\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Opinion fitness and convergence to consensus in homogeneous and heterogeneous populations

This work was partially supported by Universidad de Buenos Aires under grants 20020150100154BA and 20020130100283BA, by ANPCyT PICT2012 0153 and PICT2014-1771, CONICET (Argentina) PIP 11220150100032CO and 5478/1438. J.P. Pinasco and N. Saintier are members of CONICET, Argentina. M. Pérez-Llanos thanks to Junta de Andalucía FQM-131, Spain
Abstract / Introduction Full Text(HTML) Figure(4) Related Papers Cited by
  • In this work we study the formation of consensus in homogeneous and heterogeneous populations, and the effect of attractiveness or fitness of the opinions. We derive the corresponding kinetic equations, analyze the long time behavior of their solutions, and characterize the consensus opinion.

    Mathematics Subject Classification: 91C20; 82B21; 60K35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Evolution of the opinion of 10 agents (blue) from a homogeneous population of $ N = 1000 $ agents interacting according the interaction rule (16) studied in this paper (left) or the interaction rule (22) considered in [2,38] (right). The red dashed line indicates the theoretical limit opinion in both cases ($ m_\infty\approx -0.35 $ for interaction rule (16), (left), and $ \tilde m_\infty\approx 0.41 $ for interaction rule (22), (right)) The early evolution is shown in inset

    Figure 2.  Evolution of $ \ln(\max\,w-\min\,w) $, where the $ \max $ and $ \min $ are taken on the support of the distribution of opinions, for interaction rule (16) studied in this paper (left), and interaction rule (22) considered in [2,38] (right)

    Figure 3.  Evolution of the opinion of 10 agents (blue) from a population of $ N = 1000 $ agents with $ \alpha_0 = 2\% $ (left) and $ \alpha_0 = 60\% $ (right) stubborn agents. The red dashed line indicates the theoretical limit opinion $ m_\infty = 1/2 $, and the blue dotted lines the opinion of the stubborn agents (half with opinion $ 1/4 $ and the other half with opinion $ 3/4 $). The early evolution is shown in inset

    Figure 4.  Evolution of the distribution of $ (w,q) $ among the non-stubborn population during one simulation ($ w $ in the horizontal axis and $ q $ in the vertical axis) with $ \lambda(w) = (w-0.5)^2 + \varepsilon $, $ \varepsilon = 0.01 $. From left to right and top to bottom, figures show the distribution of $ (w,q) $ at time $ 1,500,1000,1500,3000,5000,10000,15000,30000 $

  • [1] G. Aletti, A. K. Naimzada and G. Naldi., Mathematics and physics applications in sociodynamics simulation: The case of opinion formation and diffusion, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhäuser Boston, (2010), 203–221. doi: 10.1007/978-0-8176-4946-3_8.
    [2] G. AlettiG. Naldi and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853.  doi: 10.1137/060658679.
    [3] S. E. Asch, Opinions and social pressure, Scientific American, 193 (1955), 31-35.  doi: 10.1038/scientificamerican1155-31.
    [4] R. B. Ash, Real Analysis and Probability, Probability and Mathematical Statistics, Academic Press, New York-London, 1972.
    [5] P. Balenzuela, J. P. Pinasco and V. Semeshenko, The undecided have the key: Interaction driven opinion dynamics in a three state model, PLoS ONE, 10 (2016), e0139572, 1–21.
    [6] B. O. BaumgaertnerR. C. Tyson and S. M. Krone, Opinion strength influences the spatial dynamics of opinion formation, The Journal of Mathematical Sociology, 40 (2016), 207-218.  doi: 10.1080/0022250X.2016.1205049.
    [7] B. O. Baumgaertner, P. A. Fetros, R. C. Tyson and S. M. Krone, Spatial Opinion Dynamics and the Efects of Two Types of Mixing, Phys Rev E., 98 (2018), 022310.
    [8] N. Bellomo, Modeling Complex Living Systems A Kinetic Theory and Stochastic Game Approach, Birkhauser, 2008.
    [9] N. Bellomo, G. Ajmone Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation, SpringerBriefs in Mathematics, 2013. doi: 10.1007/978-1-4614-7242-1.
    [10] K. C. Border and C. D. Aliprantis, Infinite Dimensional Analysis - A Hitchhiker's Guide, 3rd Edition, Springer, 2006.
    [11] E. Burnstein and A. Vinokur, What a person thinks upon learning he has chosen differently from others: Nice evidence for the persuasive-arguments explanation of choice shifts, Journal of Experimental Social Psychology, 11 (1975), 412-426.  doi: 10.1016/0022-1031(75)90045-1.
    [12] J. A. CañizoJ. A. Carrillo and J. Rosado, A well-posedness theory in measures for some kinetic models of collective motion, Mathematical Models and Methods in Applied Sciences, 21 (2011), 515-539.  doi: 10.1142/S0218202511005131.
    [13] R. B. Cialdini and M. R. Trost, Social influence: Social norms, conformity and compliance, The Handbook of Social Psychology, McGraw-Hill, (1998), 151–192.
    [14] F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Transactions on Automatic Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.
    [15] G. DeffuantD. NeauF. Amblard and G. Weisbuch, Mixing beliefs among interacting agents, Advances in Complex Systems, 3 (2000), 87-98.  doi: 10.1142/S0219525900000078.
    [16] P. Embrechts and M. Hofert, A note on generalized inverse, Mathematical Methods of Operations Research, 77 (2013), 423-432.  doi: 10.1007/s00186-013-0436-7.
    [17] N. E. Friedkin and E. C. Johnsen, Social influence and opinions, Journal of Mathematical Sociology, 15 (1990), 193-206.  doi: 10.1080/0022250X.1990.9990069.
    [18] T. Fujimoto, A simple model of consensus formation, Okayama Economic Review, 31 (1999), 95-100. 
    [19] S. Galam, Sociophysics: A Physicist's Modeling of Psycho-Political Phenomena, , Springer Science & Business Media, 2012. doi: 10.1007/978-1-4614-2032-3.
    [20] R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence: Models, analysis and simulation, Journal of Artificial Societies and Social Simulation, 5 (2002).
    [21] R. A. Holley and T. M. Liggett, Ergodic theorems for weakly interacting infinite systems and the voter model, The Annals of Probability, 3 (1975), 643-663.  doi: 10.1214/aop/1176996306.
    [22] C. La Rocca, L. A. Braunstein and F. Vázquez, The influence of persuasion in opinion formation and polarization, Europhys. Letters, 106 (2014), 40004. doi: 10.1209/0295-5075/106/40004.
    [23] B. Latané, The psychology of social impact, American Psychologist, 36 (1981), 343-356. 
    [24] J. Lorenz, Continuous opinion dynamics under bounded confidence: A survey, International Journal of Modern Physics C, 18 (2007), 1819-1838.  doi: 10.1142/S0129183107011789.
    [25] M. Mäs and A. Flache, Differentiation without distancing. Explaining bi-polarization of opinions without negative influence, PloS one, 8 (2013), e74516.
    [26] P. Milgrom and I. Segal, Envelope theorems for arbitrary choice sets, Econometrica, 70 (2002), 583-601.  doi: 10.1111/1468-0262.00296.
    [27] R. Ochrombel, Simulation of Sznajd sociophysics model with convincing single opinions, International Journal of Modern Physics C, 12 (2001), 1091-1092.  doi: 10.1142/S0129183101002346.
    [28] L. Pareschi and  G. ToscaniInteracting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, Oxford University Press, Oxford, 2014. 
    [29] L. PedrazaJ. P. Pinasco and N. Saintier, Measure-valued opinion dynamics, M3AS: Mathematical Models and Methods in Applied Sciences, 30 (2020), 225-260.  doi: 10.1142/S0218202520500062.
    [30] M. Pérez-Llanos, J. P. Pinasco and N. Saintier, Opinion attractiveness and its effect in opinion formation models, Phys. A, 559 (2020), 125017, 9 pp. doi: 10.1016/j.physa.2020.125017.
    [31] M. Pŕez-LlanosJ. P. PinascoN. Saintier and A. Silva, Opinion formation models with heterogeneous persuasion and zealotry, SIAM Journal on Mathematical Analysis, 50 (2018), 4812-4837.  doi: 10.1137/17M1152784.
    [32] F. Vazquez, N. Saintier and J. P. Pinasco, The role of voting intention in public opinion polarization, Phys. Rev. E, 101 (2020), 012101, 13pp.
    [33] N. Saintier, J. P. Pinasco and F. Vazquez, A model for a phase transition between political mono-polarization and bi-polarization, Chaos: An Interdisciplinary Journal of Nonlinear Science, 30 (2020), 063146, 17 pp. doi: 10.1063/5.0004996.
    [34] J. P. PinascoV. Semeshenko and P. Balenzuela, Modeling opinion dynamics: Theoretical analysis and continuous approximation, Chaos, Solitons & Fractals, 98 (2017), 210-215.  doi: 10.1016/j.chaos.2017.03.033.
    [35] F. Slanina and H. Lavicka, Analytical results for the Sznajd model of opinion formation, The European Physical Journal B, 35 (2003) 279–288. doi: 10.1140/epjb/e2003-00278-0.
    [36] D. W. StroockProbability Theory, An Analytic View, Cambridge University Press, 1993. 
    [37] K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community, International Journal of Modern Physics - C, 11 (2000), 1157-1165.  doi: 10.1142/S0129183100000936.
    [38] G. Toscani, Kinetic models of opinion formation, Communications in Mathematical Sciences, 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.
    [39] C. Villani, Topics in optimal transportation, Grad.Studies in Math., American Mathematical Soc., (2003). doi: 10.1090/gsm/058.
  • 加载中

Figures(4)

SHARE

Article Metrics

HTML views(2189) PDF downloads(235) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return