loading
Papers Papers/2022 Papers Papers/2022

Research.Publish.Connect.

Paper

Authors: Mathieu Roche 1 ; 2 ; Elena Arsevska 3 ; 2 ; Sarah Valentin 1 ; 3 ; 2 ; 4 ; 5 ; Sylvain Falala 3 ; 6 ; Julien Rabatel 7 and Renaud Lancelot 3 ; 2

Affiliations: 1 UMR TETIS (Land, Environment, Remote Sensing and Spatial Information), University of Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France ; 2 French Agricultural Research for Development (CIRAD), France ; 3 UMR ASTRE (Unit for Animals, Health, Territories, Risks and Ecosystems), University of Montpellier, CIRAD, INRAE, Montpellier, France ; 4 Department of Biology, University of Sherbrooke, Sherbrooke, Canada ; 5 Quebec Centre for Biodiversity Science, McGill University, Montreal, Canada ; 6 National Research Institute for Agriculture, Food and the Environment (INRAE), France ; 7 Freelance Data Scientist, Montpellier, France

Keyword(s): Text Mining, Information Retrieval, Named Entity Recognition, Event-based Surveillance, Epidemic Intelligence.

Abstract: The ability to rapidly detect outbreaks of emerging infectious diseases is a health priority of global health agencies. In this context, event-based surveillance (EBS) systems gather outbreak-related information from heterogeneous data sources, including online news articles. EBS systems, thus, increasingly marshal text-mining methods to alleviate the amount of manual curation of the freely available text. This paper documents the use of datasets obtained through an EBS system, PADI-Web (Platform for Automated extraction of Disease Information from the web), dedicated to digital outbreak detection in animal health. This paper describes the datasets used for improving 3 important tasks related to PADI-Web, i.e., news classification, information extraction and dissemination.

CC BY-NC-ND 4.0

Sign In Guest: Register as new SciTePress user now for free.

Sign In SciTePress user: please login.

PDF ImageMy Papers

You are not signed in, therefore limits apply to your IP address 52.15.223.239

In the current month:
Recent papers: 100 available of 100 total
2+ years older papers: 200 available of 200 total

Paper citation in several formats:
Roche, M.; Arsevska, E.; Valentin, S.; Falala, S.; Rabatel, J. and Lancelot, R. (2022). How Textual Datasets Enhance the PADI-Web Tool?. In Proceedings of the 18th International Conference on Web Information Systems and Technologies - WEBIST; ISBN 978-989-758-613-2; ISSN 2184-3252, SciTePress, pages 327-331. DOI: 10.5220/0011590400003318

@conference{webist22,
author={Mathieu Roche. and Elena Arsevska. and Sarah Valentin. and Sylvain Falala. and Julien Rabatel. and Renaud Lancelot.},
title={How Textual Datasets Enhance the PADI-Web Tool?},
booktitle={Proceedings of the 18th International Conference on Web Information Systems and Technologies - WEBIST},
year={2022},
pages={327-331},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0011590400003318},
isbn={978-989-758-613-2},
issn={2184-3252},
}

TY - CONF

JO - Proceedings of the 18th International Conference on Web Information Systems and Technologies - WEBIST
TI - How Textual Datasets Enhance the PADI-Web Tool?
SN - 978-989-758-613-2
IS - 2184-3252
AU - Roche, M.
AU - Arsevska, E.
AU - Valentin, S.
AU - Falala, S.
AU - Rabatel, J.
AU - Lancelot, R.
PY - 2022
SP - 327
EP - 331
DO - 10.5220/0011590400003318
PB - SciTePress