
ENABLING SMT FOR REAL-TIME EMBEDDED SYSTEMS

F.J. Cazorlal, P.M. W. Knijnenburg2, R. Sakellariou3, E. Fernandez4, A. Ramirezl, M. Valerol

1 DAC, UPC, Spain, {fcazorla,aramirez,mateo }@ac.upc.es
2LIACS, Leiden University, the Netherlands, peterk@liacs.nl

3University of Manchester, UK, rizos@cs.man.ac.uk
4University of Las Palm as de Gran Canaria, Spain, efernandez@dis.ulpgc.es

ABSTRACT

In order to deal with real time constraints, current embed­
ded processors are usually simple in-order processors with
no speculation capabilities to ensure that execution times of
applications are predictable. However, embedded systems
require ever more compute power and the trend is that they
will become as complex as current high performance systems.
SMTs are viable candidates for future high performance em­
bedded processors, because of their good cost/performance
trade-off. However, current SMTs exhibit unpredictable per­
formance. Hence, the SMT hardware needs to be adapted in
order to meet real time constraints.

This paper is a first step toward the use of high per­
formance SMT processors in future real time systems. We
present a novel collaboration between OS and SMT proces­
sors that entails that the OS exercises control over how re­
sources are shared inside the processor. We illustrate this
collaboration by a mechanism in which the OS cooperates
with the SMT hardware to guarantee that a given thread
runs at a specific speed, enabling SMT for real-time sys­
tems.

1. INTRODUCTION

To deal with real time constraints, current embedded pro­
cessors are usually simple in-order processors with no spec­
ulation capabilities. However, embedded systems are re­
quired to host more and more complex applications and have
higher and higher data throughput rates. In order to meet
these growing demands, future embedded processors will re­
semble current high performance processors. For example,
the new Philips TriMedia already has a deep pipeline, an
L1 and L2 cache, and branch prediction [4]. Simultane­
ous Multithreaded (SMT) architectures [9][10], are viable
candidates for future high performance embedded proces­
sors, because of their good cost/performance trade-off [5].
There already exists an embedded SMT communications
platform on the market, called META [5]. In an SMT, sev­
eral threads are running together, sharing resources at the
micro-architectural level, in order to increase throughput.
The front end of a superscalar is adapted in order to fetch
from several threads while the back end is shared among the
threads. A fetch policy decides from which threads instruc­
tions are fetched, thereby implicitly determining the way
processor resources, like rename registers or IQ entries, are
allocated to the threads. The common characteristic of many
current fetch policies is that they attempt to improve a-priori
established metrics like throughput [9] or fairness [6]. How­
ever, a problem with all these policies is that the performa�ce
of a thread in a workload is unpredictable. For example, FIg­
ure 1 shows the IPC of the gzip benchmark when it is run
alone (full speed) and when it is run with other threads using
two different fetch policies, icount [9] and flush [8]. Its IPC
varies considerably, depending on the fetch policy as well as
characteristics of the other threads running in the workload.
This poses problems for the suitability of SMT processors
in the context of real-time systems. Thus, if we want to be
able to provide real time capabilities for an SMT processor,
current approaches to resource management by means of in­
struction fetch policies are no longer adequate. Hence, a new
paradigm for resource management inside SMT processors is
required.

The key issue is that in the traditional collaboration be­
tween OS and SMT, the OS only assembles the workload
while it is the processor that decides how to execute this
workload, implicitly by means of its fetch policy. Hence,
part of the traditional responsibility of the OS has "disap­
peared" into the processor. One consequence is that the OS
may not be able to guarantee time constraints even though
the processor has sufficient resources to do so. To deal with
this situation, the OS should be able to exercise more con­
trol over how threads are executed and how they share the
processor's internal resources.

In this paper, we discuss our philosophy behind a novel
collaboration between OS and SMT in which the SMT pro­
cessor provides 'levers' through which the OS can fine tune
the internal operation of the processor to achieve certain re­
quirements. We want to reserve resources inside the SMT

1341

u
9:
Co

'N Cl

4.5

4

3.5

3

2.5

2

1.5

0.5

o
gzip full gzip + gzip + gzip + gee gzip + gzip + gap gzip + mcf
speed eon art wupwise twolf mel apsi crafty equake

swim

1-context 2-contexts 3-contexts 4-contexts

Figure 1: IPC of gzip for different contexts and different fetch policies

IPC = 3.8 100 100 fairnes line IPC=3.8 ---_ ..: �. "'"'
maximum � �:in\" '" ,." 90

80

<.) 70
Q, 60
�
� 50
�
c 40
g

<.)
Q,
�
�
�
c
0
m

30
20
10

IPC = 1.2
20 40 60 80 100

twolf relative IPC

'0. � �axlmum t�rougput 80 throughput /''''1.. . .. ".... .

maximum ,.;�
..

line. Slope - -0.32

60

40

weighted ,.
I

\ '.
speedup ,. \ ,." \

.... Maximum ,Weighted
,." maximum ' Speedup line.

"'"' troughput on \ Slope =-1
,. fairness line \

20 ,./ \
"' "' I Reachable part I \ "'"' \

20 40 60 80 100
twolf relative IPC

IPC = 1.2

Figure 2: (a) QoS space for three fetch policies; (b) important QoS points and areas

processor in order to guarantee certain requirements for ex­
ecuting a workload. We show the feasibility of this approach
by a mechanism to achieve a given percentage of the full
speed of a designated High Priority Thread. This enables
the use of out-of-order, high performance SMT processor in
embedded environments.

This paper is structured as follows. In Section 2 we de­
scribe our novel approach to the collaboration between OS
and SMT. In Section 3 we discuss our mechanism to enable
such collaboration. Finally, Section 4 is devoted to conclu­
sions and future directions.

2. COLLABORATION BETWEEN OS AND SMT

In this paper, we approach OS/SMT collaboration as Qual­
ity of Service (QoS) management. This approach is inspired
by QoS in networks in which processes are given guaran­
tees about bandwidth, throughput, or other services. Anal­
ogously, in an SMT resources can be reserved for threads
guaranteeing a required performance. We observe that on
an SMT processor, each thread reaches a certain percent­
age of the speed it would achieve when running alone on the
machine. Hence, for a given workload consisting of N appli­
cations and a given instruction fetch policy, these fractions
give rise to a point in an N-dimensional space, called the
QoS space. For example, Figure 2(a) shows the QoS space
for two threads, eon and twolf, as could be obtained for the
Pentium4 or the Power5. In this figure, both x- and y-axis
span from 0 to 100%. We have used three fetch policies:
icount [9], fiush++ [1], and data gating (dg) [3]. Theoreti­
cally it is possible to reach any point in the shaded area be-

low these points by judiciously inserting empty fetch cycles.
Hence, this shaded area is called the reachable part of the
space for the given fetch policies. In Figure 2(b), the dashed
curve indicates points that intuitively could be reached using
some fetch and resource allocation policy. Obviously, by as­
signing all fetch slots and resources to one thread, we reach
100% of its full speed. Conversely, it is impossible to reach
100% of the speed of each application at the same time since
they have to share resources.

In Figure 2 (b) we see that the representation of the QoS
space also provides an easy way to visualize other metrics
used in the literature. Points of equal weighted speedup,
as defined in [7], lie on the same line that is perpendicu­
lar to the bottom-left top-right diagonal. In Figure 2(b)
the point with maximum weighted speedup in the reach­
able part is indicated. Similarly, points of equal throughput
lie also on a single line whose slope is determined by the
ratio of the maximum IPCs of each thread (in this case,
-1.2/3.8 = -0.32). Such a point with maximum through­
put is also indicated in the figure. Finally, points near the
bottom-left top-right diagonal indicate fairness, in the sense
that each thread achieves the same proportion of its maxi­
mum IPC. In either case, maximum values lie on those lines
that have a maximum distance from the origin.

Each point or area in the reachable subspace entails a
number of properties of the execution of the applications:
maximum throughput; fairness; real-time constraints; power
requirements; a guarantee, say 70%, of the maximum IPC
for a given thread; any combination of the above, etc. Put
differently, each point or area in the space represents a so-

1342

lution to a QoS requirement. It is the responsibility of the
as to select a workload and a QoS requirement and it is the
responsibility of the processor to provide the levers to enable
the as to pose such requirements. To implement such levers,
we consider the SMT as having a collection of sharable re­
sources and add mechanisms to control how these resources
are actually shared. These mechanisms include prioritizing
instruction fetch for particular threads, reserving parts of the
resources like instruction or load/store queue entries, prior­
itizing issue, etc. The as, knowing the needs of applica­
tions, can exploit these levers to navigate through the QoS
space. This solution should be parameterized and maximize
the reachable part of the space so that it is generally usable
and provides opportunities for fine tuning the machine for
arbitrary workloads and QoS requirements.

In this paper, we present a novel resource managment
mechanism that enables the processor to execute a desig­
nated High Priority Thread at a given percentage of its full
speed, that is, the speed it would obtain when running alone
on the machine. At the same time, it maximizes the through­
put of the Low Priority Threads. This mechanism enables
the as to deal with Worst Case Execution Times and hence
enbles the use of SMT processors in real time systems. This
novel mechanism is dynamic and tries to navigate toward a
required area in the QoS space.

3. QOS BY RESOURCE ALLOCATION

In this section, we discuss a novel dynamic mechanism that
is capable of solving a QoS requirement that requires to run
a specific job at a given percentage of its full speed, that is, of
the IPC it would have when executed on the machine on its
own. By way of example, we show that we can achieve 70% of
the full speed of gzip while it is running in several contexts,
while at the same time maximizing as much as possible the
performance of the other threads in the workload.

3.1 Methodology

We assume a fairly standard 4-context SMT configuration:
our machine can fetch up to 8 instructions from up to 2
threads each cycle. It has 6 integer, 3 FP, and 4 load/store
functional units and 32-entry deep integer, load/store and
FP IQs. There are 320 shared physical registers shared for
all threads. Each thread has its own 256-entry reorder buffer.
We use a 2 level cache hierarchy with separate 32K, 4-way
data and instruction caches and a unified 512KB 8-way L2
cache. The latency from L2 to L1 is 10 cycles, and from
memory to L2 100 cycles. We use a trace driven SMT simu­
lator, based on SMTSIM provided by Tullsen [9]. It consists
of our own front-end that reads a trace file and a modified
version of SMTSIM's back-end. We run 300 million most
representative instructions for each benchmark.

In our experiment, we consider contexts of 2, 3, and 4
threads. We consider two types of threads: threads that ex­
hibit a high number of L2 misses, called Memory Bounded
(MB) threads. These threads have a low full speed. Sec­
ondly, threads that exhibit good memory behavior and have
a high full speed, called ILP threads. We always use the
ILP thread gzip as High Priority Thread (HPT). The Low
Priority Threads (LPTs) are either all ILP or MB. They are
denoted by In and Mn, respectively, where n is the num­
ber of LPTs. For example, 11 denotes the workload gzip
and eon, and M2 the workload composed of gzip, mcf, and
twolf (see Figure 4).

3. 2 Dynamic resource allocation

We propose a mechanism that provides control over the ex­
ecution speed of a designated High Priority Thread by dy­
namically allocating resources to it. It ensures that the HPT
runs at a given target IPC that represents X% of its IPC

when it would run alone on the machine. At the same time,
we want to give best effort to the remaining Low Priority
Threads and maximize their throughput as well.

The basis of our mechanism rests on the observation that
in order to realize X% of the overall IPC for a given job, it
is sufficient to realize X% of the maximum possible IPC at
every instant through the execution of that job. We employ
two phases, discussed in more detail in [2], that are executed
in alternate fashion.

• During the sample phase, all shared resources are given
to the HPT and LPTs are temporarily stopped. As a
result, we obtain an estimate of the full speed of the
HPT during this phase, called the local fPC. In order to
counteract thread interference, this phase is divided in
a warmup phase of 50,000 cycles and an actual sample
phase of 10,000 cycles.

• During the tune phase, our mechanism dynamically varies
the amount of resources given to the HPT in order to
achieve a target fPC that is given by the local IPC com­
puted in the last sample period times the required per­
centage given by the as. The resources considered in this
paper are rename registers, instruction and load/store
queue entries, and ways in the 8-way set associative L2
cache. We tune resource allocation every 15,000 cycles
for a period of 1.2 million cycles.

3.3 Results

In Figure 3, we show the achieved percentage of the full
speed of gzip and the full speed of the Low Priority Threads
as points in the QoS space. The full speed of the LPTs is
the speed that they would obtain if they were executed as
a single workload using flush. From this figure, we observe
that the icount and flush policies are scattered through the
QoS space. Instead, our QoS mechanism always achieves
70% of the full speed of gzip or slightly more. This shows
that we can isolate the execution of gzip from the other
threads and hence enable real time constraints on an SMT
processor. In [2] we have shown that we can reach arbitrary
percentages for a large collection of workloads with the same
accuracy.

Figure 4 shows that, on average, the total throughput
of our QoS mechanism does not degrade compared to either
icount or flush. The horizontal lines in the bars denote the
IPC values of the HPT. We see that in all cases the through­
put of the LPTs is lower when using our QoS mechanism
than for either icount or flush. This is because we need to
reserve many resources for the HPT in order to reach a high
percentage of its full speed. Hence, there is a tradeoff be­
tween throughput of the LPTs and performance predictabil­
ity. For ILP workloads, the total throughput is about 10%
less, also because during the sample periods the LPTs are
stopped. When the ILP thread gzip runs in a context of
MB threads, long latency loads missing in the L2 cache tend
to clog the pipeline in icount, reducing overall IPC. This
effect is less for flush that is designed to deal with this. Us­
ing these last two fetch policies, the MB LPTs do not have
high throughput. Using our mechanism, the HPT reaches a
higher, required, speed than in either icount or flush, and as
a result the total throughput increases.

4. CONCLUSION

In this paper, we have approached the collaboration between
as and SMT as Quality of Service management, enabling the
as to exercise control over the execution of threads. The
SMT processor provides 'levers' through which the as can
fine tune the internal operation of the processor in order to
meet certain QoS requirements, expressed as points or ar­
eas in the QoS space. We have shown that it is possible to
influence at will the execution of a thread in a workload in

1343

Figure 3: QoS space resulting from dynamic resource allocation

6�------------------------------�======�
DOoS

5 ------ -f- ------= r- --------- r- --
_ DICOUNT

o [L
4 --

- -

� 3
o f-

----� ------ ----- -

2

eon

(11)

�

gee wupwise gap apsi
crafty

(12) (13)

D FLUSH

r-
----- � r_-- _____ �--- r-r- - r- � -----� =-�

�-

art

(M1)

mel twolf mef equake
swim

(M2) (M3)

Figure 4: Total IPC and IPC of the HPT for various policies

order to achieve different QoS requirements. We also have
proposed a novel mechanism to deal with one of those re­
quirements: to guarantee a job a minimum percentage of its
full speed. This mechanism enables high-performance out­
of-order SMT processors to deal with real-time constraints
and hence renders them suitable for many types of embedded
systems.

REFERENCES

[1] F. J. Cazorla, E. Fernandez, A. Ramirez, and M. Valero.
Improving memory latency aware fetch policies for SMT
processors. In Proc. ISHPC, pages 70-85, 2003.

[2] F.J. Cazorla, Peter M.W. Knijnenburg, R. Sakellar­
iou, E. Fernandez, A. Ramirez, and M. Valero. Pre­
dictable performance in SMT processors. Technical
Report UPC-DAC-2003-57, Universitat Politecnica de
Catalunya, 2003.

[3] A. El-Moursy and D.H. Albonesi. Front-end policies for
improved issue efficiency in SMT processors. In Proc.
HPCA, pages 31-42, 2003.

[4] T. R. Halfhill. Philips powers up for video. Micropro­
cessor Report, November 2003.

[5] M. Levy. Multithreaded technologies disclosed at MPF.
Microprocessor Report, November 2003.

[6] K. Luo, J. Gummaraju, and M. Franklin. Balancing
throughput and fairness in SMT processors. In Proc.
ISPASS, pages 164-171, 200l.

[7] A. Snavely, D.M. Tullsen, and G. Voelker. Symbiotic
job scheduling with priorities for a simultaneous multi­
threaded processor. In Proc. A SPL OS, pages 234-244,
2000.

[8] D. Tullsen and J. Brown. Handling long-latency loads
in a simultaneous multithreaded processor. In Proc. MI­
CRO, pages 318-327, 200l.

[9] D. Tullsen, S. Eggers, J. Emer, H. Levy, J. Lo, and
R. Stamm. Exploiting choice: Instruction fetch and
issue on an implement able simultaneous multithreading
processor. In Proc. ISCA, pages 191-202, 1996.

[10] W. Yamamoto and M. Nemirovsky. Increasing super­
scalar performance through multistreaming. In Proc.
PACT, pages 49-58, 1995.

1344

