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Abstract. In this paper we present the keypoints to perform multifrequency simultaneous
bioimpedance measurements using multitone signals. Concerning the frequency distribution,
tones are spread over 1kHz to 1MHz range using a custom frequency distribution which
we called Bilateral Quasi Logarithmic (BQL). BQL concentrates a higher number of tones
around the impedance relaxation and contains a frequency plan algorithm. It minimizes the
intermodulation effects due to non-linearities behaviours of the DUT and electrodes by slightly
shifting the original tones in order to guarantee a guard bandwith. Regarding the multitone
phase distribution, a Genetic Algorithm (GA) has been developed to minimize multitone Crest

Factor (CF). This allow us to maximize the resultant Signal to Noise Ratio (SNR) of the
acquisition system. This paper also presents the relation between parameters such as sampling
frequency and ADC bits with the SNR and the effect in the overall amplitude and phase error
when using multitone signals as excitation waveforms. Finally, we present characterization
results from a measurement system based on a modular PXI architecture.

1. Introduction

Multitone signals are useful for fast impedance spectroscopy characterization of biological
systems whose electrical properties change along within time. Using this technique, is possible
to obtain the impedance spectrum free of the errors induced by asynchronous undersampling
of the mechanical modulation of the biological system under test. Essentially, a multitone is
composed by the sum of M tones, each one with its own amplitude and phase (eq.1).
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1.1. Measures of Signal Quality: Crest Factor

When comparing signals it is necessary to have a quality measure in the form of a performance
index. A classical index is the Crest Factor (CF), which gives an idea of signal’s compactness
but there are other options like Performance Index for Perturbation Signals (PIPS) [1] or Time

Factor (TF) [2]. Thus, CF of a function x (t) is defined as the ratio of its peak value (also known



as Chebyshev norm) and its Root Mean Square value (RMS) [3] is given by:

CF (x) =
l∞ (x)

l2 (x)
=

max
n∈[0,N−1]

|x [n]|
√

1
N

N−1
∑

n=0
|x [n]|

(2)

The classical ways to minimize CF use heuristic approaches [4], [5]. Other approaches
consisted on analytical methods. They use different iterative methods [6], [7] or employ natural
selection and evolutionary-inspired operators like Genetic Algorithms (GA) [8], [9].

1.2. Frequency distribution

Typically, multitone frequencies are either distributed logarithmically or equally spaced [10].
However, both have important disadvantages when measuring impedance. In one hand,
equidistant frequency distribution needs a high number of tones to cover a wide frequency
range ands avoid losing spectral resolution. Moreover, intermodulation products will appear at
the same measurement frequencies if the global system presents non-linearities, provoking errors
in the amplitude and phase determination. In the case of logarithmic distribution there is a big
number of tones at low and high frequencies content where the relaxation do not include much
information.

One of the main issues is how to arrange multitone frequencies to minimize intormodulation
products effects. One option is generate each tone as a result of a fundamental frequency
multiplied by a sequence values. This solution is based on special sets of multipliers in order
to accomplish as many as possible disjunct distortion signal frequencies and to test signal
frequencies is presented in [11]. In our case, BQL algorithm algorithm combines exponential
and logarithmic functions to concentrate more frequency components close to the relaxation
slope band. Moreover, it spreads the remaining tones at low and high frequencies (fig.1) [9]
and also redistributes original tones taking into account where the intermodulation frequencies
would appear.
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Figure 1. Example of BQL fundamental harmonics to characterize impedance relaxation
around 50kHz.

2. Precision of Transfer Function Measurement using Multitone Signals

In single frequency impedance measurements is well known the relationship between the SNR
with parameters such as ADC bits or sampling frequency. In the case of multitone measurements



there are more hidden parameters that have to be taken into account. In fact, the SNR of an
ideal b-bit AD converter measured over the Nyquist bandwidth (DC − Fs/2) when using a
multitone input signal as excitation is decreased due to the Crest Factor and the number of
tones M according to eq.3:

SNRmultitone = 6.02b+ 1.76− 20log10

(
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)

− 10log10 (M) [dB] (3)

Finally, has been shown in [12] the relationship between SNR when using multitone and the
magnitude and phase measurement accuracy:
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where ǫl and ǫθ are magnitude and phase accuracy. Eq.4 allows to find the minimum system
that satisfies quality measurement requirements in terms of SNR or accuracy using multitone
signals only with the a priori information of Crest Factor, number of bits and number of tones.

3. System characterization

The measurement system has been build around a PXI architecture from National Instruments.
The system includes an embedded controller PXIe-8130, 2 channel digitizer card PXIe-5122
(100Ms/s, 64MB/channel, 14bits) and an arbitrary waveform card PXI-5422 (200Ms/s, 32MB,
16 bits). The system has been characterized measuring resistors and RC networks with a custom
4-wire wideband front-end. The set up has been carried out performing 100 measurements (2ms
burst length) of a set of resistors (1% tolerance). Multitone signal was designed with 21 tones
spread from 5kHz to 1.313MHz, 1mA of amplitude current and crest factor 2.7. Theoretical SNR
obtained with this system parameters is 67.2dB which corresponds to a measurement error of
0.0038dB and 0.023◦ in magnitude and phase respectively. Magnitude and phase accuracy has
been validated with the standard desviation obtained from the measurements. Also a preliminary
dynamic scenario have been characterized based on yeast cell suspension settlement (fig.2) over
interdigitated 4-electrode located at the bottom of a small bioreactor [13]. Multitone parameters
used were the same as described before. System performed 100 measurements (10ms) every 5
minutes up to 12 hours, with a a total amount of 14400 measurements.
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Figure 2. Time evolution of Cole-Cole arcs and cell growth estimator’s described in [14].

At this moment, our work is focused on characterizing human stem cells for tissue engineered
applications. The goal is to characterize stem cells differentiation into cardyomiogenic cells when
applying electrical and mechanical stimuli in regenerative medicine.



4. Conclusions

One of the multitone signal strengths is that it is very rapid for those systems that have
a short settling time and are not plagued by significant noise. In addition, SNR can be
increased by aplying more energy in the desired spectral components in applications where
the total amount of energy applied is not restricted. In applications where the energy is
limited, a single multitone shot characterization obtains greater SNR than using Pseudo-Random
Binary Sequences (PRBS). This is due the fact that the energy is focused on the measurement
frequencies and it is not spread in the whole frequency band. One of the weaknesses of multitone
signals is the crest factor. However, it is possible to minimize the impact of the crest factor over
the measurement quality using common algorithms proposed in the literature.
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