Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

Model Checking Knowledge in Pursuit Evasion Games *

Xiaowei Huang
Computer Science and Engineering,
University of New South Wales, Australia

Abstract

In a pursuit-evasion game, one or more pursuers
aim to discover the existence of, and then capture,
an evader. The paper studies pursuit-evasion games
in which players may have incomplete information
concerning the game state. A methodology is pre-
sented for the application of a model checker for
the logic of knowledge and time to verify epistemic
properties in such games. Experimental results are
provided from a number of case studies that vali-
date the feasibility of the approach.

1

Pursuit-Evasion games are a type of multi-player game in
which one or more pursuers have the objective of identify-
ing the presence of one or more evaders, and of capturing
them. Solutions to pursuit-evasion problems have multiple
applications, including air and naval combat, ship naviga-
tion, [Isaacs, 1965], automatic car collision avoidance sys-
tems [Lachner et al., 20001, air traffic control, and unmanned
aerial vehicle control [Vidal et al., 2002]. Epistemic model
checking is an approach to automated verification, in which
one checks whether a model satisfies a formula that describes
how the knowledge of agents evolves over time.

Our contribution in this paper is to develop examples of the
use of epistemic model checking in pursuit-evasion problems.
In particular, we identify specifications requiring the use of
the expressiveness provided by epistemic logic, and con-
duct some experiments in which we apply the model checker
MCK [Gammie and van der Meyden, 2004] on some small
scale examples. In particular, we compare the performance of
two epistemic model checking approaches provided by MCK:
BDD based model checking and bounded model checking.

We define the pursuit-evasion games with incomplete in-
formation that we study in Section 2. We explain epistemic
model checking in Section 3. Section 4 studies the most basic
question in pursuit-evasion games — can the pursuers capture
an evader — in the context of full-information games. In Sec-
tion 5, we consider games where the players do not have full

Introduction

*Work supported by Australian Research Council Linkage Grant
LP0882961 and Defence Research and Development Canada (Val-
cartier) contract W7701-082453.

Patrick Maupin
Defence R&D Canada
Valcartier, Quebec

240

Ron van der Meyden
Computer Science and Engineering,
University of New South Wales, Australia

visibility: here we argue that epistemic specifications are of
particular interest. We discuss related work in Section 6, and
conclude with ideas for future work in Section 7.

2 Pursuit-Evasion Games

The pursuit-evasion games we consider in this paper are dis-
crete games with limited visibility in which the agents have
complete knowledge of the map, which is represented as a
graph, with players able to move to an adjacent node in each
step. Our approach involves consideration of a number of
different memory assumptions.

More precisely, each game is played on a map M
(V,E,, E,) where V is a set of vertices (or positions), E,, C
V x V is a set of adjacency edges, along which players can
move, and E, € V x V is a set of edges indicating visibil-
ity: a player at position u can see another player at position v
just in case (u,v) € E,. Most of our examples use undirected
graphs, so that both relations E,,, E, are symmetric. Gener-
ally, we also have that E,, is reflexive, so that staying at the
same location is a valid move.

A game state on a map M = (V, E,,, E,) consists of a tu-
ple (Ap, Ag, posn, turn), where Ap is a set of pursuers, Ag is
a set of evaders, posn : Ap U Ag — V is a function giving
the location of each pursuer and evader, and furn C Ap U Ag
indicates the set of scheduled agents. A game is given by a
tuple G = (M, I, sched), where M is a map, [is a set of ini-
tial game states on M, and sched is a scheduler, which maps
each finite play of the game to a set of agents: the agents that
enabled to make a move in the next step. We consider two
types of schedulers in this paper. The synchronous scheduler
enables all players at all moves, and the turn-based sched-
uler alternates scheduling of all pursuers with scheduling of
all evaders. We consider a variety of game objectives in our
examples, so do not include winning conditions in this defi-
nition of a game.

A play of the game consists of a finite or infinite se-
quence s, s1,... where so € I, and at each step i, if 5; =
(Ap,Ag,posn, turn), and si;1 = (A}, A}, posn’, turn’), then
A, = Ap, A, = Ag, turn’ is determined from furn by the
scheduler rule sched, and the scheduled agents move across
an edge in the adjacency graph, i.e., for each agent a € turn,
we have (posn(a),posn’(a)) € E,, and for each agent a €
(Ap U Ap) \ turn, we have posn’(a) = posn(a).

In each game state, each player a makes an observa-
tion of the game state. This is captured by an observation
function O, with domain the set of game states. We de-
fine O,((Ap,Ag,posn, turn)) = (Ap,Ag,posn,, turn), where
posn,(b) = posn(b) if player b is either equal to a or visi-
ble from player a’s position, i,.e., (posn(a), posn(b)) € E,,
and posn,(b) = L otherwise, indicating an unknown posi-
tion. The player’s perfect recall view of a play sgs; ... is the
sequence of observations view,(@) = O,(sp), Ou(s1), . - ..

A strategy for player a is a function o, mapping each
possible view @ of the player, ending in an observation
(Ap, Ag, posn,, turn) where that player is scheduled to move
(i.e. a € turn), to a set of positions o,(@) to which that
player is able to move, i.e., such that (posn,(a),x) € E,
for all x € o,(a). Note that the strategy maps to a set
of positions in order to allow the strategy to be to make a
random move. A strategy assignment is a mapping o as-
sociating a strategy o, to each agent a € Ap U Agp. A
play sos; ... is consistent with a strategy assignment o if for
each player a and each step from s; = (Ap, Ag, posn, turn)
to siy1 = (Ap,Ag,posn’, turn’), if a moves in this step (i.e.
a € turn) then it moves to one of the positions selected by its
strategy (i.e., posn’(a) € o,(view,(sp . . . 5))).

3 Epistemic Model Checking

Model checking [Clarke et al., 1999] is an automated method
for formal verification, in which an algorithm is used to check
whether a specification expressed in a formal logic holds in
a particular model that represents the system to be verified.
Model checking is well developed for temporal logic spec-
ifications and finite state automata models. Epistemic logic
[Fagin et al., 1995] provides a formal language in which
one can specify how the information possessed by agents in
a distributed or multi-agent system changes over time. In
recent years, a number of model checkers have been de-
veloped for specifications that combine temporal and epis-
temic expressiveness [Gammie and van der Meyden, 2004;
Lomuscio er al., 2009; Eijck, 2004; Su et al., 2007].

We work in this paper with the epistemic model checker
MCK, which supports a specification language that combines
operators from the branching time logic CTL* with operators
from the logic of knowledge. The fragment relevant to our
purposes has syntax given by the following grammar:

¢ =ploi A2l ~p[Ad| Xp |G| Kip

where p is an element of the set Prop of atomic propositions
and i is an element of the set of agents Agt = Ap U Ag. In-
tuitively, A¢ says that ¢ holds in all possible futures, X¢ says
that ¢ holds at the next moment of time, G¢ says that ¢ holds
now and at all future times, and K;¢ says that agent i knows
that ¢ is true. Other operators that can be defined from this
set include E¢ = —A-¢ (¢ holds in some possible future),
and F¢ = -G—¢ (¢ holds at some future time).

Semantics of the logic can be given using interpreted sys-
tems [Fagin et al., 1995]. Let S be a set, which we call the
set of environment states. A run over environment states S is
a function 7 : N = § X IljeaqL;, Where each L; is some set,
called the set of local states of agent i. These local states are

241

used to concretely represent the information on the basis of
which agent i computes its knowledge. Given a run r, agent
i and time m, we write r;(m) for the corresponding compo-
nent (in L;) of r(m), and r.(m) for the first component (in S).
An interpreted system over environment states S is a tuple
I = (R, n), where R is a set of runs over environment states
S,and 7 : R X N — P(Prop) is an interpretation function.

A point of I is a pair (r,m) where r € R and m € N.
The semantics of CTL*K,, is given by a relation 1, (r,m) ¢,
where 7 is an intepreted system, (r,m) is a point of 7, and ¢
is a formula, defined inductively as follows (we omit details
for the boolean operators):

I,(r,m) E pif p € n(r,m),

I,(r,m) E A¢ if for all runs ' € R with r'(k) = r(k) for
allk=0...m,wehave I,(¥',m) E ¢,

I, (rm)EXpifI,(rrm+1)E ¢,
I,(r,m) E Go¢ if for all times m’
I,(r,m)E ¢,

I,(r,m) E K;¢ if for all points (+',m’) of I such that
ri(m) = r/(m’) we have I, (r',m’) k ¢.

The systems of interest in this paper have runs derived from
all plays of a game G, and local states assigned using what
MCK call the observational semantics. We allow agents to
retain some memory of their past observations, represented
by a memory assignment yu that associates to each agent a
a function y, mapping perfect recall views of a to some set
of memory values. We require that this function have the
following Markov property: there exists a function f such
that for all views a and observations o, u,(@o) = f(u.(@), o).
This permits memory to be incrementally maintained.

Suppose p = sps; ... is an infinite play of the game con-
sistent with strategy assignment o~. Given a memory assign-
ment u, we construct a run r = p°°S# by defining r,(m) = s,
and r;(m) = (O;(sp), ui(view;(so . .. s,—1))) for all i € Agt and
m € N. That is, each player’s local state is its current observa-
tion, plus its memory of its previous observations. We write
I°%%(G, o,) for the system in which the set of runs consists
of p°PS# for all infinite plays p of G consistent with o-.

The propositions of interest for our analysis are as follows:

>

m we have

e caught,: the evader e has been caught. In case of the
turn-based scheduler, this means that for some pursuer
p € Ap, we have posn(p) = posn(e). When we use the
synchronous scheduler, it is possible that a pursuer and
an evader traverse an edge in opposite directions in the
same step, i.e., posn’(p) = posn(e) Aposn’(e) = posn(p).
In this case, this is also treated as a capture.

e pos; € X, where i € Agt and X C V is a set of game
positions. This is true just in case posn(i) € X.

The interpretation 7 is constructed so as to associate these
meanings with these variables.

Given a finite state environment E, and an assignment of
protocols P being executed by the agents in this environment,
and a formula ¢ of the logic of knowledge and time, MCK
builds an interpreted system 7, and checks whether ¢ holds at
time O in all runs of 7, i.e., whether 7, (r,0) | ¢ for all runs
r of 7. In the applications of interest in the present paper,

3ﬁ

Figure 1: Grid Scenario

0 1 2

the environment corresponds to a game G, the assignment ¢
protocols corresponds to the strategy assignment o, and the
system 7 is 7°P5(G, o, i) for some memory assignment .

MCK supports several different algorithmic approaches for
solving the model checking problem. We use two in the
present paper: 1) Ordered binary decision diagram (BDD)
based model checking, (MCK’s algorithms spec_obs_ctl
and spec_obs_ctls) and 2) Bounded model checking
(BMC) (MCK’s algorithm spec_obs_bmc), which is based
on translation to a propositional logic satisfiability problem
and works on the universal fragments of the logic by finding a
counterexample in case the specification fails. MCK supports
diagnosis by listing and visualization of counterexamples.

In the following sections, we present examples of the ap-
plication of epistemic model checking using MCK where the
system is a pursuit-evasion game. Our focus is to identify
epistemic specifications of interest in this domain, and to ob-
tain some preliminary results on the performance of MCK on
these examples. The experiments were conducted on an Ap-
ple iMac with a 3.06GHz Intel i3 processor and 4G memory.

4 Pursuit Verification

The first example models a full-information pursuit-evasion
game where the arena is a (mxn)-grid, and two pursuers chase
an evader. In a full-information game, agents can observe the
whole system, Thus, the map M = (V,E,, E,) is given by
V=0[0...m=-1]1x[0...n-1], E,, = {((x,y),(x,y)) €
VZix=xXVy=yY)Alx=x| < 1Aly—y| < 1} and
E, = V x V. Figure 1 presents the case of a (5 X 5)-grid.
The evader is initialized at position (0, 0) and the pursuers are
initialized at position (4, 0) and (0, 4), respectively.

We consider two variants of the game, with strategies de-
pending on the type of scheduler used. The strategy of the
evader is always to move randomly to an adjacent vertex.

e synchronous scheduling: The pursuers choose any move
in the direction of the current evader position.

turn-based: The pursuers execute a pincer movement:
one prioritizes moving towards the horizontal position of
the evader, the other prioritizes the vertical. Once hor-
izontally/vertically aligned, the pursuer may move to-
wards the evader in the other dimension.

The point of these examples is to demonstrate some basic
pursuit issues: is it possible for the evader to avoid capture
when the pursuers are following the particular strategy pre-
scribed for them? Thus, the formula

AF caught, (H

242

Log2-scale

1024

256 - q

64l 1

—8—turn-based(BDD runtime)
o —©—sync(BDD runtime)

L —£— sync(BMC runtime) 1
—+— sync(counterexample size)

0.25 L L L
5 20

5
Grid dimension (n)

35 40 45 50

Figure 2: Grid Pursuit, Specification (1)

expresses that the evader cannot avoid capture (on all paths
there exists a future time where the evader has been caught).

We may model check this using BDD-based model check-
ing. Alternately, since this is a universal formula, we may
also use bounded model checking. In this case, if the for-
mula is false and a large enough bound N is selected, then the
model checker returns a counterexample trace that satisfies
G-caught,, i.e. on which the evader avoids capture.

In the turn-based game, model checking verifies that cap-
ture is guaranteed. However, in the synchronous game, the
specification fails to hold: the evader can escape capture
if the pursuers choose their moves poorly. The counter-
example facilities can be used to investigate the failure, and
reveal the following pattern of movement in which the evader
avoids capture in a loop such as ((1,2),(0,1),(2,1)) —
((1,1),(0,2),(2,2)) — ((1,2),(0,1),(2,1)) with the triples
(posn(e), posn(p1), posn(py)) denoting the positions of
evader and pursuers.

The experimental results for model checking specification
(1) in the grid game are shown in Figure 2, which gives a
logscale plot of model checking runtime against the grid di-
mension n for an n X n grid. The specification is false in
the synchronous case, and we also plot the counter-example
size in number of steps: this turns out to be roughly half the
grid size plus 4. Timing results are omitted in the case of
BMC and the turn-based game, since there exists no counter-
example to be found, so the BMC approach does not termi-
nate (MCK does not attempt to determine a sufficient bound
for termination of BMC). In this example, as we increase the
problem size, the BMC-based model checking scales well,
while BDD model checking runtime becomes large (we ter-
minated the computation at 2 hours) at thresholds that appear
to be related to an increase in the number of bits required to
represent the dimension.

Note that this analysis uses temporal specifications only,
so any temporal logic model checker could be used to do the
same analysis. The main point of these examples is to check
how the two algorithm types compare and how well the epis-
temic model checker MCK runs as we scale the examples. It
appears the approach is feasible for moderate sized examples.

Figure 3: Region Clearing Scenario

5 Region Clearing and Pursuit Verification

We now consider some examples where the agents do not
have complete visibility, and some game objectives become
of interest, for which epistemic model checking is required,
since temporal model checking does not suffice.

In all the games in this section, a single pursuer chases a
single evader, and scheduling is turn-based. The map in these
examples is based on variants of the undirected movement
graph (V, E,;) depicted in Figure 3. (We explain the dotted
edges below.) Initially, the pursuer is at position 1, and the
evader can be at any position, including a special position 0,
which indicates that the pursuer is not present in the game.
Let Q be the set of all positions other than 0.

The visibility graph in the examples is derived from Fig-
ure 3 by (u,v) € E, if u and v are connected in the figure
by a sequence of edges forming a straight line (e.g., we have
(3,9),(8,12) e E,, but (3,11),(5,8) ¢ E,).

In these examples, the evader’s strategy is to move ran-
domly through the graph, and we define a particular strategy
for the pursuer, to be verified for correctness. The pursuer’s
strategy is defined in two parts, corresponding to two game
objectives: first, to determine whether the evader is present
in the region Q, and, second, to capture the evader once it
is known to be present. The first part of the strategy is con-
structed so that the pursuer moves along a prescribed surveil-
lance route, until the evader is seen. At this point the strategy
switches to the second part, in which the pursuer gives chase
by moving, at each turn, towards the location where it last saw
the evader. For example, suppose the pursuer is at position 1,
it sees the evader is at position 8, and it is the evader’s turn
to move. If the evader moves to position 12 it is no longer
in view of the pursuer, so the pursuer’s move would be to
position 4, in the direction it last saw the evader.

In this set of examples, the memory assignment for the
evader is the null function, and the memory assignment for
the pursuer always retains the position where the evader was
last seen (else L) and a boolean variable indicating whether
the evader has been caught, plus any additional values de-
scribed below.

5.1 Version 1: Catch or Clear

In this version of the example the pursuer can both clear the
region and capture the evader if present. We drop from the
map the position 19 and the edges connected to it. The pre-
scribed surveillance route is 1-4-5-4-8-9-8-12-13-12-16.

243

This example helps to illustrate the usefulness of epistemic
specifications in a situation with partial observability. Since
the evader may or may not be in the arena, the pursuer would
like to sweep the arena to determine if the evader is present in
the arena, and to catch it if so. This objective can be expressed
by the specification

AF(caught, v K,(pos, ¢ Q)))

which states that the pursuer is guaranteed to eventually cap-
ture the evader, or else know that the evader is not in the arena.
Alternately, if we do not require capture, but merely that the
pursuer knows whether the evader is in the arena, then we
could check

AF((Kp(pos. € Q) V K(pos. ¢ Q)) 3)

Note that it would not suffice to write the purely temporal
specification AF(caught, V pos, ¢ Q). While this does imply
that the evader is caught whenever it is present, it does not
imply that the pursuer can terminate the search. Possibly the
evader is not in Q but the pursuer will never know this fact.

In this version of the game, the pursuer is guaranteed to
either clear the region or capture the evader. Model check-
ing confirms that Specifications (2) and (3) both hold. Ta-
ble 1 lists the experimental results for the BDD-based model
checker. The BMC model checker is not included because it
is nonterminating for a specification that holds.

5.2 Version 2: Detecting Evadability

We next consider a version where the region can be cleared,
but capture is not guaranteed. In this variant, we include po-
sition 19 and the edges from it to position 2 and position 3.
Since now the evader may be hiding at position 19, not visible
from position 1, we adapt the prescribed surveillance route
for the pursuer to 1-3-1-4-5-4-8-9-8-12-13-12-16, where we
precede the previous route by a move to position 3, where
position 19 is visible. In this scenario, the pursuer is able to
clear the region, but there exists an infinite chase, in which
the pursuer and the evader both move in the same direction
along the cycle 1-2-19-3-1. Specification (2) becomes false,
but (3) continues to hold.

The bounded model checker can be used to find a coun-
terexample for the specification (2), although it is much
slower than BDD-based model checker because of the length
of the counterexample.

In this scenario, it is of interest for the pursuer, when it
knows that the evader is in the arena, to determine if it is
possible for the evader to evade capture. The formula

AF((K,(pos. & Q))V caught,V K ,(pos, € QANEG—caught,))

“)
says that the pursuer is guaranteed to learn whether the evader
is in the region, and if it is in the arena, the pursuer will ei-
ther capture the evader, or eventually know that the evader
can (in some cases) evade capture. An arguably clearer, but
equivalent, formulation of this is

(pose ¢ Q = AF(K)(pos, & Q))) A (pos, € Q =
A((Fcaught,) vV FK,(pos. € Q N EG—caught,)))

However, the temporal operators here are not in CTL so it
runs a little slower. Experimental results are shown in Table 1.

(&)

Spec | Version | Sat Checker Time(s)
2) 1 Y BDD 3.1
3) 1 Y BDD 2.6
2) 2 N BDD 3.6
3) 2 Y BDD 3.1
2) 2 N | BMC(Cex=10) | 367.9
() 2 Y BDD 24
(5) 2 Y BDD 66.1
) 3 Y BDD 16.6
3) 3 Y BDD 11.3

Table 1: Experimental Results: Region Clearing and Pursuit

5.3 Version 3: Capture with Assistance

In the previous version, the pursuer can discover that although
the evader is present, it may be able to avoid capture. To ad-
dress this, the pursuer may call in assistance with the chase.
We model this by adding to the map a new position 20, where
the assistant waits until it is called, as well as a unidirectional
edge from position 20 to position 1. The pursuer calls the as-
sistant at its first turn where it has last seen the evader at one
of the positions on the loop where an infinite pursuit may hap-
pen, i.e., 1,2,3 or 19. We add a new variable to the pursuer’s
memory, which records whether it has called for assistance.

The assistant follows a prescribed strategy to help the pur-
suer catch the evader. It has been waiting for the call at a
special position 20. Once called, it moves to position 1 at its
next turn. It then moves along the loop 1-2-19-3 in clockwise
direction. The pursuer, after calling for assistance, moves to-
wards the loop and then around it in anti-clockwise direction.

In this scenario, the formula (2) holds, as does formula (3).
Note that (4) and (5) hold trivially when (2) holds.

6 Related Work

The games we have studied in this paper are a special case
of motion and sensing problems, which [Isler, 2004] groups
into sensor assignment, sensor placement, exploration, and
pursuit-evasion. These four problems can be seen as special
cases of a more general problem, involving either single or
multiple sensors, static or mobile sensors, and a search goal
that is either punctual or distributed across the environment.
This paper deals primarily with pursuit-evasion games, and
the closely related problem of exploration (termed environ-
ment clearing above), but we believe epistemic model check-
ing may also be applicable to other problems in this area.

Depending on the scientific community many synonyms
are used for somewhat similar problems: art gallery prob-
lems in computational geometry [Chvatal, 1975], [Bjorling-
Sachs and Souvaine, 19951, graph searching in computer sci-
ence [Megiddo et al., 1988], [Goldstein and Reingold, 1995]
and [Gal, 2005], rendezvous problems in operations research
[Lim, 19971, [Alpern and Lim, 1998] and [Alpern, 20021, and
differential games in control theory [Isaacs, 1965].

The literature on pursuit-evasion games studies a range of
models and issues. One of the objectives is to develop gen-
eral strategies for a class of games, to prove their correct-
ness and analyze their efficiency. For example, [Adler et al.,

244

2004] provides bounds on expected time to capture for ran-
domized pursuit-evasion protocols for graphs involving one
pursuer and one evader. Here neither agent has visibility of
the neighboring nodes. The scheduler is synchronous. Isler
[Isler, 2004] studies expected time to capture for agents with
local visibility of nodes adjacent to their location. He consid-
ers reactive evaders, which only move when they see a pur-
suer, as well as algorithms for classifying graphs according
to whether they admit a winning strategy. Other important
results are found in [Gal, 2005], [Megiddo et al., 1988] and
[Alpern, 1995; 2002].

Our work in this paper differs from the above in that we are
interested in obtaining a formal verification of the correctness
of a strategy in a particular game, rather than in a class of
games. This may be useful even when applied to games for
which a theoretical analysis exists, since theoretical proofs
are sometimes flawed. Further, a strategy that is asymptoti-
cally optimal for a class of games may not be optimal for a
specific game in that class, leading mission planners to devi-
ate from the theoretical strategy, so that the proof guarantees
no longer apply.

Another benefit of a model checking approach is that we
can flexibly handle a larger range of game models than stud-
ied in the theoretical literature, investigating questions such
as how a game is impacted by changes in the sensor models,
player capabilities or game objectives. Such changes may in-
validate a theoretical analysis, requiring a lengthy and labor-
intensive intellectual effort to develop the theory in the new
setting. On the other hand, model checking promises to pro-
vide an efficient, automated approach to the analysis of par-
ticular variants of interest.

A knowledge-based approach to incomplete-information
robot motion planning problems is proposed in [Brafman et
al., 1997], and one of the examples from this paper has been
studied using MCK [Gammie and van der Meyden, 2004].
Model checking based on the interpreted systems model for
uncertainty, as a general solution procedure to situation anal-
ysis problems in the military domain, has been proposed in
[Maupin and Jousselme, 2005] and [Maupin et al., 2010]. So
far as we know, our work in this paper is the first detailed
study of the application of an epistemic model checker to
pursuit-evasion games.

However, others have investigated model checking of spec-
ifications in temporal logic as an approach to the analysis
of pursuit-evasion games. [Bohn, 2004] uses the symbolic
model checker SMV to synthesize a strategy for a pursuer to
capture an evader when possible. The grid scenario in this
work is different from ours in that the pursuer and evader
observe only their current positions and the pursuer has a
speed advantage over the evader. The pursuer’s knowledge
is implicitly encoded in the model with a boolean variable
occupied, for every position x, denoting that the pursuer con-
siders it possible that the evader is at position x. Since this
encoding is done by hand, the approach is likely to be difficult
to follow in more complex examples, and it leaves the possi-
bility of human error. By comparison, our epistemic model
checking approach automates such reasoning about knowl-
edge. [Sirigineedi ef al., 2009] uses SMV to check the be-
havior of a UAV performing a cooperative search mission.

In [Moulin et al., 2003], a bounded model checker is used
to check several universal properties in maneuvering target
tracking in a planar air-to-air scenario.

7 Conclusion

Our objective in this paper was to clarify the ways that epis-
temic model checking might be beneficial for the analysis of
pursuit-evasion games, and to conduct a number of case stud-
ies of small scale in order to confirm its relevance and feasi-
bility. We feel that the results are promising and justify the
development of more realistic, larger scale case studies. En-
coding of the examples as MCK input scripts was done by
hand, and larger scale studies will require tools for automatic
generation of model checker input from geographic informa-
tion systems. We presently have such tools under develop-
ment and hope to report results in the near future.

Several other directions would be interesting to pursue in
future research. We have identified knowledge conditions of
interest in the pursuit-evasion setting. Determining explicitly
the exact conditions under which an agent has this knowl-
edge would be useful, e.g. for terminating a search or calling
in assistance at the earliest possible time. It would also be
interesting to develop automated approaches for the synthesis
of player strategies in these games, and to apply our approach
to strategies from the existing theoretical literature.

References

[Adler et al., 2004] M. Adler, H. Ricke, N. Sivadasan,
C. Sohler, and B. Vocking. Randomized pursuit-evasion
in graphs. Combinatorics, Probability and Computing,
12:225-244, 2004.

[Alpern and Lim, 1998] S. Alpern and W. S. Lim. The sym-
metric rendezvous-evasion game. SIAM J. Control Optim.,
36(3):948-959, 1998.

[Alpern, 1995] S. Alpern. The rendezvous search game.
SIAM J. Control Optim., 33(3):673-683, 1995.

[Alpern, 2002] S. Alpern. Rendezvous search: A personnal
perspective. Oper. Res., 50(5):772-795, 2002.

[Bjorling-Sachs and Souvaine, 1995] 1. Bjorling-Sachs and
D. Souvaine. An efficient algorithm for guard placement in
polygons with holes. Discrete Comp. Geom., 13:77-109,
1995.

[Bohn, 2004] C. A. Bohn. In Pursuit Of A Hidden Evader.
PhD thesis, The Ohio State University, 2004.

[Brafman et al., 1997] R. 1. Brafman, J-C. Latombe,
Y. Moses, and Y. Shoham. Applications of a logic of
knowledge to motion planning under uncertainty. JACM,
44(5), 1997.

[Chvatal, 1975] V. Chvatal. A combinatorial theorem in
plane geometry. J. Combin. Theo. (Series B), 18:39-44,
1975.

[Clarke er al., 1999] E. Clarke, O. Grumberg, and D. Peled.
Model Checking. The MIT Press, 1999.

[Eijck, 2004] D.J.N. Eijck. Dynamic epistemic modelling.
CWI. Software Engineering [SEN], (E 0424):1-112, 2004.

245

[Fagin ef al., 1995] R. Fagin, J. Halpern, Y. Moses, and
M. Vardi. Reasoning About Knowledge. The MIT Press,
1995.

[Gal, 2005] S. Gal. Strategies for searching graphs. In Graph
Theo. Combin. Alg., pages 189-214. 2005.

[Gammie and van der Meyden, 2004] P. Gammie and
R. van der Meyden. MCK: Model checking the logic of
knowledge. In CAV, pages 479483, 2004.

[Goldstein and Reingold, 1995] A. S. Goldstein and E. M.
Reingold. The complexity of pursuit on a graph. Theo.
Comp. Sci., 143:93-112, 1995.

[Isaacs, 1965] R. Isaacs. Differential Games: A Mathemati-
cal Theory with Applications to Warfare and Pursuit, Con-
trol and Optimization. Wiley and Sons (1965), Dover
(1999), 1965.

[Isler, 2004] 1. V. Isler. Algorithms for Distributed and Mo-
bile Sensing. PhD thesis, Uni. of Pennsylvania, 2004.

[Lachner et al., 2000] R. Lachner, M. H. Breitner, and H. J.
Pesch. Real-time collision avoidance: Differential game,
numerical solution, and synthesis of strategies. In Adv. in
Dynamic Games and Applications, pages 115—-135. 2000.

[Lim, 1997] W. S. Lim. A rendezvous-evasion game on
discrete locations with joint randomization. Adv. Appl.
Probab., 29:1004-1017, 1997.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification
of multi-agent systems. In LNCS 5643, pages 682—688,
2009.

[Maupin and Jousselme, 2005] P. Maupin and A. Jousselme.
A general algebraic framework for situation analysis. In
Fusion, 2005.

[Maupin et al., 2010] P. Maupin, A. Jousselme, H. Wehn,
S. Mitrovic-Minic, and J. Happe. A situation analysis tool-
box: Application to coastal and offshore surveillance. In
Fusion, 2010.

[Megiddo et al., 1988] N. Megiddo, S. L. Hakimi, M. R.
Garey, D. S. Johnson, and C. H. Papadimitriou. The com-
plexity of searching a graph. JACM, 35(1):18-44, 1988.

[Moulin erf al., 2003] M. Moulin, L. Gluhovsky, and E. Ben-
dersky. Formal verification of maneuvering target track-
ing. In AIAA Guidance, Navigation, and Control Confer-
ence and Exhibit, pages 1-8, 2003.

[Sirigineedi ef al., 2009] G. Sirigineedi, A. Tsourdos,
R. Zbikowski, and B. A. White. Modelling and veri-
fication of multiple uav mission using smv. In Formal
Methods for Aerospace Workshop, Formal Methods, 2009.

[Su et al., 2007] K. Su, A. Sattar, and X. Luo. Model check-
ing temporal logics of knowledge via OBDDs. The Com-
puter Journal, 50(4):403-420, 2007.

[Vidal et al., 2002] R. Vidal, O. Shakernia, J. Kim, D. H.
Shim, and S. Sastry. Probabilistic pursuit-evasion games:
Theory, implementation, and experimental evaluation. Int.
J. Comp. Geo. App., 18(5):662-669, 2002.

