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Abstract

Anonymization techniques that provide k-anonymity suffer from loss
of quality when the data dimensionality is high. Microaggregation tech-
niques are not an exception. Given a set of records, attributes are grouped
into non-intersecting subsets and microaggregated independently. While
this improves quality by reducing the loss of information, it usually leads
to the loss of the k-anonymity property, increasing entity disclosure risk.
In spite of this, grouping attributes is still a common practice for data sets
containing a large number of records. Depending on the attributes chosen
and their correlation, the amount of information loss and disclosure risk
vary. However, there have not been serious attempts to propose a way to
find the best way of grouping attribute. In this paper, we present GOMM,
the Genetic Optimizer for Multivariate Microaggregation which, as far as
we know, represents the first proposal using evolutionary algorithms for
this problem. The goal of GOMM is finding the optimal, or near-optimal,
attribute grouping taking into account both information loss and disclo-
sure risk. We propose a way to map attribute subsets into a chromosome
and a set of new mutation operations for this context. Also, we provide a
comprehensive analysis of the operations proposed and we show that, af-
ter using our evolutionary approach for different real data sets, we obtain
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better quality in the anonymized data comparing it to previously used ad-
hoc attribute grouping techniques. Additionally, we provide an improved
version of GOMM called D-GOMM where operations are dynamically ex-
ecuted during the optimization process to reduce the GOMM execution
time.

Keywords: Genetic Clustering algorithms Multivariate Microaggregation At-
tribute Selection

1 Introduction

The necessity for keeping data set available for data mining while preserving
some reasonable degree of privacy has given rise to statistical disclosure control
techniques [10, 12, 27]. A common way of ensuring privacy without losing
information is by ensuring that the released data is k-anonymous [23, 24|, that
is, that for any record in the set, there are at least kK — 1 records that are
indistinguishable from it. Microaggregation [3, 22] is one of the most common
methods used to obtain k-anonymity for numerical data: groups of k nearest
records, which are mapped as points in a multidimensional space defined by the
attribute columns, are identified and substituted by their centroid.

The increase of information stored by most enterprises and organizations
nowadays usually entails the increase of the complexity of data schemas [15].
Among other aspects, this typically involves an increase on the number of at-
tributes per record, making the number of dimensions used to map the elements
in the data set larger. The more dimensions the microaggregation problem deals
with, the further the points mapped in this multidimensional space. Thus, mi-
croaggregating points that are too far implies that these are substituted by
centroids which are too distant, which usually implies a significant loss of infor-
mation [1].

In order to diminish the effect of high dimensionality, data sets are usually
partitioned into disjoint attribute sets, so that each partition only preserves
the values of certain attributes for each record. Afterwards, microaggregation
is used in each partition separately. This process is known as multivariate
microaggregation. While this reduces the information loss, it prevents from
guaranteeing k-anonymity: two records that are clustered together using their
values on a subset of their attributes might not be clustered together if another
set of attributes are used as a criterium [17]. With this, we cannot ensure
that these two records will not be undistinguishable anymore. Nevertheless,
partitioning techniques are commonly used in order to preserve data utility.

As studied in [18], when protecting a data set using multivariate microag-
gregation, the way in which the data is split to form groups is highly relevant
with regard to the degree of privacy achieved. That is, assuming a data set
containing subsets of correlated attributes, if we group correlated attributes to-
gether and groups are, therefore, non-correlated, applying microaggregation to
each partition will probably preserve a high information utility, while it will
probably imply a complete loss of the k-anonymity property. On the contrary,



grouping non-correlated attributes, may preserve k-anonymity better, at the
cost of losing information utility. Achieving the best trade-off between informa-
tion loss and entity disclosure risk by choosing the right attribute partitioning
is still an open problem.

In this paper, we present a novel approach in order to decide the optimal,
or near-optimal, attribute partitioning. Our technique is based on the use of
genetic algorithms in order to explore the vast space of all possible attribute
groupings. We provide a set of new mutation operations that, based on the
mapping of a possible attribute grouping into a chromosome, allow exploring
the specific search space presented in this scenario. We present a comprehensive
analysis of our operations and show that they can overcome previously used ad-
hoc attribute partitioning techniques, using well-known data sets.

The remainder of the paper is organized as follows: Section 2 we introduce
the microaggregation anonymization scenario and the basic. Later, in Section3
we describe GOMM, our novel proposal for attribute grouping using genetic
algorithms. Afterwards, Section 4 presents a complete analysis of GOMM oper-
ations. Section 5 performs a large number of experiments with real datasets to
analyze GOMM performance. Finally, the paper finishes with some conclusions
and future work.

2 Anonymization Preliminaries

In this section, we describe the typical anonymization scenario as well as some
basic concepts about microaggregation.

2.1 Problem Statement

A data set R is a collection of records where each record r represents a point in
a multidimensional space defined by the number of attributes. The attributes
a; can be classified in three non-disjoint categories: identifiers which unambigu-
ously identify the individual (e.g. the passport number), quasi-identifiers which
can identify the individual when some of those attributes are combined (e.g. age
or postal code) and confidential attributes which contain sensitive information
about the individual (e.g. salary).

When considering this classification, a data set R is defined as R = id||anc||ac,
where id are the identifiers, a,. are the non-confidential quasi-identifier at-
tributes, and a. are the confidential attributes. Normally, before releasing a
data set R with confidential attributes, a protection method p is applied, lead-
ing to a protected data set R’. Indeed, we assume the following typical sce-
nario depicted in Figure 1: (i) identifier attributes in R are either removed or
encrypted, therefore R’ = al,.||a’; (ii) confidential attributes a. are not mod-
ified, and so we have a/, = a,; (iii) the protection method itself is applied to
non-confidential quasi-identifier attributes, in order to preserve the privacy of
the individuals whose confidential data is being released. Therefore, we have
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Figure 1: Graphical description of the data set protection and release process.

a,. = p(anc). This scenario allows third parties to have precise information on
confidential data without revealing to whom the confidential data belongs.

In this scenario, as shown in Figure 2, an intruder might try to re-identify
individuals by obtaining the non-confidential quasi-identifier data (a,.) together
with identifiers (id) from other data sources. By applying record linkage between
the protected attributes (a,.) and the same attributes obtained from other data
sources (anc), the intruder might be able to re-identify a percentage of the
protected individuals together with their confidential data (a.). This is what
protection methods try to prevent.

2.2 Microaggregation

The goal of any microaggregation method is to minimize the total Sum of the
Square Error

n
SSE=Y "> (r;—7)"(r; = 72), (1)
=1 r;eEn;

where r; are the records of the data set R, n is the total number of clusters,
n; is the i-th cluster and 7; is the centroid of n;. The restriction is |n;| > k, for
allt=1,...,n.

As we have explained before, when the number of attributes per record is
large, multivariate microaggregation is used for reducing the information loss at
the cost of increasing the disclosure risk. However, multivariate microaggrega-
tion has two main drawbacks. On the hand one, finding the optimal microag-
gregation, i.e. the optimal clusters configuration, is a NP-hard problem [19].
This problem has been widely studied, and a large variety of heuristic algo-
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Figure 2: Intruder disclosure risk scenario.

rithms exist. As this problem is out of the scope of this paper, in this work we
use MDAV (described later on), one of the most well-known and flexible mul-
tivariate microaggregation algorithms. On the other hand, grouping attributes
properly is a problem as difficult as microaggregation itself. Since the search
space grows exponentially with respect to the number of attributes, finding the
most appropriate attribute grouping configuration is far from trivial. Opposite
to microaggregation, this problem has been disregarded in the literature assum-
ing that attributes are grouped considering some background knowledge, such
as attribute correlations when we are interested on minimizing the information
loss, or considering that the intruder only has access to a subset of attributes,
then such attributes are grouped together.

In [17, 18] two approaches were presented for attribute selection, both based
on the correlations among attributes. The first approach is based on cluster in
the same group attributes that are highly correlated, minimizing in this way
the intra-cluster distance between the centroid and the records. This approach
has a low information loss but a high disclosure risk as in the case of univariate
microaggregation. The second approach is based on clustering highly correlated
attributes in different groups. The goal of this second approach is to increase
the resulting anonymity. The rationale of this approach is the following one: If
two records 7; and r; are in the same cluster for some blocks, this means that the
first attribute values of these records are more or less close to each other, and the
same for the second attribute of the block, etc. Then, when we consider another
block, if the j-th attribute of this new block is (highly) correlated with the j-th
attribute of the latter block, records r; and r; will probably be close to each
other as well, with respect to the attributes in the second block. Therefore, with
some non-negligible probability, 7; and r; will fall in the same cluster, reducing



in this way the disclosure risk and obtaining a similar level of privacy to that
obtained by the basic microaggregation. Of course, the information loss of this
latter approach is larger than the former one.

MDAYV algorithm. The MDAV (Maximum Distance to Average Vector) al-
gorithm [7] is an heuristic algorithm for clustering records in a data set R, so
that each cluster is constrained to contain at least k records. It works as follows.
Firstly, given n records in the data set to be protected, it computes the average
record 7 from all the records. Afterwards, it looks for s, the furthest record
to the average record 7, and forms a cluster around it (this cluster contains s
together with the & — 1 closest records to it). Then, a new cluster is formed
around the most distant record to s in the same way. When both clusters are
formed, all the records belonging to such clusters are removed. This process
is repeated until all the records are assigned to a cluster. Note that, the last
cluster is built with the last records to be protected, so it might contain between
k and 2k — 1 records.

3 GOMM: Genetic Optimizer for Multivariate
Microaggregation

In this section we present GOMM, the Genetic Optimizer for Multivariate Mi-
croaggregation, whose goal is to find the appropriate attribute partitioning in
order to obtain a protected data set which guarantees both utility and privacy.
With this purpose, we propose a way to encode any possible solution to the
problem along with some genetic operations to manipulate them. In addition,
we propose an efficient measure to evaluate the quality of these solution repre-
sentations.

The genetic optimizers belong to the class of Evolutionary Algorithms, which
have proven efficient for different common problems. There are several necessary
aspects to make the use of this type of algorithms suitable: (i) the search space
must be complex and it must not be well-known, (ii) it must be possible to find
a suitable encoding to represent the solutions of the problem to be optimized,
and finally, (iii) it must be possible to evaluate each solution using a fitness
function. In the multivariate microaggregation case, it is not clear whether
there is a proper way to group the different attributes in the data set and the
heuristics proposed in the literature have been shown to be suboptimal in many
scenarios.

The procedure of any evolutionary algorithm described in Algorithm 1 works
as follows: in general terms, a collection of instances of the alternative solutions
to the problem to be optimized suffers a set of transformations to generate new
instances. These are evaluated through a fitness function and they are discarded
if necessary, so that after several iterations the elements that have survived to
the selection process represent near-optimal solutions to the problem. This
collection of elements is usually called population, the instances are called chro-



Algorithm 1: GOMM basic pseudocode

1 begin

2 Population P, P1, P2

3 while stop criterion is not met do

4 P1 + applyCrossoverOperations(P)
5 P2 + applyCrossoverOperations(P)
6 P+~ PUPlUP2

7 P2 + applySelectionOperation(P)

8 end

mosomes and each iteration of the algorithm is called generation. The initial
population is usually generated at random from all the possible solutions to the
problem. Every generation, new members are created by using crossover op-
erations, which combine properties of the existing members of the population,
and mutation operations, which introduce new properties to the population by
transforming a single individual chosen at random. In order to keep the number
of members constant, a selection method is used, which in general chooses the
best-fitted members to survive for the next generation. This process is repeated
iteratively until a stop condition is found and the best member of the current
population is taken as the solution of the problem.

Finding the optimal grouping configuration to cluster the different attributes
in multivariate microaggregation can be seen as a grouping problem, and genetic
algorithms have been proven to be a good alternative to solve this type of
problems [9]. Also, it is possible to directly evaluate the suitability of a solution
since a broad variety of measures for scoring the quality of an anonymization
method have been proposed in the literature. Following, we explain in more
detail the different components which conform GOMM.

3.1 Encoding

First, we propose a way to map an attribute grouping in a chromosome. GOMM
uses the same encoding scheme as the Grouping Genetic Algorithm (GGA) [9].
Every chromosome c contains an object part c,p,, where each gene represents the
membership of the corresponding attribute in a group, and a group part cgp,
which contains the groups. For example, the chromosome shown in Figure 3.a)
represents a solution where the attributes 1, 2 and 5 are grouped together and
attributes 3 and 4 are in another group, with the group part written after the
thick line. The goal of this encoding is to facilitate the work of the operators,
which treat groups rather than objects.

It is important to remark that this encoding allows the presence of clones,
which are chromosomes that represent the same attribute grouping and have
the same associated fitness. For instance, Figure 3.b) represents a chromosome
which maps exactly the same solution as the chromosome shown in Figure 3.a).
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Figure 3: Parts of a simple chromosome and example of a clone

3.2 The Fitness Function

After encoding a solution in a chromosome ¢;, a genetic algorithm needs a fitness
function F'(¢;) to evaluate its quality. Chromosomes in our case represent at-
tribute groupings that will generate a protected data set after applying microag-
gregation with the MDAV algorithm. It is well-know that a good anonymization
method is the one that minimizes the trade-off between information loss and
disclosure risk. Usually, this trade-off is computed as the arithmetic mean of
both measures. Therefore, we define our fitness function as follows

Fle) = IL—;DR7 @)

where IL stands for information loss measure and DR stands for disclosure
risk measure. This function is called score and it was defined in [5] and it has
been used in other evolutionary algorithms, as for instance in [11, 13]. However,
because of the frequent use of the fitness function during the evolutionary pro-
cess, we cannot use such a high computationally intensive function. Because of
this, we will use a lighter version of the score for reducing the complexity of the
original measures in our fitness function F(¢;). For the sake of generality we
have given the same importance to IL and DR, however, other configurations
can be also valid depending on the target scenario.

3.2.1 Information Loss

Several proposals have been used in the literature in order to calculate the in-
formation loss. Depending on the alternatives, they take into account several
general parameters of the data distribution such as the average vectors, co-
variance matrices, variance vectors or correlation matrices. Since the goal of
microaggregation is to minimize the SSE, which is a specific information loss
measure for any k-anonymity model, we use it as the IL measure in this work.
However, the SSE itself is not suitable for the F(¢;) formulation since it is not
upper bounded. The most common way to normalize the SSE range into the
(0..1) interval is to divide it by the Sum of Squares Total (SST) of the original



data set R. This approach is also used in other works [4, 7]. The SST is defined
as

SST =" (r;—7)"(r; —7), (3)

=1 r;eEn;

where 7 is the centroid of all the original records. Note that, the SST must
be computed only once during the execution since its value is constant. Then,
the IL component in the fitness function of our genetic algorithm is computed
as

_ SSE
- SST
in this way, I L rangs between 0 and 100.

IL - 100, (4)

3.2.2 Disclosure Risk

In order to compute DR, usually two approaches are considered. The first one
is the entity disclosure risk, which considers the scenario where intruders have
access to an external data set containing a subset of non-confidential quasi-
identifiers a,. of the original records in R. Then, they try to link them with
the corresponding protected record r’ € R’. Usually, the intruders apply record
linkage methods [25] for this purpose. Basically, there are two families of such
methods, on the one hand, those based on (in)conditional probabilities and, on
the other hand, those based on distances calculations. The former (probability
based family) is too inefficient to be used inside a cost function of a genetic
algorithm. For this reason, we only use distance-based methods as it was done
in [21] for similar reasons. This is not a problem since, as it was shown in [6],
distance-based methods outperform probabilistic ones for numerical attributes.
Generally, it is assumed that the intruder has several different sets of non-
confidential quasi-identifiers and the risk is computed as the average risk of all
those sets. However, in order to reduce the execution time of the record linkage
process, we only consider the worst scenario, ¢.e. when the intruder has access
to all quasi-identifiers a,,. of all records r stored in R. Then, they are linked with
the protected data set R’. In this work, we use the Euclidean distance as in [20].
In this case, if the closest record to a known record r in R is the corresponding
one 1’ in R’, we assume that the intruder is able to find the correct link, and
then, he is able to breach the privacy of such data owner. Again, as we are
interested in a value fitted between [0, 100], Distance Linkage disclosure (DLD)
is computed as

links
DLD = —— - 100, (5)
|R|
where links is the total number of correct links achieved and |R| is the
number of records of the data set R.



The second considered disclosure risk scenario is the Interval Disclosure Risk
(ID) which is the average percentage of protected values falling into an interval
around their corresponding original values. This measure was introduced in [2].
Usually, the interval length is a user parameter. In our case, the interval is
defined as [(ri; — rij - 10%), (155 + 755 - 10%)] as in [2].

Finally, the overall DR is computed as

DR = (0.5ID + 0.5DLD) (6)

3.3 Genetic Operators

Following, we describe the crossover operation and propose a new set of mutation
operations and a selection operation to solve the attribute grouping problem for
multivariate microaggregation.

3.3.1 Crossover

The aim of the crossover operator ¢(cP!, cP?) is to generate new members by
combinig properties from different chromosomes in the current population. Two
parent chromosomes P! and c¢P? are selected randomly from the population and
two new child chromosomes ¢! and ¢ are produced containing information
from both parents.

Figure 4 shows the three steps of our crossover operation ¢(cP!, cP?), which
is an adaptation of the Grouping Genetic Algorithm (GGA) crossover [9]. First
of all, two crossing sites are selected from the group part of both parents (1). A
crossing site cg; is a subsection of the group part of a parent chromosome (G
defined by a lower bound and an upper bound chosen at random. For example,
the crossing site of the parent chromosome ¢?! in Figure 4 is ¢2! = {B,C}, with
a lower bound equal to 1 and an upper bound equal to 3. Then, the groups
contained in the crossing site of the first parent cP! are injected into the group
part of the first child ¢!, along with the attributes that belong to those groups
(2). The rest of the attributes are grouped as they were in the second parent cP?
(3), so the resulting child ¢! has inherited properties from both parents. For
the second child ¢, the process is repeated exchanging the role of the parents.

Il
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Figure 4: Graphical description of a crossover operation steps
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3.3.2 Mutations

As crossover operations only combine existing properties from the current pop-
ulation, a way to introduce new information is needed in order to explore the
whole search space; i.e. ensuring that any possible chromosome in the search
space can be generated. Mutation operations ¢(c?) proceed by performing ran-
dom modifications to a chromosome c?, thus generating a new member ¢ with
some characteristics not present in the current population.

We propose five different mutations in GOMM, which are represented in
Figure 5; three working with the Group Part of the chromosome, and two with
the Object Part. The former allow the exploration of the entire solution space
as they deal with groups, while the latter work in a finer grane and permit to
polish the solution when a promising zone in the search space has been found.

e Group Create(c® = pgc(c?)) builds a new group of attributes randomly,
which is injected in the child ¢¢. The rest of attributes are grouped as they
were in the parent cP. It is the most aggressive of all the mutations. In
an extreme case a single pgc operation can transform any chromosome
cP to the one that contains only one group. The goal of pgc is to make
radical transformations to the members in the population to introduce
diversity. However, it is in general very disruptive and may cause the new
chromosomes to contain lethal traits that lead them to the immediate
elimination.

e Group Eliminate(c® = ¢pggr(cP)) selects randomly a group from the
Group Part of the parent ¢P and distributes all its attributes between the
remaning groups, also randomly. As a result, the child ¢® has a group
less than its parent cP, except in the base case that the parent has all the
attributes in a single group, then a clone is generated.

e Group Split(c® = pgg(cP)) choses a group at random and splits it into
two different groups with the same number of attributes (if possible). The
resulting child ¢¢ has a group more than its parent c¢P, except in the cases
where the group that is splitted is a singleton.

e Element Swap(c® = pgs(cP)) works with the Object Part of the chromo-
some; two attributes are selected at random and their groups are swapped,
so the Group Part of the child c¢ is identical to that of the parent cP.

e Element Move(c® = pgp(cP)) selects randomly an attribute from the
Object Part of the parent ¢? and moves it to a different existing group.
The resulting child ¢© has the same number of groups than his parent c?
or a group less if the element moved belonged to a singleton.

3.3.3 Selection

In order to preserve the number of members in the population and favor evo-
lution, at the end of every iteration the chromosomes that will survive to the

11
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Figure 5: Steps of GOMM’s mutation operations

next generation are chosen. The selection method used by GOMM is elitist as
it chooses the chromosomes with a highest quality; ¢.e. those solutions with the
best fitness evaluations.

Formally, if we have two chromosomes ¢! and ¢? with an associated fitness
F(c') and F(c?) and F(c!) < F(c?), then ¢! is more likely to survive to the
next generation. Thus, the objective of our genetic optimizer is to minimize
the cost function F'(c¢) and obtain a solution with both low information loss and
disclosure risk.

4 Genetic Operations Analysis

Now we perform a comprehensive analysis of the genetic operations used by
GOMM, using the same analysis design as that proposed in [14]. The aim
is to evaluate the effect that each operation has over the population for each
generation of the execution. Four aspects have been studied: the number of
chromosomes discarded without being used, the average chromosome life time
and the efficacy and efficiency of the different operations. As a result of this
analysis, we are able to understand the behavior of the genetic optimizer and
to study new techniques to improve the its performance. In this section we also
propose D-GOMM, an improved version of GOMM that dynamically adapts the
number of genetic operations to accelerate the whole optimization process.
This analysis has been performed with real data extracted from two data
sets available in the Internet. The first one if the Water-treatment data set,
extracted from the UCI repository [16], which contains 38 attributes and 380
records. The second one, called Census, was extracted using the Data Extraction

12



System of the U.S. Census Bureau [26], which contains 12 attributes and 1080
records. A complete description about the details of the construction of this
data set can be found in [8].

4.1 Analysis measures

The first way to analyze the capability of a genetic operator to introduce good
properties into the population is to study the number of members discarded
without being used. That is, the chromosomes that are not used to generate
new chromosomes in a crossover or a mutation operation. This measure is
called wutilization. If a genetic operation introduces interesting configurations
in the population, the new members generated by this operation have a higher
probability to survive and to be chosen on future generations.

Another way to evaluate the effect of a genetic operator is to analyze the
average life time of the new generated chromosomes it produces, which is the
number of generations they survive. On the one hand, longer life times imply a
higher probability for a given chromosome to be used in the next generations.
On the other hand, an average life time of zero indicates that the chromosomes
generated by the operation have not passed the selection process.

The utilization and the average life time of the chromosomes give us a first
impression of the amount of useful work that a genetic operation is producing
during all the algorithm execution. However, these two approaches do not show
if the operations are really introducing good properties into the population; that
is, if the new generated chromosomes have a better fitness than their parents,
in the case of mutation operations; or a better fitness than the average of both
parents, in crossover operations. This measure is called efficacy.

Finally, even though the previous analysis provide us with an approximate
picture of the behavior of genetic operations, it does not directly reveal how
much better or worse is the fitness of the new generated chromosomes. For this
reason, we evaluate the efficiency of the operations by immediately calculating
the percentage of improvement or worsement of the chromosome fitnesses after
the application of the genetic operation.

To calculate the average percentage of maximum improvement and worsen-
ing for mutation operations we use Formula (7), where ¢© is the child chromo-
some and cP the parent chromosome. For crossover operations we use (8) and
(9) where cP! and cP? are the parents. The idea behind the equation for the
crossover operation is to calculate whether the new chromosome is better than
the average fitness between both parents.

et 100 if F(cf) < F(c?)
%]\4 = F(cP) . (7)
— ey - 100 if F(c®) > F(cP)
B 2-F(c%)
'f'zmp - F(Cpl) + F(sz) (8)
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Figure 6: Average mutation operation behavior with 25 crossovers and 50 mu-
tations per generation.

(1= Timp) 100 if iy < 1
%C—{ (1 —1)-100 if rimp > 1 (9)

Timp

4.2 Analysis Results

As we said before, this analysis has been performed for two public data sets.
In this subsection we only present the analysis results obtained by executing
GOMM with the Water-treatment data set since the results obtained for the
Census data set are very similar. We executed the optimizer with different val-
ues for the parameter k of the MDAV algorithm, but we only present the results
for clusters for &k = 25, which is a very common configuration in multivariate
microaggregation since it offers a good trade-off between information loss and
disclosure risk. The algorithm was executed during 100 generations, using 200
members for the population and generating 100 new members for every itera-
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Figure 7: Average crossover operation behavior with 25 crossovers and 50 mu-
tations per generation.

tion. These have been obtained by performing 25 crossover operations and 50
mutation operations (10 of each type) per generation.

In order to fully understand the results provided by this analysis we moni-
tored the evolution of the population during the optimizer execution. We ob-
served that, for a k value of 25 the average number of attribute groups of the
members of the population quickly decreases. Thus, in this case, solutions with
a lower number of groups are preferred to the ones with a higher number of
attribute partitions.

Utilization. The first row of plots in Figure 6 shows the average number
of chromosomes discarded without being used in a later operation for each mu-
tation operation. Note that vgc, wor and pgs are doing useless work more or
less after generation 25 since 100% of the generated chromosomes are discarded
without being used. In contrast, pgs and ¢gys gradually lose potential. Their
best behavior is shown between generations 20 and 30, where less than half of
the chromosomes produced are discarded without being used.

The results for the crossover operations are shown on the first plot of Figure
7. The percentage of chromosomes discarded without being used is always
around 75%, being a little lower in the first generations.

Average life time. The information on the average life time for each
mutation operation is shown in the second row of Figure 6. Each plot shows the
average number of survived generations of the attribute grouping configurations
created by the considered mutation for every iteration of the optimizer. Again,
the plots show that pcc, por and pgs carry out unnecessary operations after
generation 25 as the average life time of all the chromosomes created by these
operations is zero, that is, they die as soon as they are created. On the other
hand, the other two mutations improve they performance after generation 20
since the chromosomes they create live longer. The average life time of the
chromosomes produced by ¢g does not decrease until generation 50, and in
the case of pgg until generation 70.

Regarding crossover operations, we can see in the second plot of Figure 7
that the average life time is always around 2 and 3, which shows the conservative
behaviour of this operation.

Efficacy. The efficacy plots presented in the third row of figure 6 show the
number of improved chromosomes along with the number of worsened ones for
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every generation. It seems reasonable to assume that the addition of the two
parts should be the number chromosomes generated for every operation in a
certain generation (10 for each mutation and 50 for the crossover); nevertheless,
this is not true when the generated chromosome is a clone of its parent, that is,
they have the same fitness.

Again, pgco, pap ang pgeo only generate chromosomes worse that those of
their parents from generation 25. However, the only operation that gradually
loses efficacy is wgE, as ¢gc and pgs show a peak near generations 18-19.
This is because the average number of groups of the first population is large
because it has been generated randomly, and thus, creating small groups or
splitting them does no generate better chromosomes. However, as the number
of groups decreases due to the creation of large groups and the elimination of
others, these operations are able to generate better chromosomes. In the case
of pgg, the plot shows this is an operation that generates a lot of clones, but
until the end of the execution is capable of generating improved chromosomes.
This also happens with ¢ gas, where we can observe that near generations 16-17
the number of clones generated increases. The only case where ¢pas produces
clones is when the parent chromosome has a single group, which is exactly when
vas and pgo start generating improved chromosomes.

The crossover results in the third plot of Figure 7 show that after generation
20 the number of improvements is very constant, standing in the 5% of the
chromosomes generated.

Efficiency. In the last row of Figure 6, we can see the average efficiency
results for each mutation operation, showing the average improvement and the
average worsening along with the average maximum and minimum for every
generation. We observe that pgc and ¢gg introduce very interesting properties
in the first generations, with average maximum efficiency values around 10%.
This is caused by the fact that, as we said before, the members of the first
population have an elevated number of groups, and as these mutations reduce
it, they are able to generate much better chromosomes. Between generation 10
and 20 pgs does some useful work because new chromosomes with a low number
of groups have appeared in the population due to the effects of pgc and pgg.
These three operations, as seen before, stop doing useful work after generation
25 as they only produce worse chromosomes. In the case of pps and g, we
notice that their efficiency values are lower than the other mutation operations,
standing around 2% in their phase of best behavior. This happens because these
operations work with attributes rather than groups, so the chromosomes they
generate are very similar to the parent chromosome they used. That property is
the one that allows prs and g to continue doing useful work after generation
25, when the optimum number of groups has been found and pgc, wgr and
was do useless work.

The efficiency results for the crossover operation are presented in the last
plot of Figure 7. In the first generations, the average maximum efficiency shows
a peak and afterwards it quickly decreases, showing that the new chromosomes
are worse or have the same fitness as the parents. The explanation to this
phenomenon is that, in the first generations, parent chromosomes with a large
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number of groups are crossed with others with few groups, so the resulting
children have less groups than the former parents. In the next generations,
when the number of groups of the members of the population has stabilized,
the new chromosomes generated are very similar to their parents or have more
groups, which means that they have the same or worse fitness respectively.

4.3 Improving performance

The main conclusion of the previous analysis is that some operations carry out
a lot of useless work after a given generation. As the algorithm proceeds we
distinguish two separated phases: firstly, the group-oriented mutations (vcc
, par and pgg ) contribute to evolve the population modifying the number
of groups; secondly, these operators only generate worse chromosomes and the
object-oriented mutations, along with the crossover, introduce improvements in
a lower scale.

In this section we propose D-GOMM, the Dynamic Genetic Optimizer for
Multivariate Microaggregation, which includes a control mechanism to detect
the generation where the second phase starts. If the optimizer is able to detect
when an operator is performing useless work, that is, generating chromosomes
worse-fitted than their parents, it can stop its execution. This means that less
child chromosomes will be generated, thus performing less fitness evaluations
and accelerating the optimization process.

It is important to notice that D-GOMM only stops the execution of the
genetic operations that perform unnecessary work during several generations.
Thus, for all the executions performed the quality of the solution given by D-
GOMM is always equal to the one resulting of GOMMs execution.

5 Experiments

In this section we study the solutions given by our genetic optimizer from a
twofold perspective. Firstly, we validate the solutions provided by GOMM ac-
cording to the microaggregation problem. Secondly, we compare them with the
ad-hoc solutions used in practice. To do that, we have executed GOMM with
different values of k (from 5 to 100) to study the impact of such parameter in
the configuration of the groups in the best solution. In addition, we also show
in this section a performance comparison between GOMM and D-GOMM.

Solution validation. Intuitively, when k increases, the clusters size must
grow producing an increment in the information loss of each cluster. This effect
combined with the problem of dimensionality make configurations with a large
number of groups to be preferred to configurations with only one or two groups,
as the values of k increase.

Tables 1 and 2 show the average solution given by GOMM using the Water
Treatment data set and the Census data set, respectively. The value of param-
eter k is placed in the first column and the average number of groups of the
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solution in the last one. The other columns show the average values of the cost
function parameters.

Water-treatment

k IL ID  DLD | score | groups
5 |35.74 2793 15.89 | 28.82
10 | 48.05 25.07 7.15 | 32.08
25 | 50.11 23.62 18.29 | 35.53
50 | 57.85 23.23 6.91 | 36.46
100 | 63.38 21.77 14.18 | 40.68

TN N = =

Table 1: Fitness (score) and number of groups of the best configuration found
by GOMM with different parameterizations using the Water-treatment data set.

Census

k IL ID  DLD | score | groups

5 8.01 32.01 14.56 | 15.64

10 | 11.97 2590 6.69 | 14.13
25 | 17.97 21.06 2.53 | 14.88
50 | 18.36 18.15 6.02 | 15.23
100 | 16.91 21.85 5.57 | 15.31

NN = =

Table 2: Fitness (score) and number of groups of the best configuration found
by GOMM with different parameterizations using the Census data set.

When k increases, the number of groups of the best solution also increases,
specially due to an increment of the IL component, as our intuition predicted.
Therefore, the solutions yielded by GOMM are coherent with our intuition.

From these tables we can also observe that finding the optimal value for
parameter k is far from trivial. For instance, in the Census table, the best
scores are presented by configurations with a value k£ between 10 and 50.

Solution comparison. In order to compare our results with the different
strategies presented in the literature, we manually split both data sets follow-
ing the recommendations described in [18]. The resulting configurations are
depicted in Tables 3 and 4. As we can observe, configurations vary from few
groups containing many attributes to many groups containing a few attributes.
In such configurations, we also considered the correlation between attributes.
On the one hand, we grouped correlated attributes together (to minimize the
information loss). On the other hand, we grouped correlated attributes in dif-
ferent groups (to minimize the disclosure risk). Finally, we also consider two
special scenarios: in the first one, all attributes are grouped together, ensuring
k anonymity. In the second one, we consider the univariate microaggregation
scenario where each attribute is microaggregated separately.

The results presented in Tables 5 and 6 show the fitness value of all the
ad-hoc configurations along with the fitness value obtained by GOMM for dif-
ferent values of k. If we compare the results obtained using the same k value,
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Water treatment
(a1, a4,as,a6,a7,a11,a13, a1, G0, G36)
G0 (CL3,ag,0107CL15,016,&18,@1,&22,&23,@29)
¢ (a2, as, a12,a14, 19, a6, A28, A31, A33, A37)
(&24, 425, 427, 430, 432, 434, @35, 038)
(a1, a2,as,a24, a4, ag, as, azs, s, a1o)
G1o (a127a27,aﬁ,a15,CL14,0307CL776L1676L19,032)
ne (a11, a1s, aze, a34, a13, 21, A28, a35, G417, A22)
(a0, ase, a29, 23, 31, 33, 437, 438)
(a1,a4,0as5,a6,a7)(a11,a13, a1, ao, a3e)
o (a3, a9, a10, a5, a16)(a1s, az1, azz, a23, azg)
(az, as, ai12,ai4, 019)(a26, azg,as1, ass, 037)
(a24,azs, azr, aso)(asz, as4, ass, ass)
(a1, a2, a3, a24,as)(ag, ag, azs, as, aio)

Ies (a12, a27, 06, 415, A14, 030)(@77 16, A19, 032)
ne (a11, a8, aze, @34, a13, a21)(azs, ass, air, a22)
(a0, ase, azg, a23)(as1, ass, asy, ass)
(a1,a4,as5)(as, az, a11)(a1s, a17, a0)(as, ag, aio)
o3 (a15, a16, a18)(az1, a2z, a3)(asz, as, a12)(aia, a9, aze)

(azs,as1, asz)(az9, ase, asr)
(a4, azs, azr)(aso, a3z, az4)(ass, ass)
(a1, a2, a3)(asa, as,a9)(as, ass, as)(aiz, a7, ag)
o (a15,a14,a30)(a7, a6, a19)(a11, ais, aze)(ass, a13, az1)
ne (ags, ass,ai7)(ao, asz, asz)
(a0, ase, az9)(a23, as1, asz)(asy, ass)

Table 3: Ad-hoc group configurations for the Water treatment data set. G
stands for groups of n correlated attributes and G7.. stands for groups of n
non-correlated attributes.

we observe that GOMM has always the best quality, unless the cases where
GOMM yields a solution containing a single group, which is one of the ad-hoc
groupings we executed. For instance, if we compare the Water treatment results
(Table 5) obtained with & = 50, we see that GOMM achieves a fitness equal
to 34.3 splitting the data set in three different groups, whilst the best ad-hoc
configuration only achieves a fitness value equal to 40.9 dividing the data set
into four groups. Similar results are obtained with the remaining k£ values.

Also, if we compare GOMM results with the Census data set, we observe
very similar results. For example, with k = 25 GOMM achieves a fitness value
equal to 13.0 dividing the Census data set into two groups and the best ad-hoc
solution is equal to 14.3 without splitting the data set.

Performance results. The aim of this last section is to compare the two
versions of our genetic approach in terms of execution time. In Section 4.3 we
introduced D-GOMM, which is a version of the GOMM algorithm that detects
when a genetic operation is producing useless work and in this case, it stops exe-

19



Census
(a2, a4, as,a7)(as, aro, a1, a12)

G4
¢ (a1, a3, as,a9)
G4 (flha2,a47a5)(a37a6,a10,a11)
nc
(@7, as, ag, a12)
a3 (ag,a4,a7)(a3,a11,a12)
C
(CL5, ag, alo)(ah as, ag)
G3 (a27a37a5)(a87a107a11)
nc
((I7, a9, a12)(a17 a4, (Iﬁ)

Table 4: Ad-hoc group configuration for the census data set. G7 stands for
groups of n correlated attributes and G7;, stands for groups of n non-correlated
attributes.

Water-treatment

k=5 k=10 | k=25 | k=50 | k=100
G® [ 288 (1) | 32.1 (1) | 36.9 (1) | 42.0 (1) | 50.6 (1)
G'  49.4 (38) [48.9 (38) | 47.2 (38) | 45.0 (38) | 46.2 (38)
G0 | 438 (4) | 45.4 (4) | 44.6 (4) | 42.7 (4) | 42.3 (4)
G0 | 43.6 (4) | 46.2 (4) | 44.7 (4) | 42.7 (4) | 45.5 (4)
G> | 42,1 (8) | 44.0 (8) | 47.0 (8) | 49.7 (8) | 47.0 (8)
G>. | 42.8 (8) | 45.3 (8) | 48.7 (8) | 49.9 (8) | 50.3 (8)
G3 424 (13)[43.2 (13) | 46.7 (13) | 50.1 (13) | 52.7 (13)
G3. 1423 (13)[43.4 (13)]46.1 (13)|49.8 (13)|52.3 (13)
GOMM | 288 (1) | 32.1 (1) | 355 (2) | 36.7 (2) | 40.7 ()

Table 5: Fitness (score) of some ad-hoc grouping and the solution given by
GOMM using the Census data set with different values of the k parameter.
Number of groups are depicted in parenthesis.

cuting it. Therefore, the number of new generated chromosomes per generation
decreases along with the number of fitness evaluations of this offspring.

The plot presented in Figure 8 shows the execution time comparison be-
tween GOMM and D-GOMM using a data set with 38 attributes. Notice that
for different values of the k parameter D-GOMM is always faster than GOMM.
However, the speed-up achieved varies depending on the value of the k param-
eter. We computed the speed-ups in all the scenarios and the results show that
as k increases, the speed-up decreases. The explanation to this phenomenon is
that when k is small, the solution given by the algorithm has less groups of at-
tributes, thus, the optimizer converges faster and the group-oriented mutations
stop doing useful work before.
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Census

k=5 k=10 | k=25 | k=50 | k=100

G2 [156 (1) | 141 (1) | 149 (1) | 159 (1) | 18.1 (1)
G' 489 (12)]48.1 (12) [45.3 (12) | 41.8 (12)|37.6 (12)
G* 1397 (3) | 374 (3) | 32.1(3) | 26.4 (3) | 19.8 (3)
GY | 34.7(3) | 2855 (3) | 21.8 (3) | 17.2(3) | 16.5 (3)
G5 | 404 (4) | 38.1(4) | 33.3 (4) | 27.7 (4) | 22.3 (4)
G3. | 38.0(4) | 34.5(4) | 28.1 (4) | 22.5 (4) | 18.3 (4)
GOMM | 156 (1) | 141 (1) | 149 (1) | 152 (2) | 15.3 (2)

Table 6: Fitness (score) of some ad-hoc grouping and the solution given by
GOMM using the Census data set with different values of the k£ parameter.
Number of groups are depicted in parenthesis.

Execution time comparison W
1200

1000

800

EGomm
800 H0-GOMM

Time

k=5 k=25 k=100

Figure 8: Execution time of GOMM and D-GOMM for different values of the
k parameter

6 Conclusions

In this paper, we have proposed GOMM, a genetic optimizer to find the best way
to group the attributes when anonymizing a dataset with multivariate microag-
gregation, in order to obtain a protected dataset with both low disclosure risk
and information loss. The experiments performed show that the solutions given
by GOMM outperform other grouping strategies proposed in the literature, for
different parametrizations of the multivariate microaggregation method.

In addition, we analyzed the behavior of our optimizer in order to understand
the contribution of every genetic operation in the solution given. This analysis
allows the study of alternatives to improve GOMM’s performance. One of these
has been proposed in a version called D-GOMM, which dynamically detects
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when a genetic operation is doing useless work and then stops its execution. We
have seen that this mechanism improves the execution time of our optimizer,
while the quality of the solution given is not altered.

Regarding future work, we will study other fitness functions for GOMM
based on convex optimization approaches. Since IL and DR are contradictory
goals convex minimization seems a very promising research line. Apart from
that, we consider two possible directions to follow to improve GOMM perfor-
mance. The first one is to use other multivariate microaggregation methods
faster than the MDAV algorithm, since we observed that nearly 60% of the
optimizer execution time is spent in this function. Secondly, we want to study
parallelization strategies of our approach because there are several points in
GOMM where parallelism could be opened. Both future lines aim at improv-
ing GOMM’s performance and specially, at allowing the optimizer to deal with
larger data sets.
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