
Reasoning and Proofing Services for Semantic Web Agents

Kalliopi Kravari1, Konstantinos Papatheodorou2, Grigoris Antoniou2
and Nick Bassiliades1

1Dept. of Informatics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
{kkravari, nbassili}@csd.auth.gr

2Institute of Computer Science, FORTH, Greece
Department of Computer Science, University of Crete, Greece

{cpapath, antoniou}@ics.forth.gr

Abstract
The Semantic Web aims to offer an interoperable
environment that will allow users to safely dele-
gate complex actions to intelligent agents. Much
work has been done for agents' interoperability;
especially in the areas of ontology-based metadata
and rule-based reasoning. Nevertheless, the SW
proof layer has been neglected so far, although it
is vital for agents and humans to understand how
a result came about, in order to increase the trust
in the interchanged information. This paper focus-
es on the implementation of third party SW rea-
soning and proofing services wrapped as agents in
a multi-agent framework. This way, agents can
exchange and justify their arguments without the
need to conform to a common rule paradigm. Via
external reasoning and proofing services, the re-
ceiving agent can grasp the semantics of the re-
ceived rule set and check the validity of the in-
ferred results.

1 Introduction
The Semantic Web (SW) [Berners-Lee et al., 2001] is a
rapidly evolving extension of the current Web, where the
semantics of information and services is well-defined,
making it possible for people and machines to precisely
understand Web content. So far, the fundamental SW tech-
nologies (content representation, ontologies) have been
established and researchers are currently focusing their
efforts on logic and proofs.

Intelligent agents (IAs) are software programs intended
to perform tasks more efficiently and with less human in-
tervention. They are considered the most prominent means
towards realizing the SW vision [Hendler, 2001]. The gra-
dual integration of multi-agent systems (MAS) with SW

technologies will affect the use of the Web in the future; its
next generation will consist of groups of intercommunicat-
ing agents traversing it and performing complex actions on
behalf of users. Thus, IAs are considered to be greatly fa-
vored by the interoperability that SW technologies aim to
achieve.

IAs will often interact with other agents. However, it is
unrealistic to expect that all inter-communicating agents
will share a common rule or logic representation formal-
ism; neither can W3C impose specific logic formalisms in
a dynamic environment like the Web. Nevertheless, agents
should somehow share an understanding of each other’s
position justification arguments, i.e. logical conclusions
based on corresponding rule sets and facts. This hetero-
geneity in representation and reasoning technologies com-
prises a critical drawback in agent interoperation.

A solution to this compatibility issue could emerge via
equipping each agent with its own inference engine or rea-
soning mechanism, which would assist in “grasping” other
agents’ logics. Nevertheless, every rule engine possesses
its own formalism and, consequently, agents would require
a common interchange language. Since generating a trans-
lation schema from one (rule) language into the other (e.g.
RIF – Rule Interchange Format) is not always plausible,
this approach does not resolve the agent intercommunica-
tion issue, but only moves the setback one step further,
from argument interchange to rule translation.

An more pragmatic approach was presented in [Kravari
et al., 2010a; Kravari et al., 2010b], where reasoning ser-
vices (called Reasoners) are wrapped in IAs, embedded in
a common framework for interoperating SW agents, called
EMERALD. This approach allows each agent to effective-
ly exchange its arguments with any other agent, without
the need for all involved agents to conform to the same
kind of rule paradigm or logic. This way, agents remain
lightweight and flexible, while the tasks of inferring know-

2662

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

ledge from agent rule bases and verifying the results is
conveyed to the reasoning services.

Moreover, trust is a vital feature for Semantic Web. If
users (humans and agents) are to use and integrate system
answers, they must trust them. Thus, systems should be
able to explain their actions, sources, and beliefs. Proofing
services are extremely important for this purpose as they
let users to trust the inference services’ results. Traditional
trust models (EMERALD supports some of them) are able
to guarantee the agents trustworthiness, including the Rea-
soners’ trustworthiness. However, they cannot guarantee
the correctness of the inference service itself, meaning that
the results exchanged between agents should be explaina-
ble to each other. This includes the ability to provide the
proof for a certain claim, as a result of an inference proce-
dure, as well as the ability to validate this proof. Therefore,
automating proof generation, exchange and validation are
important for every inference task in the SW.

As the available inference engines list is constantly ex-
panding, the aim of this paper is to extend EMERALD by
adding both new defeasible reasoning and proofing servic-
es. In the rest of the paper, we briefly present the
EMERALD multi-agent framework, we review some of
the reasoners it employs, we describe the new reasoning
service for DR-Prolog, and we report on two new services
for generating and validating proofs.

2 The EMERALD Multi-Agent Framework
EMERALD is a multi-agent knowledge-based framework
(Fig. 1), which offers flexibility, reusability and interope-
rability of behavior between agents, based on Semantic
Web and FIPA language standards.

Figure1: EMERALD Generic Overview.

In order to model and monitor the parties involved in a
transaction, a generic, reusable agent prototype for know-
ledge-customizable agents (KC-Agents), consisted of an
agent model (KC Model), a yellow pages service (Ad-
vanced Yellow Pages Service) and several external Java
methods (Basic Java Library – BJL), is deployed (Fig. 2).

Figure 2: The KC-Agents Prototype.

Agents that comply with this prototype are equipped
with a Jess rule engine (www.jessrules.com) and a know-
ledge base (KB) that contains environment knowledge (in
the form of facts), behavior patterns and strategies (in the
form of Jess production rules). More details can be found
in [Kravari et al., 2010a]. The use of the KC-Agents proto-
type offers certain advantages, like interoperability of be-
havior between agents, as opposed to having behavior
hard-wired into the agent’s code.

Finally, as agents do not necessarily share a common
rule or logic formalism, it is vital for them to find a way to
exchange their position arguments seamlessly. Thus,
EMERALD proposes the use of Reasoners [Kravari et al.,
2010b], which are actually agents that offer reasoning ser-
vices to the rest of the agent community. EMERALD has
already been used [Kravari et al., 2011] as a reasoner ser-
vice provider in SymposiumPlanner, an agent-based confe-
rence organization application of the Rule Responder mul-
ti-agent platform [Paschke et al., 2007].

3 Reasoners
EMERALD’s approach for reasoning tasks relies on ex-
changing the results of the reasoning process of the rule
base over the input data. The receiving agent uses an ex-
ternal reasoning service to grasp the semantics of the rule-
base, i.e. the set of conclusions of the rule base (Fig. 3).
According to the procedure, each Reasoner waits for new
requests and when it receives a valid request, it launches
the associated reasoning engine and returns the results.

Figure 3: Input – Output of a Reasoner Agent.

EMERALD implements Reasoners for two major rea-
soning formalisms: deductive and defeasible reasoning.
Deductive reasoning is based on classical logic arguments
(modus ponens). Defeasible reasoning [Nute, 1987] is a
non-monotonic rule-based approach for efficient reasoning
with incomplete and inconsistent information. Its main
advantages are enhanced representational capabilities and
low computational complexity [Maher, 2001].

The two deductive reasoners of EMERALD are the R-
Reasoner and the Prova-Reasoner [Kozlenkov et al.,
2006]. R-Reasoner is based on R-DEVICE [Bassiliades and
Vlahavas, 2006], a deductive object-oriented knowledge
base system for querying and reasoning about RDF meta-
data. The system is based on an OO RDF data model,
which maps resources to objects and encapsulates proper-
ties inside them. R-DEVICE features a RuleML-
compatible deductive rule language able to express queries
both on the RDF schema and data, including generalized
path expressions, stratified negation, aggregate, grouping,
and sorting, functions. It uses second-order syntax with
variables ranging over class and slot names, which is trans-
lated into sets of first-order logic rules using metadata. R-

2663

DEVICE rules define views which are materialized and
incrementally maintained, using fixpoint semantics.
 The two defeasible reasoners are DR-Reasoner and
SPINdle-Reasoner [Lam and Governatori, 2009]. DR-
Reasoner is based on the DR-DEVICE system [Bassiliades
et al., 2006], which works by accepting as input the ad-
dress of a defeasible logic rule base, written in an OO
RuleML-like syntax. The rule base contains only rules; the
facts for the rule program are contained in RDF docu-
ments, whose addresses are declared in the rule base. Con-
clusions are exported as an RDF document. DR-DEVICE
is based on the OO RDF model of R-DEVICE, and defea-
sible rules are implemented through compilation into the
generic rule language of R-DEVICE. DR-DEVICE sup-
ports multiple rule types of defeasible logic, both classical
(strong) negation and negation-as-failure, and conflicting
literals, i.e. derived objects that exclude each other.

Reasoners commit to SW and FIPA standards, e.g. Ru-
leML [Boley and Tabet, 2000] for representing and ex-
changing agent policies and e-contract clauses, since it has
become a de facto standard and the RDF model for data
representation both for the private data included in agents’
internal knowledge and the reasoning results generated
during the process. For some of them RuleML support is
inherent in the original rule engine (e.g. (D)R-DEVICE),
whereas in SPINDLE and Prova, the interface is provided
by the wrapper agent.

4 DR-Prolog Reasoner
In this work, a new defeasible Reasoner supporting DR-
Prolog [Antoniou and Bikakis, 2007] was implemented.
DR-Prolog uses rules, facts and ontologies, and supports
all major Semantic Web standards, such as RDF/S and
RuleML. Moreover, it deals with both monotonic and
nonmonotonic rules, open and closed world assumption
and reasoning with inconsistencies.
 The DR-Prolog Reasoner follows the EMERALD Rea-
soners’ general functionality, waiting for new requests,
launching DR-Prolog and returning the results. However, it
has to add some new steps in the procedure in order to be
able to process the receiving queries and to send back the
appropriate answer in RDF format (Fig. 4).

Figure 4: DR-Prolog Reasoner Functionality.

The DR-Prolog Reasoner receives a query in an ad-hoc
RuleML format. The implemented RuleMLParser receives
the RuleML file with the query, extracts the DR-Prolog
rules and stores them in native DR-Prolog format. At first
the parser processes the rules in the RuleML file, generat-
ing the corresponding DR-Prolog rules (Fig. 5). Then, the
parser extracts the queries that are included in the RuleML
query, indicating whether it is an “answer” or a “proof”
query. Fig. 5 shows a query in DR-Prolog format.

Figure 5: RuleMLParser: RuleML to DR-Prolog.

However, turning the initial RuleML query and rulebase
into DR-Prolog is not enough. The fact base has to be
translated, too. Typically, the fact base is in RDF format,
which must be transformed into Prolog facts. For this pur-
pose, another parser was implemented, called RDFParser.
This parser uses the SW Knowledge Middleware, a set of
tools for the parsing, storage, manipulation and querying of
Semantic Web (RDF) Knowledge bases, to extract the
RDF triples and turn them to Prolog facts (Fig. 6).

Figure 6: RDFParser: RDF rule base to DR-Prolog facts.

Thus, a new query in DR-Prolog with the associated rule
base in Prolog facts is available. The DR-Prolog Reasoner
invokes the inference engine and when the inference re-
sults (in Prolog) are available the Reasoner transforms
them into RDF format and forwards them back to the re-
questing agent. For this purpose, a third parser called Re-
sultParser was implemented. This parser receives the initial
query (in DR-Prolog) and the results (a prolog list) and

2664

returns the query results in RDF (Fig. 7). It is important to
mention that the returned RDF results contain only the
results that are required by the initial query and not the
complete information that is available at the results’ base.

Figure 7: ResultParser: Prolog to RDF.

5 Defeasible Proofing Services
The Proof layer of the SW is assumed to answer agents
about the question of why they should believe the results.
At present, there is no technology recommended by W3C
to this layer. However, it is a vital issue and thus research-
ers are now focusing their attention on this direction.

The DR-Prolog Reasoner that was presented in the pre-
vious section was updated with two new services: a) a
proofing service that provides proof explanations (for the
inference results), increasing the trust of the users, and b) a
proof validation service, that validates proofs provided by
other agents.

However, both services are available only on demand;
meaning that the Reasoner can also be used as usual send-
ing back just the results; but whenever it is requested to
provide explanations (proofs) or check provided proofs, the
service uses its corresponding proofing service and sends
back both the results and their explanation, along with their
validity reassurance. More about the project teams that
worked in both DR-Prolog Reasoner and Proof Validator,
can be found at [CS-566 Project, 2010].

5.1 Defeasible Proof Generator Service
A defeasible proof explanation functionality was added to
the DR-Prolog Reasoner. At first, the Reasoner was
equipped with a proof generator [Antoniou et al., 2008],
which produces automatically proof explanations using the
XSB logic programming system, by interpreting the output
from the proof’s trace and converting it into a meaningful
representation. This proof generator supports explanations
in defeasible logic for both positive and negative answers
in user queries. Additionally, it uses a pruning algorithm
that reads the XSB trace and removes the redundant infor-
mation in order to formulate a sensible proof.

5.2 Defeasible Proof Validator Service
The DR-Prolog Reasoner was also equipped with the func-
tionality of a defeasible proof validator, which gives the
ability to check proofs provided by other agents. The pro-
vided proof explanations are fed into the proof validator
that verifies the validity of the conclusions.

The Proof Validator follows the Reasoners’ functionali-
ty, i.e. it receives requests and returns back a reply; how-
ever, it can also be embedded in any other system. Its

competence is to decide whether the provided proof, given
a theory (in XML), is valid or not. In the case the proof is
not valid, an appropriate error message is returned, depend-
ing on the nature of the problem.

At first, the proof validator receives the validation re-
quest, then parses the received proof and constructs a
prolog query based on the claimed proof. The received
theory is also constructed and loaded on the prolog engine
in support to the proof validator. The XML-formatted
proof, contains a lot of redundant or unnecessary informa-
tion that is omitted from the validation query. Elements
declaring provability of a predicate along with the predi-
cate and the rule name are more important, while elements
describing the body of a rule or superiority claims are ig-
nored. The validator also uses DR-Prolog.

Four assumptions were made during the implementation:
1. The theory is the one given to the proof generator. Any

given theory is accepted as valid without any checks.
2. No checks are performed recursively. Thus, any infor-

mation is required in depth more than one a priori.
3. Any knowledge (facts) given in the theory is considered

to be definitely provable, not taking into account state-
ments present in the proof supporting it.

4. The minimal information that will contribute to the
proof checking process is required.

Data Structures
The proof validator features two groups of collections,
theory structures and proof deduction structures. The
theory structures are four knowledge bases holding the
strict rules, defeasible rules, facts and rules hierarchy.

The proof deduction structures are knowledge bases
holding any deduced information already stated by the
proof and confirmed by the validator. For example, a rule
that adds knowledge to the definite KB is the following:
definitelyCheck(X, printOn) :-

factkb(F),memberchk(X,F),addDefinitely(X).

Facts
All facts given in the theory are also added in the definite
knowledge base. This means that any stated fact is by de-
fault considered by the proof validator as definitely proved.

Rules
Generally the rules are not stated explicitly in the contents
of the proof validation result, since they are a priori ac-
cepted and considered valid. More specifically in the proof,
the rules are not stated explicitly, a mere reference of the
rule name is used: for example defeasibly(e,r2) in the proof
means that e is derived using rule r2 which can be found in
the rule base of the original theory.

Deductions
A conclusion in D (defeasible) is a tagged literal and may
have one of the following forms [Antoniou et al., 2001]:
� ���/+��: q is definitely/defeasibly provable in D.
� ���/���: q has proved to be not definitely/defeasibly

provable in D.
��	
��
�	 �
	��
�
	����	�	��

�	 �
�	�	�
��������	
�	 �����	

and strict rules needs to be established. Whenever a literal

2665

is definitely provable, it is also defeasibly provable. In that
case, the defeasible proof coincides with the definite proof
for q. Otherwise, in order to prove +��	��	��	��	���������
	
strict or defeasible rule supporting q must exist. In addi-
tion, it should also be ensured that the specified proof is
not overridden by contradicting evidence. Therefore, it has
to be guaranteed that the negation of q is not definitely
provable in D. Successively, every rule that is not known
to be inapplicable and has head ~q has to be considered.
For each such rule s, it is required that there is a counterat-
tacking rule t with head q that is applicable at this point
and s is inferior to t.

In order to prove ���	 ��	 ��	 �	 ����	 �
�	 �
	 �	 ����	 ���	
every strict rule supporting q must be known to be inap-
plicable. If it is proved that ����	��
�	��	��	���
	��
�
�	����	
����	���
� ��
�	 ��	
��
�	 �
	��
�
	 ����	����	 ��	����	 ������!	
be ensured that ����	 "�� itionally, one of the following
conditions must hold: (i) None of the rules with head q can
be applied, (ii) It is proved that ��#��	���	$���%	&�
�
	��	��	
applicable rule r with head ~q, such that no possibly appli-
cable rule s with head q is superior to r.

The proof validator, presented here, uses two separate
��
�����
�	�
�	������	�
�����
���	���
�!	��	$�
�����
�!%	���	
–�	$�
�	�
�����
�!%	���	�
	�
�	�
�
�����
	�
�����
��'	��e-
dicates defeasibly for +� and not defeasibly for –�. In gen-
eral, for positive de�����
��	$��	���	��), when the conclu-
sion is proven by a rule, the name of the rule is required by
the proof validator. Otherwise, i.e. when the conclusion is
a fact, or when it is already given or deducted at a previous
step, it is not required. This approach is followed for the
sake of efficiency. On the other hand, for negative deduc-
tions, giving the name of the rule would be redundant, be-
cause even if a negative result is concluded by one rule, the
validator still has to retrieve all existing relevant rules re-
gardless of whether the proof states them or not. For ex-
ample, the rules that checks if a stated literal, claimed to be
either a fact or an already proven literal, is definitely prov-
able or not, are the following:
definitelyCheck(X,printOn) :-

factkb(F),memberchk(X,F),addDefinitely(X).
definitelyCheck(X,printOff) :-

factkb(F), memberchk(X,F).
definitelyCheck(X,_) :-

definitelykb(K), memberchk(X,K).
definitelyCheck(X,Print) :-
 logError(Print,[X,' ……..']).

The second argument is used to state if errors are to be
printed or not. The first two rules check if X is a fact. The
third rule checks if X is already a member of the definite
knowledge base. Should these three rules fail, it means that
X is neither a fact nor a literal that has been proven defi-
nitely, so the fourth rule prints an error message.

Examples
Below the evaluation steps for a complex team defeat ex-
ample are explained.
r1: a => e. r2: b => e.
r3: c => ~e. r4: d => ~e.
r1 > r3. r2 > r4. a. b. c. d.

A valid and correct proof is the following:
defeasibly(a), defeasibly(b), defeasibly(c), defeasibly(d), defeasi-
bly(e, r2).

The first four statements are deduced in an obvious way,
since a, b, c, d are facts. The last, i.e. defeasibly(e,r2), has
to make some proof checks such as:
1. Is there any rule “r2” in the theory, with head equal to e?
�Yes.
2. Is there any attacking rule? �Yes, r3, r4

2.1 Is r2 of higher priority than r3? �No.
2.1.1 Are the conditions of r3 (i.e. c) defeasibly prov-
able? �Yes.
2.1.2 Is there any attacking rule of r3 (different from
r2), which defeats r3? �Yes, r1, because its condi-
tions are met and r1 > r3.

2.2 Is r2 of higher priority than r4? �Yes.

6 Conclusions and Future Work
The paper argued that agents will play a vital role in the
realization of the SW vision and presented a variety of rea-
soning services called Reasoners, wrapped in an agent in-
terface, embedded in a common framework for interoper-
ating SW IAs, called EMERALD, a JADE multi-agent
framework designed specifically for the Semantic Web.
This methodology allows each agent to effectively ex-
change its argument base with any other agent, without the
need for all involved agents to conform to the same kind of
rule paradigm or logic. Instead, via EMERALD, IAs can
utilize third-party reasoning services, that will infer knowl-
edge from agent rule bases and verify the results.

The framework offers a variety of popular inference
services that conform to various types of logics. The paper
presents how new types of logic were embedded in new
Reasoners, as well as it argues about the importance of the
SW proof layer and presents how proofing services were
designed and embedded also in the system.

A similar architecture for IAs is presented in [Wang et
al., 2005], where various reasoning engines are employed
as plug-in components, on top of the OPAL agent platform
[Purvis et al., 2002]. The primary difference with
EMERALD lies in the tight coupling of the rule engines
with the agents of the platform, through bindings in the
host programming language, whereas EMERALD offers a
completely open and loosely-coupled approach, based on
first-class agents as reasoning services and on SW stan-
dards, for rule and data interchange.

As for future directions, it would be interesting to inte-
grate a broader variety of reasoning and proof validation
engines and to develop methodologies to integrate the gen-
erated proofs with the trust mechanism of EMERALD, in
order to interconnect the Proof and Trust layers of the SW.

References
[Hendler, 2001] J. Hendler. Agents and the Semantic Web.

IEEE Intelligent Systems, 16(2):30-37, 2001.
[Kravari et al., 2010a] K. Kravari, E. Kontopoulos, and N.

Bassiliades. EMERALD: A Multi-Agent System for

2666

Knowledge-based Reasoning Interoperability in the
Semantic Web. In Proceedings of the 6th Hellenic Con-
ference on Artificial Intelligence (SETN 2010), LNCS,
Vol. 6040, pp. 173-182, Springer, 2010a.

[Kravari et al., 2010b] K. Kravari, E. Kontopoulos, and N.
Bassiliades. Trusted Reasoning Services for Semantic
Web Agents. Informatica, International Journal of
Computing and Informatics, 34(4):429-440, 2010b.

[Bassiliades et al., 2006] N. Bassiliades, G. Antoniou, and
I. Vlahavas. A Defeasible Logic Reasoner for the Se-
mantic Web. IJSWIS 2(1):1-41, 2006.

[Boley and Tabet, 2000] H. Boley, and S. Tabet. RuleML:
The RuleML Standardization Initiative,
http://www.ruleml.org/, 2000.

[Berners-Lee et al., 2001] T. Berners-Lee, J. Hendler, and
O. Lassila. The Semantic Web. Scientific American
Magazine, 284(5):34-43, 2001. (Revised 2008).

[Wang et al., 2005] M. Wang, M. Purvis, and M.
Nowostawski. An Internal Agent Architecture Incorpo-
rating Standard Reasoning Components and Standards-
based Agent Communication. In Proceedings of
IAT’05, 58-64, Washington, DC, IEEE Computer Soci-
ety, 2005.

[Purvis et al., 2002] M. Purvis, S. Cranefield, M.
Nowostawski, and D. Carter. Opal: A Multi-Level In-
frastructure for Agent-Oriented Software Development.
Information Science Discussion Paper Series, number
2002/01, ISSN 1172-602, University of Otago, Dune-
din, New Zealand, 2002.

[Nute, 1987] D. Nute. Defeasible Reasoning. In Proceed-
ingsof the 20th International Conference on Systems
Science, 470-477. IEEE, 1987.

[Maher, 2001] M.J. Maher. Propositional defeasible logic
has linear complexity. Theory and Practice of Logic
Programming, 1(6):691–711, 2001.

[Bassiliades and Vlahavas, 2006] N. Bassiliades, and I.
Vlahavas. R-DEVICE: An Object-Oriented Knowledge
Base System for RDF Metadata. International Journal
on Semantic Web and Information Systems, 2(2):24-90,
2006.

[Antoniou and Bikakis, 2007] G. Antoniou, and A. Bi-
kakis. DR-Prolog: A System for Defeasible Reasoning
with Rules and Ontologies on the SW. IEEE Transac-
tions on Knowledge and Data Engineering, 19,2, 2007.

[Antoniou et al, 2008] G. Antoniou, A. Bikakis, N. Di-
maresis, and G. Governatori. Proof Explanation for a
Nonmonotonic Semantic Web Rules Language. Data
and Knowledge Engineering, 64(3)662-687, 2008.

[CS-566 Project, 2010] CS-566 Project,
http://www.csd.uoc.gr/~hy566/ project2010.html, 2010.

[Antoniou et al, 2001] G. Antoniou, D. Billington, G. Gov-
ernatori, and M.J. Maher. Representation results for de-
feasible logic. ACM Trans. Comput. Logic, 2(2):255–
287, 2001.

[Lam and Governatori, 2009] H. Lam, and G. Governatori.
The Making of SPINdle. International Symposium on
Rule Interchange and Applications (RuleML-2009), pp.
315-322, Springer, 2009.

[Kozlenkov et al., 2006] A. Kozlenkov, R. Penaloza, V.
Nigam, L. Royer, G. Dawelbait, and M. Schroeder.
Prova: Rule-based Java Scripting for Distributed Web
Applications: A Case Study in Bioinformatics. Reactiv-
ity on the Web Workshop, Munich, 2006.

[Kravari et al., 2011] K. Kravari, T. Osmun, H. Boley, and
N. Bassiliades. Cross-Community Interoperation Be-
tween the EMERALD and Rule Responder Multi-
Agent Systems. In Proceedings of the 5th International
Symposium on Rules: Research Based and Industry Fo-
cused (RuleML-2011) co-located with IJCAI-11, Barce-
lona, Spain, 19-21 July 2011.

[Paschke et al., 2007] A. Paschke, H. Boley, A.
Kozlenkov, and B. Craig. Rule responder: RuleML-
based Agents for Distributed Collaboration on the
Pragmatic Web. In Proceedings of the 2nd Interna-
tional Conference on Pragmatic Web, 17-28, vol. 280.
ACM, 2007.

2667

