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Abstract

We propose an online classification approach for
co-occurrence data which is based on a simple in-
formation theoretic principle. We further show how
to properly estimate the uncertainty associated with
each prediction of our scheme and demonstrate
how to exploit these uncertainty estimates. First, in
order to abstain highly uncertain predictions. And
second, within an active learning framework, in or-
der to preserve classification accuracy while sub-
stantially reducing training set size. Our method is
highly efficient in terms of run-time and memory
footprint requirements. Experimental results in the
domain of text classification demonstrate that the
classification accuracy of our method is superior or
comparable to other state-of-the-art online classifi-
cation algorithms.

1 Introduction

In the online classification paradigm, a classifier observes in-
stances in a sequential manner. After each observation, the
classifier predicts the class label of the observed instance and
receives as feedback the correct class label. The online clas-
sifier may then update its prediction mechanism, presumably
improving the accuracy of future predictions [4]. To moti-
vate our derivation we consider a stream of instances of co-
occurrence data, each labeled with one or more labels out of
a set of Nl possible labels. Let Nf denote the number of dis-
tinct features in our data, and let C denote a co-occurrence
matrix with Nf rows and Nl columns, such that C(i, k) in-
dicates the number of occurrences of the i-th feature in all
instances associated with the k-th label. If the assigned labels
indeed represent distinct classes, one may expect an approx-
imated block structure in C, where each block consists of
features representative of a particular class. For example, this
expectation underlies most text classification schemes under
the standard bag of words model.

A natural route to quantify the statistical signal in C is via
the mutual information [3] embodied in a matrix P , which
is the normalized form of C, denoted henceforth Ifl. This
information quantifies the average number of bits revealed
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over the label identity while observing a particular feature
in a given instance. If each label is characterized by a set
of distinct features, we expect that C will have an approxi-
mated block structure, and correspondingly that Ifl will be
relatively high. The current work exploits precisely this in-
tuition. Specifically, given a training set of labeled instances,
the goal of a classification scheme is to properly label the re-
maining test set instances. The above discussion implies that
if one constructs C based on the entire data where the test
set instances are properly labeled, a relatively clear structure
will emerge, with an associated relatively high Ifl value. In
contrast, if the test set instances are poorly labeled, the re-
sulting C will have little structure, if any, as the wrong labels
over the test set will smear the statistical signal arising from
the training set. Correspondingly, a relatively low Ifl value
will be observed. Thus, our starting point here is to cast su-
pervised classification as labeling the test set instances so to
maximize the mutual information, Ifl. Importantly, this in-
formation should be estimated via a co-occurrence matrix, C,
constructed out of the labeled training instances along with
the test set instances and their predicted labels. In Fig. 1 we
present simulation results over real world data that support
this proposed formulation.

Various algorithms can be derived to find labellings that
aim to maximize Ifl. Here, we focus on a simple online learn-
ing strategy [4]. Specifically, we examine the matrix C which
is constructed using the instances scanned thus far and their
associated labels. Given a new instance, x, the algorithm per-
forms Nl trials, simulating the addition of x to the construc-
tion of C where it is labeled with each of the Nl possible
labels; the particular label resulting with an updated matrix C
with an associated maximal information Ifl will be predicted
as x’s label.

In classical online learning, once a label is predicted the
true label is revealed and the prediction mechanism is up-
dated accordingly. This setup is not suitable if the cost of each
true label is relatively high. In the active learning paradigm
this issue is addressed via selective sampling techniques in
which the label is queried only if the relevant prediction is
relatively uncertain [11; 14; 2; 12]. Our framework can natu-
rally embody this intuitive principle. Specifically, we exam-
ine the loss in Ifl due to assigning x with the second best
label, and demonstrae how this loss estimates prediction un-
certainty. We further use this information loss in two prac-
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Figure 1: Ifl decreases as a function of the fraction of documents
that are randomly labeled. The three curves were estimated for three
real-world corpora, described in our experimental results.

tically important scenarios. First, in order to abstain highly
uncertain predictions so to increase precision at the cost of
recall reduction. Second, in asking for instances’ labels only
if the associated prediction is considered highly uncertain.
We demonstrate the validity of our approach for the task of
text classification over real world corpora. Comparisons with
state-of-the-art online classification schemes [17; 10; 5; 9; 6;
7] suggest that in spite of its simplicity, our proposed method
is comparable or superior to these alternative methods.

2 Classification via information maximization

Let F be a discrete random variable with Nf possible val-
ues that represent the set of distinct features in our data,
{f1....fNf

}. Let X be a random variable with Nx possi-
ble values that represent the set of Nx instances in our data,
{x1...xNx}. Let n(fi, xj) be the number of occurrences of
the i-th feature in the j-th instance. Then, ignoring the order
of the features observed in xj , as done, e.g., in the standard
bag of words model [18], we obtain that the empirical proba-
bility of observing fi in xj is

P (fi|xj) = n(fi, xj)/

Nf∑
i′=1

n(fi′ , xj) . (1)

Further, for brevity we assume a uniform prior, P (xj) =
1/Nx, ending up with an estimation of the joint distribution,
P (fi, xj) = P (xj)P (fi|xj). Next, we denote by L a random
variable with Nl possible values that represent the distinct la-
bels, {l1...lNl

}. The assignment of xj with a label lk can be
represented via P (lk|xj) = 1 while P (lk′ |xj) = 0 ∀ k′ �= k.1

1Clearly, it is also possible to represent the assignment of xj with
more than one label. Nonetheless, for brevity purposes we limit our
derivation to the case where each instance is solely assigned with
one label.

Considering the joint distribution over all variables men-
tioned, we have

P (fi, xj , lk) = P (fi, xj)P (lk|xj) (2)

where we used P (lk|xj , fi) = P (lk|xj), namely that in-
stance identity, xj , solely determines its label. Given this
formulation we have

P (fi, lk) =

Nx∑
j=1

P (fi, xj)P (lk|xj) =
∑
j∈lk

P (fi, xj) , (3)

where j ∈ lk denotes P (lk|xj) = 1. It is further easy to
verify that under this formulation{

P (lk) = n(k)/Nx

P (fi|lk) = (1/P (lk))
∑

j∈lk
P (fi|xj)P (xj)

(4)

where n(k) denotes the number of instances assigned with
the k-th label, lk. Given P (fi, lk), one can quantify the de-
pendency between the features and the labels via the mutual
information [3]

Ifl ≡ I(F ;L) =
∑
i,k

P (fi, lk) log
P (fi|lk)
P (fi)

. (5)

Our motivating underlying assumption is that each label, or
class, is characterized by a set of distinct features. Hence, we
expect an approximated block-structure in P (fi, lk); corre-
spondingly, Ifl is expected to be relatively high. Importantly,
Ifl can be estimated over the training set labeled instances,
as well as test set instances for which the label is predicted.
Accurate predictions are expected to even sharpen the statis-
tical dependency observed between F and L over the training
set, resulting with relatively high Ifl values. In contrast, poor
predictions are expected to smear the statistical dependency
between F and L, resulting with relatively low Ifl values.
Here, we propose to turn this intuitive understanding over its
head, and to predict the labels of the test set instances such
that Ifl will be maximized.

3 An online learning setup

Various algorithms can be derived to predict labels aiming to
maximize Ifl. Here, we focus on online classification. Under
this paradigm, at any given time point, only one instance is
examined and its label is predicted. In classical online learn-
ing, once a prediction is provided, the true label is revealed,
and accordingly the learning model and the prediction loss
are updated [4]. In our context, this corresponds to a situation
where Nx instances were already scanned, and the label of
each was predicted and then revealed. Next, a new instance,
xN+

x
, is encountered, where for conciseness of notation we

used N+
x = Nx + 1. Let lk be the tentative label predicted

for xN+
x

, and further denote PN+
x

≡ P (fi|xN+
x
). Observing

xN+
x

requires to update the probabilistic model and we use the
superscript + to distinguish between components of the prob-
abilistic model estimated before and after observing xN+

x
.

First, if before observing xN+
x

we had P (xj) = 1/Nx ∀ j,
after observing xN+

x
we have P+(xj) = 1/N+

x . Similarly,
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n+(k′) = n(k′) ∀ k′ �= k, while n+(k) = n(k) + 1. In
addition, we have{

P+(lk′) = n+(k′)/N+
x = n(k′)/N+

x ∀ k′ �= k

P+(lk) = n+(k)/N+
x = (n(k) + 1)/N+

x .
(6)

Finally, using Eq. 4 it is easy to verify that P+(fi|lk′) =
P (fi|lk′) ∀ k′ �= k; in contrast, after little algebra, for lk we
obtain

P+(fi|lk) =
n(k)P (fi|lk) + P

N+
x

n(k) + 1
, (7)

where we used
∑

j∈lk
P (fi|xj) = n(k)P (fi|lk), as can

be derived from Eq. 4. In particular, the online update rules
in Eq. 6 and Eq. 7 imply that once xN+

x
is assigned with a

particular label, updating P (f, l) is straightforward and has
linear complexity of O(Nf ).

3.1 Online assignment rule to maximize Ifl
In a straightforward approach one may simulate assigning
xN+

x
with each possible label, find all the associated joint

distributions, and eventually assign xN+
x

with the label for
which Ifl is maximized. This process involves Nl simulation
trials, each with a complexity of O(NfNl) for estimating Ifl.
Thus, the overall complexity will be O(N2

l Nf ). However, a
more efficient approach arises from the analogy between the
problem at hand and the problem of unsupervised clustering
via sequential information maximization [21]. Specifically, in
that earlier work, the goal is to cluster instances such that the
information between the obtained clusters and the features is
maximized. If we identify each cluster with a particular label
in our setup, we see that the problems are in perfect analogy,
except for two important differences. First, in [21] it is as-
sumed that the entire data is available in advance; in contrast,
here we assume an online learning setup that in particular re-
quires updating P (f, l) after encountering each new instance.
Second, in [21] the focus is on unsupervised clustering, while
here we expand this framework for supervised classification
where labels are exploited during the classification process.
Nonetheless, using the analogy between the two problems,
we observe that assigning xN+

x
with a label such that Ifl will

be maximized is equivalent to assigning in [21] a singleton
cluster that consists solely of xN+

x
to one of the existing clus-

ters so to maximize the information between the clusters and
the features. Adapting the derivation in [21] to our needs,
we conclude that the assignment that locally maximizes Ifl
is given by

lk = argminlk′ δ(Ifl, k
′), (8)

where

δ(Ifl, k
′) ≡ (P (lk′) + P (x

N+
x
))JS(P (f |lk′), P

N+
x
) , (9)

where JS stands for the Jensen-Shannon divergence [16], de-
fined by

JS(p1, p2) = π1KL(p1‖p̄) + π2KL(p2‖p̄) , (10)

where in our case π1 = n(k′)/(n(k′)+1), π2 = 1/(n(k′)+
1), p1 = P (f |lk′), p2 = PN+

x
, p̄ = π1p1 + π2p2, and

KL(p(y)‖q(y)) =
∑

y p(y) log(p(y)/q(y)) is the KL di-
vergence [3]. In short, to maximize Ifl one should assign
xN+

x
with the label lk for which the conditional distribution

P (f |lk) is most similar to PN+
x

in terms of Eq. 8. Since the
complexity of estimating the JS divergence is O(Nf ), the
overall complexity of predicting the label of a new instance is
O(NlNf ).

3.2 Estimating prediction uncertainty

Properly estimating the uncertainty associated with a predic-
tion is practically useful in various scenarios. In order to ad-
dress this issue we adopt a simple Best-versus-Second-Best
approach (cf. [12]). Specifically, given an incoming instance,
xN+

x
, we denote by lk1

the label for which Eq. 8 is minimized,
namely the predicted label. We further denote by lk2

the sec-
ond best label, namely the label for which Eq. 8 is minimized
over all k �= k1. Thus, the loss in Ifl due to assigning xN+

x

with the second best label is given by

g(x
N+

x
) ≡ δ(Ifl, k2)− δ(Ifl, k1) ≥ 0 . (11)

A relatively high g(xN+
x
) value implies that lk1 is clearly dis-

tinguished from all other labels for xN+
x

, namely the predic-
tion is relatively certain. Conversely, low g(xN+

x
) implies that

at least two labels are hard to distinguish as potential assign-
ments for xN+

x
, hence high uncertainty should be associated

with the prediction. Finally, instead of considering g(xN+
x
)

directly, we consider a normalized form, reflecting our intu-
ition that prediction uncertainty should gradually decrease as
the prediction mechanism being exposed to more instances.
Specifically, we define the uncertainty associated with the la-
bel predicted for xN+

x
via

u(x
N+

x
) ≡ g(x

N+
x
)−1/(N+

x )2 . (12)

We found this simple definition to work well in practice.
Nonetheless, other definitions could certainly be exploited.

3.3 Algorithms

We define three algorithms that rely on the derivation above.
The first, denoted oMaxI, is using the classical online learn-
ing paradigm. Given a stream of instances, the label of each
incoming instance, xj , is predicted using Eq. 8; next, the true
label is revealed and used to update P (f, l) via Eq. 6 and
Eq. 7. The second algorithm, denoted oAbMaxI, is exploit-
ing the uncertainty score, Eq. 12, to abstain relatively uncer-
tain predictions. Specifically, a spurious “abstain” class is de-
fined, and xj is classified to this class if and only if the asso-
ciated u(xj) score is greater than some pre-specified thresh-
old, denoted u∗. In this algorithm as well, after each predic-
tion the true label is revealed and P (f, l) is updated accord-
ingly. The underlying motivation is that by abstaining rel-
atively uncertain predictions one may increase classification
precision at the cost of reducing the associated classification
recall. The single input parameter, u∗, may be thought of as
a knob to control the precision/recall trade-off. Finally, in the
third algorithm, denoted oAcMaxI, we exploit u(xj) within
the active-learning paradigm. Specifically, the true label of xj

is requested and revealed if and only if u(xj) is greater than
some pre-specified threshold, denoted u∗, that now represents
a knob to control training set size. High u∗ value implies a
stringent threshold, leading to a low rate of requesting the true
label. Conversely, low u∗ value will result with a high rate of
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Input
Stream of incoming instances to be classified: x1, x2, ...
Parameters: Nl, u

∗

Output
Classifying each instance to a label out of {l1, l2, ..., lNl

}

Init
∀ k = 1 : Nl, |lk| = 0, ∀ i = 1 : Nf , P (fi|lk) = 0

Main Loop
For j = 1, 2, . . .

P (fi|xj) ← n(fi, xj)/
∑Nf

i′=1
n(fi′ , xj) ∀i = 1 : Nf

If not all classes observed
Request true label and update P (f, l) accordingly
Proceed to the next instance

k1 = argmink′ δ(Ifl, k
′) , k2 = argmink′ �=k1

δ(Ifl, k
′)

g(xj) ← δ(Ifl, k2) − δ(Ifl, k1)
u(xj) ← g(xj)

−1/j2

If u(xj) > u∗, Uncertain=TRUE, Else, Uncertain=FALSE

If oMaxI
Predict lk1

as the label for xj

Request true label and update P (f, l) accordingly
Else If oAbMaxI

If Uncertain, Abstain prediction
Else, Predict lk1

as the label for xj

Request true label and update P (f, l) accordingly
Else If oAcMaxI

Predict lk1
as the label for xj

If Uncertain
Request true label and update P (f, l) accordingly

End For

Figure 2: Pseudo-code for all three online classification algorithms proposed in this work. For the classical online setup, oMaxI is TRUE.
For the algorithm with an abstain option, oAbMaxI is TRUE. For the active-learning algorithm, oAcMaxI is TRUE. The first “If” statement
in the main “For” loop guarantees that the true label is always requested until at least one example was observed per class. For all algorithms,
once the true label is requested, P (lk) is updated via Eq. 6, ∀k = 1 : Nl, and P (f |l∗) is updated using Eq. 7 and P (f |xj) , where l∗ denotes
the obtained true label. In our experiments we used u∗ = 0.001 or u∗ = 0.0001.

requesting the true label. In any event, due to the division by
(N+

x )2 in Eq. 12 the obtained uncertainty scores are expected
to gradually decrease, leading to a decreasing rate of asking
for the true label, given that u∗ is fixed. A Pseudo-code de-
scribing all three proposed algorithms is given in Fig. 2.

4 Experimental Design

4.1 Datasets and run details

We demonstrate the performance of our approach over the
task of text classification. Our medium size datasets con-
sisted of the 20NG corpus [13], the Reuters-21578 corpus2,
and a subset of the RCV1 corpus [15], denoted as subRCV1.
Following the pre-processing of these datasets reported in
[21], we had for the 20NG corpus Nx = 16, 323, Nf =
2, 000, Nl = 20; for the Reuters-21578 corpus Nx =
8, 796, Nf = 2, 000, Nl = 10; and for the subRCV1
corpus Nx = 22, 463, Nf = 2, 000, Nl = 10. In ad-
dition, we considered two large corpora. First, all docu-
ments in the entire RCV1 corpus [15] associated with the

2Originally downloaded from
www.daviddlewis.com/resources/testcollections/reuters21578/

50 most frequent topics; thus, for this corpus we had Nx =
804, 414, Nf = 5, 000, Nl = 50. And second, a large sub-
set of the pages collected from the USA government “.gov”
domain provided by the TREC conference [8], for which we
had Nx = 695, 017, Nf = 5, 000, Nl = 50. In all
five datasets the words were selected through feature selec-
tion by information gain, where the information examined is
the information in the words-documents count matrix [21].
Importantly, this standard feature selection scheme is com-
pletely unsupervised and does not involve any usage of doc-
uments’ labels. However, we note that this feature selection
assumes access to the entire corpus of documents, which is
not valid in real world online text classification. To some-
what address this concern, in the RCV1 corpus the 5000
words were selected based on the words-documents counts
matrix constructed only from the first 20, 000 documents in
the corpus, that are typically used as the training set for this
corpus [15]. Finally, we note that the Reuters-21578 corpus
and the RCV1 corpus are multi-labeled. In particular, in our
RCV1 data, each document was assigned with ≈ 3 differ-
ent labels. For the oAbsMaxI and the oAcMaxI algorithms
we used u∗ = 0.001 for the three medium size datasets, and
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u∗ = 0.0001 for the two large datasets. For all datasets and
algorithms, the reported results are averaged over 10 runs us-
ing 10 different random permutations of documents order.

4.2 Benchmark algorithms

We compare the performance of our algorithms in terms of
macro-averaged F1 [24] to the performance of several state-
of-the-art online learning algorithms. These include, the well-
known Perceptron algorithm [17; 10], the Passive-Aggressive
(PA) algorithm [5], and a multi-class version of the recently
proposed AROW algorithm [6; 7]. For all three algorithms
we reduced multi-class multi-label learning into a binary up-
date by comparing the highest-scoring negative label with the
lowest-scoring positive label. For multi-class problems for
the Perceptron algorithm, this is often called Kesler’s con-
struction [19]. We denote these algorithms via Per, PA, and
AR, respectively. Several recent works have demonstrated
the high performance of these methods over various online
text classification tasks [9; 7]. For each algorithm we tested
two variants – one using the current linear model for the next
prediction, and another one using the average of all previous
models, which may help in averaging out noise [10]. This
latter option is denoted with a suffix Avg in Section 5. In a pi-
lot study we tried to normalize the counts vector representing
each document under the L2-norm and found it has no signif-
icant impact on the quality of the results, hence we used the
raw counts as input in the reported results. In addition, for the
PA and the AR algorithms we first optimally tuned the algo-
rithm’s trade-off parameter to guarantee high performance of
these algorithms. In the medium-size datasets this tuning was
done using half of the documents along with their labels. In
the large datasets it was done using 10,000 randomly selected
documents along with their labels. Obviously, this tuning im-
plies that these benchmark algorithms were using additional
valuable information that may be hard to obtain in practice.
Finally, to gain some perspective regarding the effectiveness
of our active-learning variant, oAcMaxI, we implemented an
uncertainty-sampling option [14] for each of the benchmark
algorithms, in the spirit of [2], as explained below.

5 Experimental Results

5.1 Online learning results

F1 20NG Reuters subRCV1 gov RCV1
oMaxI 76 68 65 65 54

Per 55 61 42 74 20
PerAvg 58 65 42 79 19

PA 72 68 38 81 13
PAAvg 73 70 35 83 19

AR 75 71 45 88 14
ARAvg 74 70 44 88 13
Nx 16,323 8,796 22,463 695,017 804,414

Table 1: Macro-averaged F1 results for all online algorithms. The
last row indicates the total number of documents in each corpus.

In Table 1 we present the macro-averaged F1 results for
all the examined online algorithms. Evidently, oMaxI was
superior to the benchmark algorithms in three datasets, and
inferior in two datasets – Reuters and gov, especially with

Figure 3: Macro-averaged precision and recall as a function of the
uncertainty score, u(xj), for the gov dataset.

respect to the AR algorithm. However, while for oMaxI we
have relatively robust performance over all datasets exam-
ined, for the AR algorithm we have very low performance
over the RCV1 data, due to its low recall results, presumably
since these data are highly multi-labeled. In contrast, oMaxI
performs well even on these data, although by construction
it classifies each document to a single class. Thus, we con-
clude that the proposed oMaxI algorithm may at the least be
considered comparable to the benchmark state-of-the-art al-
gorithms we examined. In addition, it is important to bear in
mind that the performance of the PA and AR algorithms rely
on tuning their trade-off parameter, using many labeled doc-
uments. In fact, preliminary results of these algorithms with
no tuning were substantially inferior. In contrast, the oMaxI
algorithm requires no tuning, which is a practically important
advantage.

5.2 Prediction Accuracy vs. Prediction
Uncertainty

We considered the relation between our uncertainty score def-
inition and the associated classification accuracy. To that end,
we estimated u(xj) per document using Eq. 12 during the
runs of the oMaxI algorithm. Next, we divided all documents
in each run into 10 equally populated groups according to
their u(xj) scores, and estimated the macro-averaged preci-
sion and recall [24] obtained within each group. In Fig. 3 we
present these results for the gov data. Similar results were ob-
tained for the other datasets. As depicted in the figure, as the
median uncertainty score found in each group is decreasing,
the associated precision and recall are increasing, supporting
the validity of Eq. 12 as a strategy to estimate prediction un-
certainty.
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Prec. / Recall 20NG Reuters subRCV1 gov RCV1
oMaxI 76 / 76 72 / 65 82 / 54 58 / 74 79 / 41

oAbMaxI 83 / 56 80 / 45 80 / 42 63 / 68 79 / 37
oAbMaxI∗ 87 / 59 88 / 50 88 / 46 65 / 79 81 / 42

fracAbst 33% 25% 21% 16% 9%

Table 2: Final Macro-averaged Precision and Recall results for
the oAbMaxI algorithm that abstains relatively uncertain predictions.
For comparison, in the first row we repeat the results of the oMaxI
algorithm. The results in the oAbMaxI row are estimated across all
documents. The results in the oAbMaxI∗ row are estimated only
for documents that were not classified to the “abstain” class. The
last row indicates the fraction of documents for which the algorithm
abstained a prediction.

5.3 Results in Abstain mode

In the oAbMaxI algorithm a document is classified to a spu-
rious “abstain” class if and only if u(xj) > u∗ where u∗ is
a pre-specified threshold. We experimented with this algo-
rithm over the three medium-size datasets with u∗ = 0.001,
and over the two large datasets with u∗ = 0.0001. In Table 2
we present the obtained macro-averaged precision and recall
[24]. As expected, the results of this algorithm are typically
higher in terms of precision, while lower in terms of recall.
If we estimate the precision and recall without considering
the documents assigned to the “abstain” class, this tendency
is even more dominant, as evident in the row entitled oAb-
MaxI∗. In addition, in light of the results depicted in Fig. 3
we conclude that the single input parameter, u∗, may be used
as a knob to control precision/recall trade-off.

5.4 Results in Active Learning mode

MacAvg F1 20NG Reuters subRCV1 gov RCV1
oMaxI 76 68 65 65 54

oAcMaxI 76 (25%) 69 (20%) 65 (17%) 68 (9.7%) 53 (3.7%)
oAcMaxI∗ 83 (25%) 78 (20%) 68 (17%) 71 (9.7%) 54 (3.7%)

AcPer 53 (23%) 59 (29%) 35 (20%) 60 (7%) 17 (17%)
AcPerAvg 56 (23%) 61 (29%) 35 (20%) 64 (7%) 17 (17%)

AcPA 62 (18%) 68 (40%) 33 (17%) 76 (17%) 15 (7%)
AcPAAvg 63 (18%) 68 (40%) 33 (17%) 77 (17%) 14 (7%)

AcAR 66 (21%) 67 (17%) 40 (15%) 74 (4%) 14 (9%)
AcARAvg 67 (21%) 66 (17%) 38 (15%) 74 (4%) 14 (9%)

Table 3: Final Macro-averaged F1 results for all algorithms in an
active learning mode. The fraction of documents for which the true
label was requested is indicated in parenthesis. The results in the
oAcMaxI∗ column are estimated only for documents for which the
true label was not requested, i.e., the prediction was considered rel-
atively certain.

In the oAcMaxI algorithm the true label is requested if
and only if u(xj) > u∗ where u∗ is again a pre-specified
threshold. For comparison, we implemented an uncertainty-
sampling variant [14] for each of the benchmark algorithms,
based on the technique proposed in [2]. Specifically, given an
incoming document the algorithm requests the true label with
probability b/(b+Δ), where Δ is the difference between the
highest- and the second-highest prediction score and b > 0 is
a pre-specified parameter controlling the number of requested
labels. The learning model is then updated sequentially only
with respect to documents for which the true label was ob-
tained. For the oAcMaxI algorithm we used u∗ = 0.001

for the three medium-size datasets, and u∗ = 0.0001 for the
two large datasets. For each of the benchmark algorithms
we tried b = 0.001, 0.01, 0.1, 1.0, 10.0, 50.0, 100.0 in each
dataset and we report the results for the b value for which the
obtained training set size was roughly the same to that used
by the oAcMaxI algorithm.

In Table 3 we present the obtained macro-averaged F1. In
parenthesis we report the fraction of documents for which the
true label was requested. For comparison, we repeat the re-
sults of the oMaxI algorithm that requests the true label after
each prediction. First, we notice that the F1 results of the oAc-
MaxI algorithm are approximately the same as those obtained
by the oMaxI algorithm that requests the true label after each
prediction. The most extreme example is for the RCV1 corpus
in which selectively asking for < 4% of the labels is suffi-
cient for the oAcMaxI algorithm to perform well. In contrast,
for the benchmark algorithms we see a more significant re-
duction in F1 as selective sampling is employed; e.g., in the
subRCV1 data for the ARAvg algorithm – mainly due to re-
duction in precision; or in the 20NG data for the PA and AR
algorithms, mainly due to reduction in recall. To further ex-
amine the effectiveness of the oAcMaxI algorithm we made
an additional run over the RCV1 data while setting a more
stringent uncertainty threshold of u∗ = 0.001. Correspond-
ingly, the algorithm requested the true label for < 1% of the
documents, but nonetheless obtained macro-averaged preci-
sion and recall of 72 and 37, respectively (F1=49). Remarak-
abely, these results are still clearly superior to the results of
all the benchmark online algorithms over these data, although
these algorithms requested and exploited the true label after
each and every prediction. Finally, from a practical perspec-
tive, one obviously can correct classification errors once the
true label is revealed. Hence, it is meaningful to estimate the
precision and recall only for documents for which the true
label was not requested. These results are presented in the
row entitled oAcMaxI∗. As expected, we see that F1 perfor-
mance are improved in this mode. In other words, we obtain
higher classification accuracy for documents for which our
algorithm estimated its prediction as relatively certain.

6 Discussion

We presented a classification scheme which is based on a sim-
ple principle of assigning the test set with labels so to maxi-
mize the information in the obtained co-occurrence matrix of
features vs. labels. We further described a simple heuristic to
estimate the uncertainty associated with each prediction and
outlined three concrete algorithms. A classical online classifi-
cation algorithm; an algorithm that abstains highly uncertain
predictions; and an active-learning algorithm that requests the
true label if and only if the prediction is considered relatively
uncertain. Our experimental results suggest that the proposed
algorithms are comparable or superior to state-of-the-art on-
line classification methods.

The current work is inspired by the Information Bottleneck
(IB) method [23; 22] and in particular by the sequential IB
algorithm [21]. Here, we expand this earlier work in three
dimensions. We show that the notion of information max-
imization can be exploited for supervised classification. We
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derive the probabilistic framework and update rules that allow
utilizing these ideas in the context of online learning. And
finally, we propose a simple strategy to estimate prediction
uncertainty and demonstrate its utility in abstaining uncertain
predictions and within the active-learning paradigm.

It seems worth pursuing the performance of our approach
in batch mode, where the algorithm can continue to cycle over
the instances while aiming to improve classification accuracy.
In addition, the definition of our prediction uncertainty score,
in Eq. 12, calls for a more rigorous understanding, as we in-
tend to investigate in future research.
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