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Introduction

In recent years, several methods have been developed for accelerating the iterative solution
of the electromagnetic integral equations discretized by Method of Moments (MoM). Most
of them are based on the compressibility of parts of the MoM matrix when they correspond
to the interaction between two distant boxes. Among them, a promising one is the Adaptive
Cross Approximation (ACA) [1] which combined with a SVD recompression achieves very
good results, especially for moderately large number of unknowns N. In this paper we
propose a multilevel implementation of the ACA leading to a highly enhanced compression
rate.

Description of the Algorithm

Let us define the environment of the problem under study. Imagine we have two objects
contained within two spheres that do not intersect each other. We shall call them source and
observation objects respectively. Applying the Method of Moments (MoM) it is possible
to express the interaction between them with a matrix Z,,,, with dimensions m X n, where
m and n are the number of basis functions in which the observation and source object have
been discretized, respectively. In the first place, we must subdivide each object recursively
into smaller domains in a binary tree manner, so that in each subdivision approximately
half of the basis functions goes to each side. The number of levels is L meaning that at
the finest level we have in each subset approximately M = N/2L elements considering
N = n = m. For asymptotical analysis L is going to be chosen to yield a fixed value of M
or equivalently, a fixed minimum box electrical size.

A scheme of the algorithm is shown in figure 1. The idea is to express the initial matrix
Zumn as a product of L + 2 matrices Zp,, = ALtV B+ BI) B,

In the step 0 (figure 1(a)) Z,,, is transformed into two new matrices A(()l) and Bél). The
procedure to obtain them is to split Z,,, into strips, corresponding to the interaction of each
subset of basis functions at the finest level in the source object with the whole observation
object. Now each of those strips only has & degrees of freedom, therefore can be compressed
with the ACA-SVD algorithm and regrouped as is shown in figure 1(a). Note that the matrix

to store is B((,l) which has 27 blocks in the diagonal of size k x 5t and is orthogonal.

Foreachi=1,...,Landeachj =0,...,2~1 — 1 the matrices from the step i — 1, A'",

are transformed into four new matrices A%H), Ag;";ll) , Bgﬂ), Bgill) (figure 1(b)). The
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initial matrix A;l) is split into two sets of rows corresponding to the next subdivision in the
observation object tree. On the other hand, the strips are grouped in pairs corresponding
to the previous level in the source object tree. As the source is doubled in size and the
observation is divided by two, the number of degrees of freedom of the new substrips is
again k [3], and therefore can be recompressed using the ACA-SVD algorithm to obtain
the new matrices. After the step ¢ = L we have the whole set of matrices which correctly
combined represent a compressed version of the matrix Z,,,,.

It can be proved that the memory required to store those matrices at the end of the algo-
rithm is proportional to kNlogN and as the size of the finest level is constant with respect
to N, we have that k is constant, and therefore the memory scales with O(NlogN). Con-
sequently, the computational cost of a product of the matrix Z,,, with a vector scales also
with O(NlogN). The computational cost to build the compressed matrix can be proved to
be O(N?), which is assymptotically better than for single-level ACA [2].

Figure 1: Graphical representation of the matrix transformations in the MLACA algorithm
described in section “Description of the algorithm”. First step or step 0 (a) and step @ (b)
with ¢ > 1.

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 23,2010 at 10:11:16 EDT from IEEE Xplore. Restrictions apply.



Numerical Aspects

Although the resulting matrices from the algorithm described in the previous section have a
number of elements proportional to NlogN, if it is implemented naively it will temporarily
need an amount of memory growing with O(N?). This can be avoided by changing the
order of the operations, achieving again order O(NlogN) during the whole execution. The
way to proceed is to go back recursively from the last step and computing at each moment
only what is necessary for each block. The computational complexity is maintained as the
operations are the same, only reordered.

A theoretical analysis of the error has been performed. As the matrix is decomposed as
a product of different matrices, to assure a relative error in the matrix smaller than 7 it is
necessary that each matrix has an error smaller than 7/(L + 2) as we have L + 2 matrices.
This is because in the worst case the relative errors are added. This change in the threshold
7 in each ACA simply affects the value of degrees of freedom k£ which now can be proved
to grow with O(log(logN)). Therefore, the real complexities of the MLACA algorithm are
slightly greater, although a factor log(logN) is virtually negligible in practice.

Numerical Experiments

Two experiments have been performed in order to corroborate the computational time and
the memory requirements of the MLACA. Both experiments concern PEC objects dis-
cretized with RWG basis functions. The first simulation corresponds to the interaction
between two square plates facing each other with size 1m x 1m. They are separated 3m
and therefore they have a reduced number of degrees of freedom. To observe the orders,
different frequencies have been applied maintaining the average electric size of the RWG
basis functions constant at \/10. The reference thresholds are 10=# for the ACA and 10~3
for the SVD recompression. The results are shown in figure 2(a)-(b). In figure 2(a) it can be
seen how the different simulations with the MLACA follow precisely the reference curves
proportional to NlogN, whereas the ACA starts to grow quicker when N grows because
the number of DoF grows. Another important observation is that the results are not very
sensitive to the sizes of the finest level boxes, or the number of unknowns in each box M.
This means that any reasonable M value will yield a good compression. Figure 2(b) repre-
sents the CPU time for the above simulations. Again it behaves as expected theoretically,
with the computation time growing as O(NN?2). In this respect it is better to have a moder-
ately large value of M. Although the ACA is expected to behave worse than the MLACA
in the limit, it can not be observed in the figure because N is still relatively small.

The second experiment is very similar to the first one. The only difference is that now
we have spheres with radius 0.5m instead of square plates and the distance between their
centers is 2m. The same conclusions can be extracted from the results (figure 2(c)-(d)).

Conclusions

A novel algorithm based on the Adaptive Cross Approximation (ACA) [1] has been de-
veloped. It has been proved, both theoretically and numerically, to have a computational
complexity scaling with N2 and memory requirement growing with NlogN.
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Figure 2: Size of the compressed matrix (a) and CPU time (b) as a function of the number
of unknowns N when applying the ACA and the MLACA algorithms to the MoM matrix
corresponding to the interaction between two opposite square plates 1m x 1m separated 3m.
M is the approximate number of unknowns in each box at the finest level of the MLACA
algorithm. The same results (c) and (d) are shown for two spheres with radius 0.5m and
distance 2m.
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