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My thesis research focuses on developing tools and tech-
niques in the robotic sciences to study and understand large-
scale dynamic coastal processes that are driven by global
climate change. As a first step, my work targets Harmful
Algal Blooms (HABs) which have significant societal and
economic impact to coastal communities, yet are poorly un-
derstood ecologically because of undersampling.

Background

While my affiliation is to the Robotic Embedded Systems
Lab at USC, I have worked with my advisor Prof. Gau-
rav Sukhatme to build up a collaboration with biologists
and oceanographers both at USC and at the Monterey Bay
Aquarium Research Institute (MBARI). Funding from the
Center for Embedded Network Sensing (CENS), an NSF
Science and Technology Center, allows me to work in this
uniquely inter-disciplinary space where my primary inter-
actions are with scientists in the pure sciences. My early
work was in developing navigation and control algorithms
for robotic boats used for study of HABs in marinas and
lakes (de Menezes Pereira, Das, and Sukhatme 2008), which
has had a direct effect on how water quality sensors are de-
ployed and samples acquired. For my masters thesis, I de-
signed and developed a prototype benthic robotic system de-
ployed at the bottom of a body of water, enabling marine
biologists to study the water column in a non-intrusive and
energy-efficient manner (Das and Sukhatme 2009).

Recent and ongoing work

My research is situated in the problem domain of Adaptive
Sampling. In the context of marine robotics, two important
open problems are a) planning where to deploy robotic as-
sets and b) once deployed, how observed data can be used to
plan exploration strategies to maximize science return. Al-
though this is an active area of interest with a significant
contribution to environmental sampling (Krause, Singh, and
Guestrin 2008; Zhang 2008; Rahimi et al. 2003), the prob-
lem of using multi-robot systems to observe large-scale dy-
namic phenomena observed in the ocean remains an open
challenge. My early work at USC and MBARI has been on
planning where to deploy robotic assets. This work uses re-
mote sensing and ocean surface current measurement data to
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make short-term predictions of bloom trajectories, which in
turn are used to plan surveys for Autonomous Underwater
Vehicle (AUV) (Das et al. 2010b).

MBARI’s AUVs run an Al-based onboard adaptive con-
troller, the Teleo-Reactive EXecutive (T-REX) (McGann et
al. 2008), that integrates automated planning and probabilis-
tic state estimation within a hybrid executive. Initial experi-
ments were carried out using a T-REX enabled AUV to sam-
ple within the context of an advecting patch of water. The
patch of interest was tagged with a GPS-tracked drifter and
the AUV surveyed within the Lagrangian frame of reference
of the advecting patch (Das et al. 2010a). We are investi-
gating a multi-criteria utility based technique to acquire dis-
crete water samples using AUVs. Each function describes a
desired property for the acquired sample and the total util-
ity represents the ‘goodness’ of the sample. When above a
desired threshold, the sampler is triggered and the sample
acquired.

Onboard sampling strategies often need to be augmented
by onshore capabilities in the marine domain. We are in-
vestigating how onshore and onboard autonomy can work
in conjunction with humans in the loop, collaboratively en-
abling sampling driven problem-solving. This has led to the
development of a prototype Oceanographic Decision Sup-
port System (ODSS) at MBARI as part of a multi-year mo-
bile observatory called Controlled, Agile, and Novel Ob-
serving Network or CANON. In October 2010, the ODSS
was used extensively to drive sampling for more than 20
autonomous robots in the Monterey Bay. Decision making
was driven jointly by scientists, engineers and operational
personnel from more than 15 institutions in the US.

Plans for future work

Having done preliminary work in robot deployment and on-
board autonomy, the focus is now on extending and im-
proving techniques developed at both USC and MBARI for
adaptive water sample retrieval (McGann et al. 2008). Let
{Z'(v) ~ [0,1] CR:v € R®} be the normalized scalar
field of interest (FOI) representing a biological feature (such
as a HAB). The objective of the work is to gather water sam-
ples at the peaks of the FOI while satisfying constraints on
the number of water samplers onboard the AUV, and the
mission duration. Let {Z(v) — R™ : v € R®} be a vector
field of features that are correlated with the FOI Z'(v). This



is representative of typical oceanographic observation where
proxy measurements are used to infer the extent of a desired
biological feature of interest. During a mission, the robot
takes measurements X, from the multivariate proxy field
Z(v), at locations v; € R3,
Xy, =Z(v;): X e R" D

An example of X, could be a vector of proxy features like
temperature, chlorophyll fluorescence or depth. Let f(X) be
a function that maps the multivariate proxy field to the scalar
field representing the FOI

Z'(v) = f(Z(v)) ;v €R? 2
Given, a measurement X,,, from Eqns 1 and 2, the corre-
sponding estimate of the FOI at v; is,

Yo, = f(Xy,) (€)

In (Fox et al. 2007), multi-dimensional input measurement
vectors (e.g. chlorophyll fluorescence, turbidity, depth) were
used to estimate Y., the probability of the observed sample
being a biological feature of interest. The mapping from the
proxy measurements to the feature of interest was learned
from a training dataset containing features labeled as be-
ing within the FOI or outside by a cognizant scientist. This
can be represented as follows: Let, T" be a training dataset
consisting of binary labeled data, where T; =< X;, L; >,
where L; = 1 if the feature is of biological interest and
L; = 0 otherwise. From the training dataset, the mapping
in Eqn. 3 is learned using Self-Organizing Map (SOM) clus-
tering and a Hidden Markov Model (HMM).

The work can be improved in two ways. First, by build-
ing a spatial model of the FOI Z’(v) that allows its estima-
tion at unobserved locations. Currently, the spatial relation-
ships between samples is implicitly captured in the HMM
formulation. We propose using a non-parametric regression
technique such as Gaussian process regression to build a
probabilistic spatial model using data from a pilot survey
(or on-going survey). The learned spatial model can then be
used to compute optimal sampling paths to maximum sci-
ence return. Second, by allowing the labeled training set to
have non-binary labels, an expert can better guide statistical
learning of the mapping between proxy measurements and
the FOI.

Where it may be expensive or infeasible to obtain data
labeled by experts, we are exploring unsupervised learning
techniques to guide adaptive sampling strategies. A signif-
icantly large dataset gathered from a 2005 field experiment
with multiple AUVs over a period of three weeks is being
analyzed to observe the structure of its multi-dimensional
input measurement space. If a trend is observed in the unla-
beled data, in subsequent missions sampling can be biased
towards measurements that deviate from the observed trend
(control sample), or conforms to an existing norm (for rein-
forcement). We plan on utilizing techniques such as cluster-
adaptive active learning (Dasgupta and Hsu 2008) from the
machine learning literature, where the structure of observed
data is used to guide sequential sampling.
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Conclusion

The thesis research described preliminary work on deploy-
ment strategies for robotic assets, and ongoing work on on-
board autonomy for AUVs. It has a direct impact on op-
erational oceanography where it is necessary to close the
gap between robot deployment constraints and the sampling
needs for the coastal ocean. The techniques being developed
are however applicable to other domains that require ob-
servation of dynamic phenomena with large spatio-temporal
extent, e.g terrestrial environmental monitoring.
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