numerical solution of elliptic partial differential equation using radial basis function neural networks, Neural Networks, 16 (2003), 729-734.
doi: 10.1016/S0893-6080(03)00083-2.
|
[17]
|
J. Li and X. Li, Particle swarm optimization iterative identification algorithm and gradient iterative identification algorithm for Wiener systems with colored noise, Complexity, 2018 (2018), 8pp.
doi: 10.1155/2018/7353171.
|
[18]
|
X. Li, Simultaneous approximations of multivariate functions and their derivatives by neural networks with one hidden layer, Neurocomputing, 12 (1996), 327-343.
doi: 10.1016/0925-2312(95)00070-4.
|
[19]
|
D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Indust. Appl. Math., 11 (1963), 431-441.
doi: 10.1137/0111030.
|
[20]
|
W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115-133.
doi: 10.1007/BF02478259.
|
[21]
|
A. Paszke, et al., Automatic differentiation in PyTorch, Computer Science, (2017).
|
[22]
|
M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686-707.
doi: 10.1016/j.jcp.2018.10.045.
|
[23]
|
S. J. Reddi, S. Kale and S. Kumar, On the convergence of ADAM and beyond, preprint, arXiv: 1904.09237.
|
[24]
|
S. A. Sarra, Adaptive radial basis function methods for time dependent partial differential equations, Appl. Numer. Math., 54 (2005), 79-94.
doi: 10.1016/j.apnum.2004.07.004.
|
[25]
|
P. Tsilifis, I. Bilionis, I. Katsounaros and N. Zabaras, Computationally efficient variational approximations for Bayesian inverse problems, J. Verif. Valid. Uncert., 1 (2016), 13pp.
doi: 10.1115/1.4034102.
|
[26]
|
F. Yaman, V. G. Yakhno and R. Potthast, A survey on inverse problems for applied sciences, Math. Probl. Eng., 2013 (2013), 19pp.
doi: 10.1155/2013/976837.
|