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Abstract

Many practical applications require an accurate knowledge of the extrinsic calibration
(i.e., pose) of a moving camera. The existing SLAM and structure-from-motion solutions
are not robust to scenes with large dynamic objects, and do not fully utilize the available
information in the presence of static cameras, a common practical scenario. In this paper,
we propose an algorithm that addresses both of these issues for a hybrid static-moving
camera setup. The algorithm uses the static cameras to build a sparse 3D model of the
scene, with respect to which the pose of the moving camera is estimated at each time
instant. The performance of the algorithm is studied through extensive experiments that
cover a wide range of applications, and is shown to be satisfactory.

1 Introduction
This manuscript presents a method to register a moving (principal) camera to a given ref-
erence frame, by the help of a set of fully calibrated static (witness) cameras, in dynamic
scenes. The term fully calibrated signifies known intrinsic and extrinsic parameters, and
dynamic, independently moving and nonrigid scene elements. This is a common scenario in
live broadcasting and film production, therefore the proposed method addresses a practical
problem. Our ultimate aim is to equip the existing free-viewpoint video algorithms, such
as [6], with the ability to exploit any available moving cameras in generic dynamic scenes,
and to facilitate 3D content production by augmented reality and stereoscopic rendering [15].

The core problem, pose recovery from three 3D-2D correspondences (the P3P problem)
predates the computer vision field by more than a century [7]. However, it still receives some
attention in the form of minimal polynomial equation solvers for full calibration [11], and
non-minimal, globally optimal PnP solvers [9]. P3P solvers are used in multiview structure-
from-motion (SfM) algorithms, which can simultaneously recover a sparse 3D model of
the scene and the camera calibration parameters for a set of static cameras [26]. These
techniques can be adapted to handle monocular moving cameras [28], as an alternative to
simultaneous localisation and mapping (SLAM) [4]. Recently, in [10], the monocular SfM
(MSfM) approach is extended to exclusively moving multiple camera setups, by first solving
an individual MSfM problem for each camera, and then merging these solutions via the
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Figure 1: Overview of the proposed algorithm, for a 3 witness-1 principal camera setup.

3D-3D correspondences between the recovered sparse models. Although this is an effective
strategy for combining multiple independent solutions, it is still vulnerable to the well-known
SfM degeneracies, such as dominant planes and insufficient motion [8]. Moreover, MSfM
techniques are not robust to large dynamic elements: In our experiments, Boujou [2] failed
when the dynamic elements occupied more than 20-30% of the image. Such limitations are
the reason why commercial matchmovers still retain extensive marker tracking and manual
editing capabilities [1], despite the maturity of the available monocular solutions.

The proposed algorithm, illustrated in Figure 1, diverges from the literature by its use
of a sparse scene model, i.e., a reference model, computed from a set of fully calibrated
static cameras. Then, it solves a P3P problem at every time instant, to obtain a measurement
of the pose of the principal camera with respect to this model. An unscented Kaman filter
(UKF) [12] smooths these measurements for jitter removal. The algorithm is robust to the
MSfM issues mentioned above: The only degeneracy is the unlikely case of the entire ref-
erence structure lying on a line. And although a P3P solver requires known intrinsics for
the principal camera, it provides resilience to occlusions by reducing the size of the minimal
sample, and facilitates the use of the algorithm in dynamic scenes.

The rest of the paper is organized as follows: In the next section, the details of the
proposed method are discussed. Then, its performance is experimentally evaluated in Section
3. The conclusions are presented in Section 4.

2 Proposed Method

2.1 Building a Reference Model

The first part of the algorithm locates a set of salient 3D point features in the scene. A scene
feature is a triplet of the form {X,Gx,D}, where X is the 3D scene coordinates of the feature,
Gx, its covariance, and D, a 3D feature descriptor. Each observation of a scene feature by
a witness camera has an associated 2D image feature, defined by a triplet {x,gx,d}, or, by
its 2D image coordinates, covariance, and descriptor. All image features originating from
a certain scene feature form a correspondence cluster, a connected graph with at most 1
vertex from each witness image (Figure 2.1). Each link in a cluster is an image feature
correspondence. A cluster is sufficient to determine all components of a scene feature.

Since our target applications often require the witness cameras to be deployed in a way to
maximize the scene coverage, wide baseline conditions prevail, for which Hessian-affine [21]
features with SIFT descriptors [18] are recommended [24]. The covariance is assumed to be
isotropic and identical for all image features, in accordance with [13].
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Figure 2: Green: A correspondence cluster, with two missing pairwise correspondences.
Red: An inconsistent set, as it has two elements elements coming from the same image.

For each camera pair, the corresponding image features are identified as the pairs satis-
fying the following constraints:

• Geometric consistency: The pair is sufficiently conformant to the epipolar constraint,
i.e., has a Sampson error below a certain threshold [8].
• Similarity: The inverse Euclidean distance between the SIFT descriptors is above

a certain threshold. In the wide baseline case, this constraint, by itself, has limited
reliability.
• Uniqueness: The ratio of the similarity scores of the best and the second best candi-

date is above a threshold. This constraint eliminates ambiguous matches [18].
• Reciprocity: Both features are the best matches to each other [25].

The resulting high quality correspondence set is further processed to remove any inconsis-
tencies (Figure 2.1, red/dashed), and to construct the correspondence clusters (Figure 2.1,
green/solid). Ideally, each cluster belongs to a distinct scene feature. However, the wide
baseline nature of the problem leads to missing links and, occasionally, fragmented clusters.

Finding the scene feature associated with each cluster can be posed as an N-view triangu-
lation problem, for which optimal solutions exist [9]. However, the wide baseline assumption
admits a simpler solution. As the first step, each cluster is transformed into a 3D point cloud,
by converting the individual links to 3D features, as follows:

• Coordinate (X) : Computed from the 2D image coordinates via the optimal triangu-
lation algorithm [8].

• Covariance (Gx) : The covariance of the 2D image coordinates is propagated through
the optimal triangulation operation by using the unscented transformation (UT) [12],
which involves triangulating a judiciously selected set of samples representing the
statistics of the input parameters (i.e, a 4D vector, the coordinates of the image feature
pair), and computing the sample statistics of the resulting 3D points. The UT is supe-
rior to using Jacobians, as it approximates the transformed distribution, instead of the
transformation, hence, can handle nonlinear functions more accurately [12].

• Descriptor (D): A 3D feature descriptor is simply the pair of descriptors belonging to
the members of the link, i.e., D = {d0 d1}.

Each member of the point cloud is a measurement of the scene feature. The second step
involves recovering an estimate of the latter, from the former.

The coordinate and the covariance components of the scene feature are estimated by
averaging over the point cloud via a Kalman filter (KF). A KF is the optimal estimator for
Gaussian and independent measurements. The wide baseline correspondences ensure the va-
lidity of the Gaussianity assumption on the uncertainty of the coordinate measurements [23].
However, the independence assumption does not hold (as an image feature may appear in
more than one link), rendering the KF solution a suboptimal fusion of pairwise optimal mea-
surements. Nonetheless, KF is superior to ordinary mean, which does not take the uncer-
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tainty information into account, and to simply picking the best measurement, which does not
utilize the available uncertainty information. Another alternative, nonlinear minimization of
the reprojection error across multiple views with respect to the scene feature coordinates, is
known to be vulnerable to local minima [9], and would provide a poorer covariance estimate.

The descriptor component is a list of the descriptors of all members of the cluster (i.e.
D = {d0...dN−1} ), which is a simple alternative to more sophisticated descriptors, such
as [29]. It is an appropriate choice for the wide baseline case, as the descriptors belonging to
different viewpoints are less likely to be redundant.

2.2 Estimating the Pose Trajectory

In this section, we seek to recover the pose trajectory of the principal camera. A pose is a
triplet of the form {C,q,P}, where C and q denote the camera position and the orientation
quaternion, respectively, and P is their covariance. A pose trajectory is a sequence of poses
belonging to a camera. It is estimated by first computing the instantaneous estimates of the
pose, i.e. the pose measurements, at each time instant, and then filtering them via a UKF.

C and q are computed by using the automatic geometry estimator of [8], which needs an
initial 3D-2D correspondence set. This set is constructed by identifying the correspondences
between the image features extracted from the principal camera image and the scene features
of the reference model. The matching algorithm enforces the constraints described in Section
2.1, except for the geometric constraint, as it is not available at the first pass. Also, it employs
a different similarity metric, which is defined as

s = max
d∈D
‖dp−d‖−1, (1)

where dp is the descriptor of a principal camera image feature. In other words, a principal
camera feature is matched to the most similar member of a correspondence cluster.

Three of the resulting 3D-2D correspondences are sufficient to compute the pose via a
P3P solver. This triplet, and the corresponding pose measurement, are identified robustly by
using SPRT-RANSAC [3], a variant of RANSAC that can quickly spot and discard unpromis-
ing hypotheses. In order to construct the hypotheses, Finsterwalder’s method, a minimal
polynomial solver with superior numerical stability [7], is employed. For the refinement of
the pose measurement, Powell’s dog leg algorithm is preferred over Levenberg-Marquardt,
as it offers the same accuracy at lower computational complexity [17]. Finally, the recovered
{C,q} pair is supplied as a guide to the matching algorithm, enforced by a reprojection error
constraint [8], and the estimation- guided matching steps are iterated until convergence.

As for the covariance, since P3P is a highly nonlinear operation, the UT is a more suitable
choice than the first-order approximation. However, the implementation is not straightfor-
ward: The sample mean of a set of unit quaternions is not necessarily a unit quaternion, and
does not recognize the fact that q and -q represent the same rotation. In order to avoid these
issues, the sample mean is redefined as “the quaternion corresponding to the rotation matrix,
which has the minimum total squared residue with the sample in the Frobenius norm sense”
(as opposed to the ordinary vector mean minimizing the total squared Euclidean norm of
the residues), as proposed in [20]. Another problematic property of the quaternion repre-
sentation is its redundancy (i.e., a 4D vector with 3 degrees of freedom), which implies a
singular covariance matrix. This is remedied by employing the axis-angle form to represent
the orientation uncertainty [19].
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Figure 3: Witness cameras. Top: Ball, cameras 0-3. Bottom: Dance, cameras 4-6.

Since the pose measurements are computed independently at each time instant, a jitter
in the pose trajectory is likely, which can be filtered out by a sequential state estimator.
For this task, the UKF is chosen over EKF, as it replaces the linearisation involved in the
time and measurement update steps by the UT [12], hence, can deal with large rotations
more successfully. It also has the added benefit of providing a more accurate estimate of the
covariance of the pose trajectory.

The UKF employs a constant translational and angular velocity model, i.e.,

Ct+1 = Ct +δt
qt+1 = qt

⊗
Q(φt)

δt+1 = δt + v
φt+1 = φt +w

, (2)

where δ and φ denote the translational and angular velocity, respectively, affected by inde-
pendent Gaussian noise processes v and w. Q is an operator that maps an axis-angle vector
to a quaternion, and

⊗
is the quaternion multiplication operator. The measurement function

is identity, corrupted by a Gaussian noise process.

3 Experimental Results

The behavior and the performance of the proposed algorithm is studied qualitatively by
analysing the variation of the pose trajectory with the size of the dynamic elements in
the scene, and the number of cameras; and qualitatively through a number of applications,
namely, free-viewpoint video, scene augmentation and stereoscopic rendering, all of which
are highly sensitive to pose errors. The data used in the experiments is two indoor sequences,
Ball and Dance, captured by a set of one hand-held principal camera, and 7 witness cameras,
all having a resolution of 1920x1080. The sequences are 750 and 665 frames long, respec-
tively, and both feature an actor in front of a static scene, but performing a different routine:
In Ball the actor stays roughly at the same spot, whereas in Dance, the actress periodically
moves across the scene, therefore occluding different parts of the reference model. The ac-
tors occupy about 5% of the images. The intrinsic parameters for the setup are estimated by
using a calibration chart [30], whereas for the extrinsics of the witness cameras, [22] is used.
Figure 3 is a sample from the witness cameras. The camera layout is depicted in Figure 4,
together with the reference models and the estimated trajectories for Ball and Dance.

In the following discussion, the term foreground is used synonymously with the dynamic
elements, whereas the static elements are referred to as background.
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Figure 4: The reference model, the recovered camera position trajectory, and the confidence
regions, as estimated by KF and UKF, respectively. Top view. Left: Ball. Right: Dance.

3.1 Pose Trajectory Estimation
In the absence of a ground truth pose, a direct quantitative evaluation of the registration
error in the results presented in Figure 4 is not possible. However, we identified two indirect
measures of performance:

• Reprojection error: An accurate pose estimate should be able to explain the 3D-2D
correspondences not used in its computation as well, an observation whose validity
is established by the success RANSAC. In accordance with this observation, for each
sequence, we randomly removed half of the features in the reference model to form
a test set, and estimated the pose trajectory by using the remaining half. Then, we
computed the reprojection error over all visible features across the sequence (362 and
373 features/image on the average for Ball and Dance, respectively). If we had the
ground truth pose and the reference structure, assuming a unit-variance image coordi-
nate noise, the reprojection error would be distributed as χ2 with 2 degrees of freedom.
A comparison of this ”ideal“ and the measured error (Table 1) reveals that most of the
observed error can be attributed to the inaccuracies in feature localization, and the
pose estimates are highly reliable (obviously, the validity of this conclusion relies on
that of the assumption on the magnitude of the noise on the image coordinates).

• Comparison with Boujou: In order to provide an MSfM alternative, the pose trajecto-
ries for the sequences are estimated via Boujou, in addition to the proposed algorithm.
Then, the similarity transformation between the reference frame of the witness cam-
eras, and that of Boujou is recovered by using the 3D-3D correspondences between
the trajectories. Table 2 shows that, when transferred to the witness reference frame,
the trajectories are closely aligned. This result should be interpreted with care: A close
alignment does not imply anything on the accuracy of the registration with respect to
the reference model, as, if a global similarity bias, such as a shift, existed, it would
be incorporated into the mapping between the two reference frames, and hence leave
no trace on the pose difference. On the other hand, for relative pose estimates, any
global bias cancels out. Therefore, Table 2 indicates that Boujou and our algorithm
have consistent relative pose estimates. Their accuracy in the witness reference frame
follows from the reprojection error experiment.

MSfM algorithms are susceptible to large foreground objects, due to occlusions and mis-
matches they introduce. The deterioration of the performance can be quite rapid: In our
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5% 25% Median 75% 95%
Ball (pixel2) 0.083 0.519 1.402 2.935 5.221
Dance (pixel2) 0.085 0.561 1.568 3.319 5.680
Ideal (pixel2) 0.010 0.575 1.386 2.773 5.989

Table 1: Order statistics of the reprojection error. “Ideal” is the case of unit-variance image
coordinate noise and error-free pose estimate.

5% 25% 50% 75% 95%
Ball- Position difference (m) 0.003 0.005 0.008 0.012 0.028
Ball- Principal axis difference (degrees) 0.347 0.405 0.445 0.490 0.672
Dance- Position difference (m) 0.003 0.006 0.009 0.012 0.018
Dance-Principal axis difference (degrees) 0.135 0.229 0.371 0.420 0.481

Table 2: Order statistics of the pose difference. 50th percentile is the median.

Figure 5: The variation of the position and the principal axis error with the foreground area.
Top: Ball. Bottom: Dance. The numbers within the boxes indicate the count of the instances
in which the algorithm failed to find a solution. The numbers at the upper boundary are the
95th percentile points.

experiments, Boujou failed to return an acceptable estimate at foreground area-to-image ra-
tios beyond 20% and 30% for Dance and Ball, respectively. In order to understand the
sensitivity of our algorithm to this issue, we simulated a tighter framing, by discarding all
features outside of a bounding box around the foreground object in the principal camera
images. The size of the bounding box is adjusted to match a specified foreground-to-image
ratio. In each case, the performance is compared against that of the original sequence, i.e. the
5% foreground ratio case. The results in Figure 5 show that the performance remains accept-
able until 40-60%, where the first instances of estimation failures appear. Beyond that, the
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Figure 6: The variation of the position and the principal axis error with the size of the witness
camera set, for Ball

quality of the estimates decrease dramatically, especially for Dance, which features a more
challenging camera trajectory. Nevertheless, the median error still remains below 15 cm and
1 degree for the position and the principal axis error, respectively.

In order to assess the effect of the size of the witness set on the performance of the algo-
rithm, the cameras are removed successively, in a way to maintain both high coverage, and
a high overlap with the field-of-view (FoV) of the principal camera, i.e., with a strategy that
neither strongly favours, nor totally ignores the needs of the algorithm (the exact sequence
is 3, 5, 1, 6 and 0). As in the foreground area experiments, the error is defined as the differ-
ence with the 7-witness case. The results, presented in Figure 6, show that the performance
of the algorithm is effectively independent of the number of witness cameras, as long as a
reasonable FoV overlap is maintained (as provided by Cameras 2 and 4). However, the rise
in the error observed by the removal of Camera 6 (i.e., the 3/4-witness transition) indicates
the contribution of the peripheral cameras to the estimation process.

3.2 Applications

The qualitative assessment of the algorithm is performed through a number of computer
vision/graphics applications, namely, free-viewpoint video, augmented reality and stereo-
scopic rendering, successful operation of which are closely related to the quality of the
camera calibration. The other prerequisite for these applications is accurate multiple-view
reconstruction, which is briefly discussed below, before presenting the experiment results.

The first stage of the reconstruction pipeline utilizes the background-cut algorithm [27]
to compute an initial segmentation of the foreground objects for the witness cameras, by the
help of the background images automatically extracted from the data. This segmentation is
necessary to build a coarse scene model, via a visual hull reconstruction algorithm [16]; in
order to mitigate potential artefacts due to segmentation errors, a conservative implementa-
tion is used. The next stage, the joint refinement of the segmentation and the scene model,
is performed by using the dense reconstruction algorithm of [6], which computes a layered
depth estimate for each camera through graph-cut minimization of a cost function involv-
ing colour, contrast, similarity and smoothness terms, over the entire camera set (including
the principal camera). Finally, the individual depth maps are fused into a single 3D mesh
representation for each time instant, through Poisson surface reconstruction [14].

The pipeline described above is used at each time instant for actor modelling, however,
only once for set modelling, as the latter is static. As seen in Figure 7, the reconstructed scene
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Figure 7: Estimated scene model. Left: Ball. Right: Dance.

Figure 8: Sample images from the applications. Top: Free-viewpoint video. Middle: Scene
augmentation. Bottom: Stereoscopic rendering, in red/cyan anaglyph format. Left: Ball.
Right: Dance. Full video sequences are provided as supplementary material, and at http:
//www.guillemaut.org/publications/10/ImreBMVC10/videos/

models are free from any severe artefacts, such as missing body parts or large protrusions,
typical symptoms of poor extrinsic calibration.

Application 1 – Free-viewpoint video: The estimated scene model is used to produce
views from novel (virtual) viewpoints via the view-dependent texture mapping method pro-
posed in [5]: Each pixel in the virtual image is textured by blending the colours observed
in the two nearest cameras, weighted by the angles separating each camera from the virtual
camera. Figure 8 presents some sample images synthesized for a number of virtual view-
points. In this application, an incorrect pose estimate would manifest itself through blurring
or distortions, caused by the novel view texture rendered from the image patches belonging
to different parts of the foreground object. However, the absence of obvious artefacts, and
the seamless transition from the real world seen by the principal camera to the virtual world
imply a reliable camera pose estimate.

Application 2 – Scene augmentation: Scene augmentation involves incorporating vir-
tual objects into a real-world scene. An erroneous pose estimate would introduce a drift
or an instability in the apparent image position of the virtual object with respect to the real
image content. Moreover, it would deteriorate the scene model estimate, and therefore lead
to incorrect occlusions. An example of this application can be seen in Figure 8 where a
virtual advertisement has been added to the principal camera’s video sequence, as well as
virtual shadows cast by the actor. No jitter or poor occlusion performance is observed in the
position of the advertisement, due to the accuracy of the camera pose estimate.

Application 3 – Stereoscopic rendering: In this application, the estimated scene model
(Figure 7) is used to convert the principal camera’s monoscopic output into a stereoscopic
sequence. This is achieved by synthesising two virtual camera viewpoints located on either
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side of the principal camera. Example images can be seen in Figure 8. The synthesised video
appears very realistic and does not show any significant artefacts such as the texture mapping
onto an incorrect depth layer, which would occur with an inaccurate calibration.

4 Conclusion
This paper presents an algorithm to estimate the pose of a moving camera in a dynamic
scene, by the help of a set of fully calibrated witness cameras. This is accomplished by first
using the witness cameras to build a reference model, then solving the P3P problem with
respect to this model, and finally eliminating the jitter via an UKF. The proposed algorithm
addresses a case commonly encountered in practice, and is shown to be remarkably robust to
large foreground objects. It also fills the gap between the monocular, and the more general,
multiple moving camera techniques. The method has two limitations:

• The algorithm assumes constant and known intrinsics for the principal camera through-
out the entire shot. However, this can be remedied by replacing the P3P solver with [11].

• The span of the principal camera motion is ultimately limited by the coverage of the
witness cameras. The solution to this problem lies in the realm of SLAM.

However, within its application domain, e.g., free-viewpoint video, scene augmentation and
stereo rendering, it has a satisfactory performance, as demonstrated through experiments.
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