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PAPER

Human Activity Recognition Using Convolutional 
Autoencoder and Advanced Preprocessing

ABSTRACT
E-health systems rely on information and communication technology to support and improve 
various aspects of health services, delivery, and management. The success of artificial intelli-
gence techniques has led to the emergence of a variety of systems designed to address a wide 
range of healthcare issues. In particular, gathering data on patient activity and behavior has 
enabled the development of reliable predictive systems for detecting chronic diseases and 
forecasting their progression. Human activity detection is a vast and emerging field, and var-
ious datasets have been collected for training different machine learning and deep learning 
(DL) models. The University of Milano Bicocca smartphone-based human activity recognition 
(UniMiB-SHAR) dataset is widely used for analyzing and recognizing human actions, includ-
ing walking, running, and other daily activities. However, the autoencoder (AE) technique 
trained on this dataset yields poor performance. This paper aims to enhance the performance 
of AEs on the challenging UniMiB-SHAR dataset by introducing a convolutional AE model 
and employing novel preprocessing techniques, including normalization, magnitude, prin-
cipal component analysis (PCA), and balancing methods such as SMOTEEN and ADASYNE. 
The experimental results demonstrate that the proposed AE model achieved successful per-
formance, surpassing the state-of-the-art methods, with accuracies of 96.56% for activities of 
daily living (ADL), 98.86% for Fall, and 88.47% for the full dataset.
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1	 INTRODUCTION

Artificial intelligence and ubiquitous computing have recently placed more 
emphasis on recognizing human activity [1]. This shift can be attributed, in part, 
to the proliferation of Internet of Things (IoT) devices such as smart home systems 
and wearable devices, which provide a multitude of data sources offering real-time 
and continuous information. The field of human activity detection is a research area 
focused on identifying and comprehending the actions and behaviors of individuals 
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in various scenarios. This field is relevant in numerous domains, including health-
care, video surveillance, human-computer interaction, security, and sports. The 
field of eHealth encompasses the use of information and communication technol-
ogies in the healthcare sector. This includes the use of electronic medical records to 
store medical information, teleconsultations for remote health monitoring, mobile 
health for smartphone-based healthcare, and wearables equipped with sensors 
for various healthcare purposes [2]. These sensors can include heart rate sensors, 
glucose sensors, motion sensors, and temperature sensors. Additionally, computer 
vision, machine learning (ML), and deep learning (DL) techniques have significantly 
improved recognition systems in various domains, such as facial recognition, object 
recognition, speech recognition, and human activity recognition (HAR) [3]. Recently, 
there has been a significant increase in the use of machine learning methods for 
solving activity recognition (AR) problems. ML techniques have proven to be highly 
effective [4] in detecting human activity. By harnessing the power of ML algorithms, it 
becomes possible to automatically recognize and classify various human behaviors. 
The data utilized in the field of human activity detection comes in various formats, 
including videos, images, sensors, wearable devices, and audio data. The data from 
sensors includes information from accelerometers, gyroscopes, pressure sensors, 
heart rate sensors, motion sensors, and more. In our previous work [6], we utilized 
the UniMiB-SHAR dataset [5] to analyze and classify various activities. We employed 
a range of ML techniques, such as K-nearest neighbors (KNN), random forest (RF), 
convolutional neural network (CNN), autoencoder (AE), support vector machine 
(SVM), and artificial neural network (ANN) [7]. In many studies, AE models did not 
yield significant results in the University of Milano Bicocca smartphone-based HAR 
(UniMiB-SHAR) [8] [9] [10] [11]. For this reason, this paper proposes a new architec-
ture for AEs with the implementation of various preprocessing techniques, including 
magnitude calculation, normalization, and dimensional reduction using principal 
component analysis (PCA), to enhance performance on the UniMiB-SHAR dataset.

The paper is organized as follows: Section 2 explores the related literature in the 
field, while Section 3 describes the methods used in the approach. Section 4 presents 
the experimental results, and Section 5 concludes the findings and discusses future 
research directions.

2	 RELATED WORKS

Different ML and DL techniques have been applied to this dataset. However, the 
performance of the AE application is generally low on the UniMiB-SHAR dataset.

A study conducted in [8] aims to compare the performance of various algorithms, 
including hand-crafted features (HC), codebook approaches (CB), AE, multi-layer per-
ceptron (MLP), recurrent neural networks (RNNs), convolutional neural networks 
(CNNs), long short-term memory networks (LSTM), hybrid convolutional and recur-
rent networks, and deep residual learning. In this study, the authors used the sliding 
time window size as an important hyperparameter in models, with T corresponding 
to 32 (approximately 1 second), 64 (approximately 2 seconds), and 96 (approximately 
3 seconds) on different datasets. Using the UniMiB-SHAR dataset with 17 activities 
(Full-17), the AE model achieved F1-scores of 68.37% (T = 32), 68.24% (T = 64), and 
68.39% (T = 96). An LSTM-AE network for fall detection, as proposed in [9], utilized 
data collected from smartphone accelerometers to capture body acceleration. They 
conducted experiments on two scenarios: activities of daily living and falls. Using the 
ADL-9 sub-dataset, their model achieved an accuracy of 94.70%, an AUC of 87.21%, 
and an F1-score of 87%. For fall detection (Fall-8), the model achieved an accuracy 
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of 55.20%, an AUC of 67.82%, and an F1-score of 55%. A variational AE is proposed for 
HAR using the UniMiB-SHAR (Full-17) dataset in [10]. The latter achieves an average 
performance of 24.01% on the Full-17 dataset. Various ML techniques were inves-
tigated by [11], including the AE, using two datasets (OPPORTUNITY and UniMiB-
SHAR) for sensor-based HAR. Using Leave-One-Subject-Out cross-validation with 
30-fold, the AE achieved an accuracy of 65.67%, a weighted F1-score of 64.84%, and 
an average F1-score of 55.04% on the Full-17 sub-dataset of the UniMiB-SHAR dataset. 
To tackle the class imbalance in the human activity dataset [12], the Balancing Sensor 
Data Generative Adversarial Networks (BSDGAN) technique was employed. An AE was 
utilized in the learning process of BSDGAN on the WISDM and UniMiB-SHAR datasets, 
as well as on the ADL-9 sub-dataset. An approach called multiclass AE-based active 
learning (MAAL) is introduced, which is based on multiclass AE and deep support vec-
tor data description (Deep SVDD) models as presented in [13]. Two datasets, USC-HAD 
and UniMiB-SHAR, consist of 10 classes. The fall-8 class is considered one class, and 
the remaining nine classes are from ADL-9. This approach achieved 90.79% accuracy 
and an 88.40% F1-score on the USC-HAD dataset, while it achieved 98.66% accuracy 
and a 94.90% F1 score on the UniMiB-SHAR dataset for the Full-17 sub-dataset.

Table 1 presents the studies that have focused on enhancing the performance 
of AEs using the Full UniMiB-SHAR dataset or its sub-datasets, according to the 
specified criteria.

•	 Study ref: it presents the article reference.
•	 Description: it presents the idea for each article.
•	 Preprocessing: it represents the techniques used to prepare the data set.
•	 Dataset: it presents the dataset or sub-dataset used in each work.
•	 Performance: is validation score employed like Accuracy, F1-score and AUC.

Table 1. AE’s performance in the state of the art

Ref. Description Preprocessing Dataset Performance

 [8] Proposition of ARN model for HAR and its comparison with other models 
such as: HC, CB, AE, Multi-Layer Perceptron (MLP), Recurrent Neural 
Networks (RNNs), Convolutional Neural Networks (CNNs), Long-Short 
Term Memory Networks (LSTM), Hybrid Convolutional and Recurrent 
Networks, Deep Residual Learning.

Sliding Time 
Window Size

Full-17 F1-scores :
68.37% (T = 32), 
68.24% (T = 64) and 
68.39% (T = 96).

 [9] Proposition of recurrent autoencoders model for HAR, and comparison 
with other models such as SVM and OC-SVM.

Normalization ADL-9 Accuracy: 94.70%
AUC: 87.21%
F1-score: 87%

Fall-8 Accuracy: 55.20%
AUC: 67.82%
F1-score: 55%

[10] Proposition of Generalizable Independent Latent Excitation (GILE) model 
and variational autoencoder (VAE) model for HAR and comparison with 
DIVA, DDNN, DeepConvLSTM, the CODATS time series model.

Cross validation 
with leave-one-
domain-out strategy

Full-17 Accuracy: 24.01%

[11] Comparison of deep learning methods integrating autoencoding for HAR. Leave-One-Subject-
Out cross-validation

Full-17 Accuracy: 65.67%
F1-score: 64.84%

[13] Proposition of Multiclass Autoencoder-Based Active Learning (MAAL and 
deep Support Vector Data Description (Deep SVDD) for HAR.

Combine all fall type 
in single type.

ADL+ Fall in 
single type

Accuracy: 98.66%
F1-score: 94.90%

Table 1 demonstrates that a range of ML or DL techniques have been utilized 
with great success on the UniMiB-SHAR dataset. Some studies focus on the entire 
dataset (Full-17), while others concentrate on the ADL-9 or Fall-8 sub-datasets, often 
approaching the problem as a binary classification task. It is worth noting that the 
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Fall-8 subset exhibits lower performance, and the AE performances remain subpar 
and constrained on this dataset [9], [10].

The UniMiB-SHAR dataset has been widely used in the literature, as evidenced 
in our previous research [6]. Numerous models have been developed and trained 
using this dataset to support a wider variety of classification tasks.

A detailed description of the strategy proposed in [14], which seems to be based 
on deep learning networks and a margin-based approach. This section describes 
how margins are utilized to enhance the accuracy of activity recognition in three 
datasets: OPPORTUNITY, PAMAP2, and UniMiB-SHAR. The proposed method yields 
higher accuracy than the methods already mentioned in the state of the art. An 
approach called “Channel-Selectivity” [15] focuses on selecting the most informative 
sensor channels using two deep learning models, CNN and ResNet, to improve rec-
ognition accuracy in five datasets: UCI-HAR, OPPORTUNITY, UniMib-SHAR, WISDM, 
and PAMAP2. CNN with SelectConv achieves an accuracy of 96.77% on UCI-HAR, 
79.67% on OPPORTUNITY, 77.26% on UniMib-SHAR, 97.44% on WISDM and 94.33% 
on PAMAP2. For ResNet with SelectConv, the accuracy rates are 97.28%, 82.36%, 
78.25%, 98.52%, and 94.33% on UCI-HAR, OPPORTUNITY, UniMib-SHAR, WISDM, 
and PAMAP2 respectively. A unified deep learning approach [16], based on ResNet, 
was applied to the UniMiB-SHAR dataset for two classification scenarios: binary and 
multi-class. For binary classification, the proposed method achieves an accuracy rate 
of 99.87% using 5-fold cross-validation (CV) and 98.48% using the leave-one-subject-
out (LOO) method. For multi-class classification, the performance was 97.39% with 
5-fold CV, 98.07% with 10-fold CV, and 80.09% with 10-fold leave-one-out (LOO) 
cross-validation. An approach using neural architecture search (NAS) to search for 
suitable models for HAR tasks, called HARNAS, is being tested on the Opportunity 
dataset and UniMiB-SHAR as proposed in [17].

3	 MATERIEL AND METHOD

This study aims to improve the performance of the AEs model using the UniMiB-
SHAR dataset. The key steps and procedures involved in this approach include 
portioning the dataset into three sub-datasets (ADL-9, Fall-8, AF-2, and Full-17), 
preprocessing the data using normalization, dimension reduction, magnitude, and 
balancing the data on AF-2 and Full-17, training the proposed AE model, and classifi-
cation. The performance is evaluated using various metrics, including accuracy, pre-
cision, recall, AUC, and loss. Figure 1 depicts the flowchart of the proposed method.

Fig. 1. The proposed approach

More details are provided in the sub-sections.
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3.1	 Datasets

The University of Milano Bicocca smartphone-based HAR (UniMiB-SHAR) data-
set is a recently created collection containing 11,771 samples specifically designed 
for HAR and fall detection purposes [18]. The dataset consists of data collected from 
30 participants, including 6 males and 24 females, aged between 18 and 60 years. 
The data was captured with a Bosch BMA220 3D accelerometer integrated within 
a Samsung Galaxy Nexus I9250 smartphone. Sampling of the data was conducted 
at a rate of 50 Hz, a common rate utilized in relevant literature concerning HAR. 
The dataset includes a total of 17 distinct classes, which are further divided into 9 
types of ADLs (activities of daily living) and 8 types of falls. Additionally, the data-
set stores associated information that facilitates the selection of samples based on 
various criteria, including the ADL type performed, gender, age, and more [19]. 
In UniMiB-SHAR, both the data and their corresponding labels are provided in 
the form of time windows with a fixed length of T = 151, which is approximately 
equivalent to 3 seconds. An energy-based segmentation method is used to establish 
these time periods, which involves locating peaks in the acceleration data. When 
the amplitude of the signal reaches 1.5g (where g is the gravitational accelera-
tion constant) and is less than 0 at time t-1, an acceleration peak is identified at a 
specific time point, t. The dataset comprises 11,771 time periods, each with three 
dimensions. In this experiment, we utilized the UniMiB-SHAR dataset as a distinct 
sub-dataset.

To study the AE model, the original dataset was divided into three sub-datasets: 
ADL-9, Fall-8, and AF-2. Table 2 provides details of the four datasets.

Table 2. Dataset description

Dataset Description Number of Data Activities Class

ADL-9 9 classes activities of Daily Living 7579 9 ADL

Fall-8 8 classes of fall activities 4192 8 Fall

AF-2 2 classes fall and ADL (Not fall). 11771 2 Fall and Not-Fall

Full-17 17 classes 11771 17 ADL+ Fall

3.2	 Preprocessing

Preprocessing techniques play a crucial role in improving the performance of ML 
algorithms. The study investigated four methods: the standard scaler normalization 
method, magnitude transformation, dimension reduction using PCA, and balanc-
ing datasets with the SMOTEEN and ADASYN methods. However, depending on the 
nature of the dataset, specific techniques have been applied. The Full-17 dataset and 
AF-2 are both highly imbalanced. The most effective techniques for improving per-
formance were ADASYN for Full-17 and SMOTEEN for AF-2, as well as Magnitude. 
The ADL-9 and Fall-8 datasets are balanced. Normalization and PCA were applied to 
the Full-17, AF-2, ADL-9, and Fall-8 datasets.

Magnitude. The original dataset consists of 453 columns, each representing 
the X, Y, and Z coordinates of the sensor across 151 different instances within a 
three-second time frame. Each data point was replaced by its magnitude value in 
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order to simplify the data and capture the essential information, each data point was 
replaced by its magnitude value [5]. The magnitude represents the distance from the 
origin of each data point [20], as shown in Equation 1. The magnitude, or size, of a 
vector is represented by its norm. Regardless of the direction of a vector, its magni-
tude provides a measurement of its length or intensity.

	 V a b c� � �2 2 2 	 (1)

Normalization. Normalization refers to the adjustment of data features to a 
single common scale (with a mean of 0 and a standard deviation of 1) to improve 
convergence, reduce scalar asymmetry, and enhance model stability [21]. This can 
be achieved using methods suah as MinMaxScaler, StandardScaler, and Robust 
Scaling [22]. The data used in our experiment is normalized using StandardScaler, 
which scales each feature to a specified range between 0 and 1 to minimize loss and 
expedite model convergence.

Dimensionality reduction: principal component analysis. In our study, we 
utilized PCA on our dataset. We retained components that accounted for variance 
exceeding a threshold of 1%, leading to a reduction in the dataset’s dimensionality to 
only six components. The reason for this choice is to disregard fewer representative 
axes, thereby eliminating noise from the data. These new variables are uncorrelated 
with each other and retain a significant amount of information from the original 
data [23] [24]. Table 3 displays the quantity of data items following the implementa-
tion of principal component analysis.

Table 3. Quantity of data

Dataset Number of Data Number of Features before PCA Number of Features after PCA

ADL-9 7579 453 6

Fall-8 4192 453 390

AF-2 11771 453 434

Full-17 11771 453 434

Balancing data. The problem of data imbalance is one of the challenges encoun-
tered in prediction and classification tasks, and it is a common and foreseeable 
issue. Balancing a dataset facilitates model creation by preventing biases in favor of 
a specific class. However, we have explored various approaches to address this chal-
lenge, including resampling, undersampling, oversampling, and hybrid approaches. 
SMOTEEN is a valuable and effective technique that combines the advantageous 
features of SMOTE (synthetic minority over-sampling technique) and edited nearest 
neighbors (ENN) [25], while ADASYN represents an improved version of SMOTE [26].

We explored other techniques, such as SMOTE and resampling. However, the best 
results have been achieved by applying SMOTEEN to the AF-2 dataset and ADASYN 
to the Full-17 dataset.

3.3	 Splitting the dataset

Data splitting is a standard procedure in data analysis, ML, and data science. 
It divides a dataset into two or more subsets. In our study, we divided the dataset 
into three parts. The first part, comprising 70% of the data, was used for training 
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machine learning models. The second part, consisting of 20% of the data, was allo-
cated for refining the model’s hyperparameters and conducting performance eval-
uations during training. Finally, the remaining 10% was designated for testing the 
model’s generalization and performance in real-world scenarios.

3.4	 Learning model

Background. An AE is a specific type of neural network [27] designed to encode 
and decode an input into a meaningful and compressed representation. It ensures 
that the reconstructed input is as close as possible to the original. Similar to other 
DL architectures, the AE operates through neural layers and is trained using back-
propagation. The layers are divided into multiple encoding and decoding layers. The 
input is connected to the initial encoding layer, and in each subsequent encoding 
layer, the number of neurons is reduced until reaching the final encoding layer. In 
each coding layer, the number of neurons progressively decreases until the final 
coded layer, which has the highest neuron count and represents the features of the 
bottleneck. Beyond this layer, the decoding layers are initialized. In each decoder 
layer, the number of neurons in each subsequent layer is gradually increased until 
the output layer matches the number of neurons in the input layer [28]. There are 
various types of autoencoders, classified according to structures and specific objec-
tives. These include variational autoencoders (VAE) [29] [30], generative adversarial 
networks (GAN) designed for unsupervised learning tasks [31], and convolutional 
autoencoders (CAE) [32]. In this study, we employed a CAE model, which generally 
consists of two layers: the encoder and decoder. This model is intended to produce 
a program code for each input sample, minimizing the mean square error (MSE) 
between inputs and outputs. Convolutional layers enable the capture of patterns and 
spatial relationships in the input data. CAEs learn sparse representations by encour-
aging the activation of only a limited number of neurons in the hidden layer at any 
given time. The proposed approach involves incorporating a regularization term 
into the loss function, which encourages the learning of concise and informative 
representations. CAEs are well-suited for tasks such as image reduction, denoising, 
and feature extraction. They achieve this by minimizing the loss function through 
the adjustment of the network’s weights and biases.

Convolutional autoencoder model. In our experiment, we utilized a CAE 
consisting of the following layers:

–	 Input layer: This layer contains the input data from the dataset.
–	 Encoder: The encoder is constructed using a CNN with three convolution 

sub-layers, each followed by a corresponding pooling layer. These layers extract 
and compress the pertinent features from the input data.

–	 Decoder: The decoder part utilizes deconvolution sub-layers to decode the out-
put of the encoder. These layers reconstruct the original input using the com-
pressed features obtained from the encoder.

–	 Classifier: The classifier is responsible for categorizing the data. It is based on 
two layers: GRU and dense. We evaluate its performance using various metrics 
such as accuracy, precision, recall, area under the curve (AUC), and loss.

Figure 2 illustrates the different layers of our proposed AE model. The first 
phase involves the input layer, followed by the encoder component, which includes 
convolutional and pooling layers to extract pertinent features from the input data.
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Fig. 2. The proposed AE model

The convolutional operations filter the input data, capturing local patterns and struc-
tures. The pooling layer downsamples the output of the convolutional layer, reducing 
spatial dimensions while preserving the most important information. The decoder sec-
tion includes deconvolutional layers that decode the data, reconstructing it in its original 
form. Lastly, the classifier section includes a GRU model that processes the output data 
as a sequence. The GRU model is designed to capture sequential dependencies within 
the data. The classification is carried out using the dense layer, which is responsible for 
the final classification task. Table 4 displays the hyperparameters linked to our model.

Table 4. CAE model parameters

ADL-9 Fall-8 AF-2 Full-17

Neuron 77618 80443 76561 76514

Optimizer Adam Adam Adam Adam

Activation Function softmax softmax softmax softmax

Loss Function categorical_crossentropy categorical_crossentropy categorical_crossentropy categorical_crossentropy

Epochs 100 100 100 20

Batch size 24 24 24 24

4	 EXPERIMENT AND ANALYSIS

In this study, we divided our dataset processing into three phases: model train-
ing, model validation, and model testing to assess its performance on unseen data. 
Tables 5–8 represent the performance results of the approach when training the CAE 
model with the Full-17 dataset and subset datasets: ADL-9, Fall-8, and AF-2, respectively.

Table 5. CAE performance using Full-17 dataset

Metrics
Magnitude PCA + Normalization

Train Validation Test Train Validation Test

Accuracy 91.48% 88.21% 88.47% 65.42% 84.48% 66.18%

Precision 94.57% 91.68% 92.08% 79.77% 79.66% 80.53%

Recall 89.40% 85.76% 86.44% 52.21% 51.40% 53.43%

F1-score 91.47% 88.22% 88.47% 65.45% 84.50% 66.18%

AUC 98.90% 98.62% 98.60% 96.05% 96.07% 96.26%

Loss 0.007 0.01 0.009 0.02 0.02 0.02
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Table 6. CAE performance using ADL-9 sub-dataset

Metrics
Magnitude PCA + Normalization

Train Validation Test Train Validation Test

Accuracy 99.72% 95.02% 96.17% 99.99% 97.36% 96.56%

Precision 99.76% 95.59% 95.76% 99.98% 97.36% 96.30%

Recall 99.70% 94.86% 95.64% 99.98% 97.36% 96.17%

F1-score 99.72% 95.02% 96.16% 99.98% 97.36% 96.56%

AUC 100.00% 99.13% 99.43% 99.99% 99.51% 99.28%

Loss 7.62 6.92 7.28 0.12 0.15 0.17

Table 7. CAE performance using AF-2 sub-dataset

Metrics
Magnitude PCA + Normalization

Train Validation Test Train Validation Test

Accuracy 99.92% 99.31% 98.86% 99.97% 99.49% 98.81%

Precision 99.92% 99.31% 98.86% 99.98% 99.94% 99.81%

Recall 99.92% 99.31% 98.86% 99.49% 99.98% 98.81%

F1-score 99.94% 99.30% 98.86% 99.97% 99.50% 98.81%

AUC 99.99% 99.80% 99.65% 99.98% 99.88% 99.30%

Loss 0.03 0.03 0.04 0.09 0.02 0.07

Table 8. CAE performance using Fall-8 sub-dataset

Metrics
Magnitude PCA + Normalization

Train Validation Test Train Validation Test

Accuracy 58.14% 47.32% 48.86% 48.13% 46.99% 47.15%

Precision 60.15% 57.30% 65.67% 60.15% 57.30% 65.70%

Recall 32.49% 28.23% 27.41% 30.12% 31.67% 31.88%

F1-score 58.14% 47.33% 48.87% 48.12% 49.00% 47.17%

AUC 91.27% 86.83% 86.88% 88.50% 83.16% 84.45%

Loss 1.11 1.34 1.3 2.12 2.10 1.99

According to Table 5, the Full-17 sub-dataset achieved the best results using 
the magnitude technique, with 88.47% accuracy, 92.08% precision, 86.44% recall, 
88.47% F1-score, 98.60% AUC, and 0.009 loss. For the ADL-9 data subset, Table 6 
presents compelling evidence that superior performance was achieved by apply-
ing PCA and normalization techniques. The results indicate that during training, an 
impressive accuracy of 99.99% was attained, while validation accuracy, precision, 
F1 score, and recall attained significant scores of 97.36%. Test precision and recall 
were also impressive, achieving scores of 96.30% and 96.17%, respectively. In the 
training, precision and recall were both respectable at 99.98%. In terms of the AUC 
metric, the data subset performed exceptionally well, achieving scores of 99.99%, 
99.51%, and 99.28% for training, validation, and test sets, respectively. In relation 
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to AF-2, Table 7 illustrates the performance for various metrics and indicates that 
the disparities between the two pre-processing methods are minimal. However, the 
magnitude method performed slightly better because of its lower values. Specifically, 
it achieved an accuracy of 99.92% for training, 99.31% for validation, and 98.86% for 
testing. Precision scores were also high, with training, validation and testing achiev-
ing 99.92%, 99.31%, and 98.86%, respectively. Similarly, the recall scores for training, 
validation, and testing were 99.92%, 99.31%, and 98.86%, respectively. In the case 
of the Fall-8 sub-dataset, Table 8 shows low results despite the application of two 
pre-processing methods and the balancing of the data. The difficulty may arise from 
the close similarity between the eight classes, making it challenging to distinguish 
between them. Further efforts should be made to investigate ways to enhance the 
performance of the CAE model. One potential way to improve is to explore data 
preprocessing techniques. By carefully selecting and engineering features, we can 
emphasize the key characteristics that distinguish each class.

To prevent overfitting our models, we evaluated the performance of the CAE 
by analyzing accuracy curves. Figure 3 provides a visual representation of accu-
racy curves. Figures 3a–d show the accuracy of the ADL-9, Fall-8, AF-2, and Full-17 
categories, respectively, demonstrating the convergence of training and validation 
data towards 1. This convergence indicates a steady improvement in accuracy with 
each epoch. While Figure 4 represents the loss curves, Figures 4a–d represent the 
loss graphs for the following three sub-datasets: ADL-9, Fall-8, AF-2, and Full-17, 
respectively.

c) Accuracy for AF-2 d) Accuracy for Full-17 

a) Accuracy for ADL-9 b) Accuracy for Fall-8

Fig. 3. Accuracy curve
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c) Loss for AF-2 d) Loss for Full-17

a) Loss for ADL-9 b)  Loss for Fall-8

Fig. 4. Loss curve

Furthermore, the training loss and validation loss curves exhibit a consistent 
decrease with each epoch while maintaining a relatively small difference between 
them. The convergence of accuracy and the decrease in loss indicate that our models 
learn from the data efficiently without overfitting.

Figure 5 displays the confusion matrix used to evaluate performance by compar-
ing the algorithm’s predictions with the actual data labels. Figure 5a depicts the con-
fusion matrix for ADL-9, while Figure 5b illustrates the confusion matrix for Fall-8. 
In the same manner, Figure 5c displays the confusion matrix for AF-2, and finally, 
Figure 5d presents a confusion matrix for Full-17.

a) Confusion matrix for ADL-9 b) Confusion matrix for Fall-8

Fig. 5. (Continued)
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c) Confusion matrix for AF-2 d) Confusion matrix for Full-17

Fig. 5. Confusion matrix for AE model

For the AF-2 dataset, Figure 5c shows that 1508 activities are classified correctly. 
This indicates that the model has correctly identified the ADLs, but there are 13 ADL 
activities that are incorrectly classified as falls. There are 826 fall activities correctly 
classified as such, and there are 8 actual images of fall that are incorrectly classified 
as ADLs. Figure 5a depicts the confusion matrix for the ADL-9. The diagonal indi-
cates that the classes are well classified. Outside the diagonal, there are no significant 
values for false positives and false negatives, except for the sitting-down activity, 
which has 10 false positives. In the case of the Full-17 dataset, Figure 5d indicates 
that the diagonal contains logical values. This suggests that the model has accurately 
identified the various activities within their respective classes, even though some 
activities may have been misclassified into other classes.

For the Fall-8 subset, the performance is very low despite applying a range of 
pre-processing techniques. This can be explained by the fact that all fall activities are 
symmetrical, making it difficult to differentiate between them. Additionally, when 
working with the magnitude calculator, the axes do not provide the possibility of 
determining the direction of the fall.

Table 9 presents a comprehensive analysis of the performance of the autoencod-
ers used in current research and the autoencoder we have proposed in this study. 
The results clearly demonstrate that our suggested model outperformed existing 
approaches. The results obtained also demonstrate that our proposed model outper-
formed existing approaches and achieved superior performance, attributed to the 
application of various preprocessing techniques and the proposed architecture layers.

Table 9. AE performance comparison

Ref. Model Dataset Performance

 [8] AE Full-17 F1-scores :
68.37% (T = 32), 68.24% 
(T = 64) and 68.39% (T = 96).

 [9] AE-RE ADL-9 Accuracy: 94.70%

Fall-8 Accuracy: 55.20%

[10] VAE Full-17 Accuracy: 24.01%

(Continued)
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Ref. Model Dataset Performance

[11] AE Full-17 Accuracy: 65.67%

[13] Multiclass Auto-encoder-Based 
Active Learning (MAAL)

ADL+ Fall in single 
class (10 classes)

Accuracy: 98.66%

The 
proposed approach

CAE Full-17 Accuracy:88.47%

F1-score: 88.47%

ADL-9 Accuracy: 96.56%

Fall-8 Accuracy: 48.86%

AF-2 Accuracy: 98.86%

5	 CONCLUSION AND FUTURE WORKS

This study aims to enhance the performance of autoencoders using the FULL-17  
dataset. The proposed model architecture comprises three main elements: an encoder 
with convolutional layers and pooling, a decoder with deconvolutional layers, and a 
classifier consisting of a GRU model that processes the output as a sequence, followed 
by a dense layer for classification. By implementing preprocessing techniques such 
as calculating magnitude, reducing dimensionality using PCA, normalizing, and bal-
ancing data using SMOTEEN and ADASYNE, the performance of the CAE model has 
significantly improved. By systematically integrating these strategies, the approach 
achieved a higher classification accuracy of 88.47% on the FULL-17 dataset. The 
model achieved an accuracy of 96.56% on the ADL-9 sub-dataset and 98.86% on the 
AF-2 sub-dataset. The proposed CAE achieved only 48.86% accuracy in the Fall-8 
sub-dataset, which is still very low. Further investigation should be conducted. In 
our future work, we plan to concentrate on DL techniques and their application to 
eHealth classification problems.
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