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MOORE-GIBSON-THOMPSON THERMOELASTICITY

RAMÓN QUINTANILLA

Departament de Matemàtiques

Universitat Politècnica de Catalunya

C. Colom 11, 08222 Terrassa, Barcelona, Spain

e-mail: ramon.quintanilla@upc.edu

Abstract: We consider a thermoelastic theory where the heat conduction is de-
scribed by the Moore-Gibson-Thompson equation. In fact, this equation can be
obtained after the introduction of a relaxation parameter in the Green-Naghdi
type III model. We analyse the one and the three dimensional cases. In three
dimensions we obtain the well-posedness and the stability of solutions. In one
dimension we get the exponential decay and the instability of the solutions de-
pending on the conditions over the system of constitutive parameters. We also
propose possible extensions for these theories.

Keywords: Moore-Gibson-Thompson equation, relaxation parameter, thermoe-
lasticity, existence, stability.

1. Introduction

The Moore-Gibson-Thompson equation (MGT, for short) has deserved a big interest in the
recent years and many papers has been directed to study and understand it (see among others
[4, 12, 14, 21, 28, 29]). It arises from the �uids mechanics [38]. In this paper we approach the
MGT equation from the viewpoint of thermoelasticity. We will see that it can be derived in a
natural way from one of the Green-Naghdi heat conduction models. We will use it to propose a
new system of equations for the thermoelasticity.

Let us recall that the classical theory of heat conduction based on the Fourier law jointly with
the energy equation

(1.1) qi,i = cθ̇,

(where qi os the �ux vector, θ is the temperature and c is the thermal capacity) predicts the
instantaneous propagation of the thermal waves. This fact contradicts the causality principle. For
this reason many scientists have proposed alternative equations for the heat conduction. Most
known theory is the one introduced by Maxwell and Cattaneo [1], which changes the Fourier law
by a constitutive equation which containing a relaxation parameter in the following form

(1.2) τ q̇i + qi = kθ,i,

where k is the thermal conductivity and τ is the relaxation parameter which is assumed to
be positive. As usual, a dot over the variable means the time derivative, while the colon and
subscript i means the spatial derivative with respect to the corresponding variable.

When one adjoins (1.2) with (1.1), a damped hyperbolic equation is obtained. In this case the
thermal waves propagate with �nite speed. A lot of attention has been paid to this equation. It

Date: May 8, 2019.
1



2 RAMÓN QUINTANILLA

has also been extended to the thermoelasticity situation as the Lord-Shulman theory [18]. This
proposition has been deeply investigated (see among others [2, 9, 10, 11, 34, 35]). In fact the
quantity of contributions for this theory is huge.

At the end of the last century Green and Naghdi [6, 7, 8] introduced three new alternative
theories for the heat conduction based on a rational way that they called type I, II and III
respectively.The linear version of the type I agrees with the one proposed by the Fourier law.
The type II drives to another hyperbolic equation for the heat conduction. In this case there is
no dissipation and the �ux vector is obtained as a linear expression of the thermal displacement.
That is

qi = k∗α,i, α̇ = θ,

where k∗ is the conductivity rate parameter. The type III theory is described by the constitutive
equation

qi = k∗α,i + kθ,i.

Notice that when k∗ = 0 we recover the type I, meanwhile type II is obtained when k = 0. This
theory has also deserved much attention in recent years (see among others [5, 15, 16, 13, 25, 20,
22, 23, 24, 26, 30, 32, 33, 37]). If k and k∗ are both positive and we adjoin this last equation
with (1.1) we obtain a generalization of the Fourier classical theory. The exponential decay of
solutions has been obtained in this situation. However this theory has the same drawback as
the usual Fourier theory and it also predicts the instantaneous propagation of the thermal waves
(see for instance [36], page 39). Again the causality principle is not satis�ed. Therefore, it is also
natural to modify this proposal introducing a relaxation parameter in the constitutive equation
to overcome this problem. That is, to consider the equation

(1.3) τ q̇i + qi = k∗α,i + kθ,i.

This equation is the natural generalization of (1.2) and therefore the combination of it with (1.1)
will be the natural extension of the Cattaneo-Maxwell heat equation.

It is remarkable that if we adjoin equation (1.3) to (1.1), we obtain the linear version of the Moore-
Gibson-Thompson equation. When k∗ = 0 we recover the Cattaneo-Maxwell heat equation.

Given a heat conduction theory a thermoelastic counterpart can be developed. Therefore from
this new thermal equation we can propose a thermoelastic theory. This is the aim of this paper.
We want to propose and analyse the basic properties of the new proposal where we see the MGT
equation is considered as the heat equation.

In the next section we obtain the MGT-inhomogeneous equation and we describe the basic
properties. Later we study a thermoelastic system where the heat equation is de�ned by the
MGT-equation. Well-posedness of the problem is obtained as well as the stability of the solutions
in the three dimensional case. In Section four we consider the one-dimensional situation and we
prove the exponential decay of solutions as well as the instability when an inequality is satis�ed
by the parameters (Section �ve). Last section is devoted to propose several generalizations of
the MGT-equation in the context of the heat conduction with memory.

2. Inhomogeneous MGT-equation

The general constitutive equation for the linear type III theory for centrosymmetric materials is
given by

(2.1) qi(x, t) = (kij(x)θ,j) + (k∗ij(x)α,j),
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where kij is the thermal conductivity tensor and k∗ij is the conductivity rate tensor. The inho-
mogeneous version for the energy equation is

(2.2) qi,i = c(x)θ̇.

As we have pointed out before, if we adjoin these two equations we obtain

(2.3) c(x)θ̇ = (k∗ij(x)α,i),j + (kij(x)θ,i),j

which allows the propagation of the thermal waves with in�nite speed and violates the causality
principle. To overcome this drawback we propose to introduce a relaxation parameter into
equation (2.1) as in the Maxwell-Cattaneo case.

We obtain an expression of the form

(2.4) τ q̇i(x, t) + qi(x, t) = (kij(x)θ,j) + (k∗ij(x)α,j),

where τ > 0. If we substitute relation (2.4) into (2.2), we obtain an inhomogeneous version of
the MGT-equation which can be written as

(2.5) τc(x)
...
θ + c(x)θ̈ = (k∗ij(x)θ,i),j + (kij(x)θ̇,i),j .

We consider this equation in a three-dimensional domain B whose boundary is smooth enough
to apply the divergence theorem. To have a well-posed problem we need to introduce the initial
conditions:

(2.6) θ(x, 0) = θ0(x), θ̇(x, 0) = φ0(x) θ̈(x, 0) = ψ0(x), x ∈ B,
and the homogeneous Dirichlet boundary conditions

(2.7) θ(x, t) = 0, x ∈ ∂B.
To simplify the notation we will denote Kij(x) = kij(x)− τk∗ij(x)

From now on, we assume that the constitutive tensors are upper bounded and that:

(i) There exists a positive constant c0 such that c(x) ≥ c0.
(ii) There exists a positive constant k0 such that

(2.8) k∗ijξiξj ≥ k0ξiξi,
for every vector ξi.

(iii) There exists a positive constant k1 such that

(2.9) Kijξiξj ≥ k1ξiξi,
for every vector ξi.

It is worth noting that (ii) and (iii) imply that there exists a positive constant k2 such that

(2.10) kijξiξj ≥ k2ξiξi,
for every vector ξi.

Condition (ii) is natural in the type II/III theories to guarantee the stability of the solutions.
Inequality (2.10) is a consequence of the second principle (see [6]). Estimate (iii) is imposed to
guarantee the stability of solutions and we will see later a instability result when this condition
fails. The meaning of (i) is clear.

In view of the arguments and results proposed in [19] we can guarantee that under the assump-
tions imposed above there exists a quasi-contractive semigroup inH1

0 (B)×H1
0 (B)×L2(B)1 which

1Here we denote the usual Sobolev space.
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generates the solutions to the problem determined by the equation and the initial and boundary
conditions. However, under our assumptions it can be proved the existence of a contractive
semigroup. In fact, in this case the conservation of the energy reads

(2.11) E(t) + F (t) = E(0),

where

(2.12) E(t) =
1

2

∫
B

(
c|θ̇|2 + cτ2|θ̈|2 + 2cτ θ̇θ̈ + k∗ijθ,iθ,j + kijτ θ̇,iθ̇,j + 2k∗ijτθ,iθ̇,i

)
dv

and

(2.13) F (t) =

∫ t

0

∫
B
Kij θ̇,iθ̇,jdv.

In fact, the exponential decay of the solutions can be proved2.

We note that this energy is equivalent to the norm induced by the usual inner product in
H1

0 (B)×H1
0 (B)× L2(B). To see it, we can point out that

(2.14) k∗ijθ,iθ,j + kijτ θ̇,iθ̇,j + 2k∗ijτθ,iθ̇,i = k∗ij(θ,i + τ θ̇,j)(θ,j + τ θ̇,j) + τKij θ̇,iθ̇,j .

It is worth noting that we could also obtain the MGT-heat equation in an alternative way in the
context of the three-phase-lag theory [3]. If we consider the equation

(2.15) qi(x, t+ τ1) = (kij(x)θ,j(t+ τ2) + (k∗ij(x)α,j(t+ τ3)),

and assume that τ2 = τ3 and τ = τ1 − τ2 > 0 we will obtain the MGT-equation whenever we
make the approximation qi(x, t+ τ) ≈ qi(x, t) + τ q̇i(x, t).

3. Thermoelasticity

We can extend the comments and the problems proposed for the heat equation to a thermoelastic
situation. We need the equations

(3.1) tij = Cijkluk,l − βijθ, η = cθ + βijui,j .

Here (ui) is the displacement vector, tij is the stress tensor, η is the entropy, Cijkl is the elasticity
tensor which satis�es the symmetry condition

(3.2) Cijkl = Cklij ,

and βij is the coupling tensor.

We adjoin the evolution equations

(3.3) ρüi = tij,j , T0η̇ = qi,i

where T0 is the reference temperature which is assumed uniform and ρ(x) is the mass density.

After substitution of the constitutive equations into the evolution equations we obtain the system

(3.4) ρüi = (Cijkluk,l − βijθ),j

(3.5) cθ̈ + cτ
...
θ = −βij(üi,j + τ

...
u i,j) + (kij(x)θ̇,j),i + (k∗ij(x)θ,j),i

where we have assumed T0 = 1 to simplify the calculations.

2We will give later an argument which can be applied to this easier case. We don't do it here to not repeat
the arguments.
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If we denote f̂ = f + τ ḟ and vi = u̇i our system implies that

(3.6) ρ¨̂vi = (Cijklv̂k,l − βij(θ̇ + τ θ̈)),j

(3.7) cθ̈ + cτ
...
θ = −βij ˙̂vi,j + (kij(x)θ̇,j),i + (k∗ij(x)θ,j),i,

It is clear that the solutions for this last system generates the solutions for our primitive system
(3.4)-(3.5). Therefore, from now on, we will omit the hats.

Apart from the assumptions proposed before, here and from now on, we assume that the consti-
tutive tensors are upper boundeded and

(iv) There exists a positive constant ρ0 such that ρ(x) ≥ ρ0.
(v) There exists a positive constant C0 such that

(3.8)

∫
B
Cijklui,juk,ldv ≥ C0

∫
B
ui,jui,jdv,

for every vector (ui) vanishing at the boundary of the domain.

The meaning of condition (iv) is clear. Condition (v) can be understood with the help of the
elastic stability theory.

To the initial and boundary conditions proposed above for the thermal variables, we also adjoin
that

(3.9) vi(x, 0) = v0i (x), v̇i(x, 0) = w0
i (x), x ∈ B,

and the boundary conditions

(3.10) v(x, t) = 0, x ∈ ∂B.

Again the existence and uniqueness of solutions is guaranteed by the result obtained in [19].
However in that contribution the authors prove the existence of a quasi-contractive semigroup.
We here want to give a new step and to prove that in our case the semigroup is contractive and
therefore the stability of solutions will be guaranteed.

We now transform our initial boundary value problem into a Cauchy problem in a suitable Hilbert
space. We consider

(3.11) H = H1
0(B)× L2(B)×H1

0 (B)×H1
0 (B)× L2(B).

If U = (v,w, θ, φ, ψ) and U∗ = (v∗,w∗, θ∗, φ∗, ψ∗) we de�ne the inner product
(3.12)

〈U,U∗〉 =
1

2

∫
B

(
ρwiw̄

∗
i + Cijklvi,j v̄

∗
k,l + c(φ+ τψ)(φ̄∗ + τψ̄∗) + k∗ij(θ,i + τφ,i)(θ̄

∗
,j + τ φ̄∗,j) + τKijφ,iφ̄

∗
,j

)
dv.

As usual, the bar over a variable means the conjugated complex. It is worth noting that under
the assumptions proposed previously the norm de�ned by this inner product is equivalent to the
usual one in H.
We de�ne several operators

Ai(v) = ρ−1(Cijklvk,l),j , A = (Ai)

Bi(φ) = −ρ−1(βijφ),j , B = (Bi)

Ci(ψ) = −ρ−1(βijψ),j , C = (Ci)

D∗(w) = −(cτ)−1βijwi,j , E(θ) = (cτ)−1(k∗ijθ,j),i
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F (φ) = (cτ)−1(kijφ,j),i, G(ψ) = −τ−1ψ
and the matrix operator

(3.13) A =


0 I 0 0 0
A 0 0 B C
0 0 0 I 0
0 0 0 0 I
0 D∗ E F G

 .

Our initial boundary value problem can be written as

(3.14)
dU

dt
= AU, U(0) = U0,

where

U0 = (v0,w0, θ0, φ0, ψ0).

It is clear that the domain of the operator D(A) is a dense subspace on the Hilbert space H.

Lemma 3.1. For every U ∈ D(A), Re〈AU,U〉H ≤ 0.

Proof. We note that

Re〈AU,U〉H = −1

2

∫
B
Kijφ,iφ,jdv.

In view of the assumptions our lemma is proved. �

Lemma 3.2. 0 belongs to the resolvent of A (in short, 0 ∈ ρ(A)).

Proof. Let (f1, f2, f3, f4, f5) ∈ H. We have to prove the existence of solutions to the system

(3.15) w = f1, φ = f3, ψ = f4

(3.16) Av + Bφ+ Cψ = f2, D
∗w + Eθ + Fφ+Gψ = f5.

We have the desired solutions for w, φ and ψ. To obtain the solutions for v and θ we have to
solve the system

(3.17) Av = f2 −Bf3 −Cf4, Eθ = f5 −D∗f1 − Ff3 −Gf4.
In view of the properties of the elliptic systems we can obtain the solution for the last two
unknowns and the proof is complete. �

Theorem 3.3. The operator A generates a contraction C0-semigroup S(t) = {eAt}t≥0 in H.

Proof. The theorem is a consequence of the two previous lemmas and the use of the Lumer-
Phillips corollary to the Hille�Yosida theorem (see, e.g., [27]). �

As we have a contractive semigroup we know that

||S(t)U || ≤ ||U ||,
for every t ≥ 0.

Finally, as a consequence, we state the main result of this section.

Theorem 3.4. Assume that U0 ∈ D(A). Then, there exists a unique solution U(t) ∈
C1([0,∞),H) ∩ C0([0,∞),D(A)) to problem (3.14).
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4. Exponential stability in the one dimensional case

If we consider a one-dimensional homogeneous material we deal with the system

(4.1) ρv̈ = µvxx − β(θ̇x + τ θ̈x)

(4.2) cθ̈ + cτ
...
θ = −βv̇x + kθ̇xx + k∗θxx

In this section we will study the exponential stability for the problem determined by this system
with the initial conditions:
(4.3)

v(x, 0) = v0(x), v̇(x, 0) = w0(x), θ(x, 0) = θ0(x), θ̇(x, 0) = φ(x) θ̈(x, 0) = ψ(x), x ∈ (0, l),

and the boundary conditions

(4.4) v(0, t) = v(l, t) = θx(0, t) = θx(l, t) = 0.

That is, we assume Dirichlet boundary conditions for the mechanical variable and Neumann
conditions for the thermal component. It is worth saying that the boundary conditions are
proposed in such a way that allows to simplify the mathematical analysis.

The parameters that appear in the system are related with the properties of the material and
have to satisfy some thermomechanical restrictions. In particular, we assume that

(4.5) c > 0, ρ > 0, µ > 0, k∗ > 0, k > k∗τ, β 6= 0, τ > 0.

Our assumptions are in agreement with the thermomechanical axioms and the empirical experi-
ments. The assumptions concerning the mass density and the thermal capacity are obvious. The
condition on µ can be understood with the help of the elastic stability. The conditions on the
k, k∗ and τ are the natural ones to have dissipation. The assumption on β is strictly needed to
guarantee the coupling between the mechanical and the thermal parts.

The aim of this section is to determine the behaviour of the solutions (with respect to the time)
to the problem. In fact, we want to prove that the solutions decay in an exponential way when
the appropriate damping mechanisms are considered in the system.

We note that there are solutions (uniform in the variable x) that do not decay. To avoid these
cases, we will also assume that

(4.6)

∫ l

0
θ0(x) dx =

∫ l

0
φ0(x) dx =

∫ l

0
ψ0(x) dx = 0.

We consider the Hilbert space

H =
{

(v, w, θ, φ, ψ) ∈ H1
0 × L2 ×H1

∗ ×H1
∗ × L2

∗
}
,(4.7)

where

L2
∗ = {f ∈ L2,

∫ π

0
f(x)dx = 0} and H1

∗ = L2
∗ ∩H1.
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Taking into account that v̇ = w, θ̇ = φ and φ̇ = ψ and writing D = d
dx , we can restate our

system in the following way:

(4.8)



v̇ = w

ẇ =
1

ρ

(
µD2u− βDφ− τβDψ

)
θ̇ = φ

φ̇ = ψ

ψ̇ =
1

cτ

(
kD2φ− βDw + k∗D2θ − τψ

)
Moreover, if U = (v, w, θ, φ, ψ), then our initial-boundary value problem can be written as

(4.9)
dU

dt
= AU, U0 = (v0, w0, θ0, φ0, ψ0),

where A is the following 5× 5-matrix

(4.10) A =


0 I 0 0 0

µ
ρD

2 0 0 β
ρD

βτ
ρ D

0 0 0 I 0
0 0 0 0 I

0 − β
cτD

k∗

cτD
2 k

cτD
2 −1/c


and I is the identity operator. We note that the domain of A, that we will denote (again) by
D(A), is dense in H.
We de�ne an inner product in H. If U∗ = (v∗, w∗, θ∗, φ∗, ψ∗), then

〈U,U∗〉H =
1

2

∫ π

0

(
ρww̄∗ + cφφ̄∗ + cτ2ψψ̄∗ + cτ(φψ̄∗ + φ̄∗ψ) + µvxv̄

∗
x

+ kτφxφ̄
∗
x + kθθ̄∗ + k∗τ(θφ̄∗ + θ̄∗φ)

)
dx.

(4.11)

It is worth mentioning that this product is equivalent to the usual product in the Hilbert space
H. In fact, it is the natural restriction of the one proposed previously to this section.

Lemma 4.1. For every U ∈ D(A), Re〈AU,U〉H ≤ 0.

Proof. Direct computation gives

Re〈AU,U〉H = −k − k
∗τ

2

∫ l

0
|φx|2dx.

As we are assuming that k∗τ < k the lemma is proved. �

Lemma 4.2. 0 belongs to the resolvent of A (in short, 0 ∈ ρ(A)).

Proof. The proof can be obtained in a similar way to the one proposed in the previous section. �

In view of these two lemmas and recalling the fact that the domain of the operator is dense, we
can use the Lumer-Phillips corollary to the Hille-Yosida theorem to obtain the following result.

Theorem 4.3. The operator given by matrix A generates a contraction C0-semigroup S(t) =
{eAt}t≥0 in H.
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Now, we will show the exponential decay of the solutions for our problem.

To prove the exponential decay, we recall the characterization stated in the book of Liu and
Zheng [17].

Theorem 4.4. Let S(t) = {eAt}t≥0 be a C0-semigroup of contractions on a Hilbert space. Then
S(t) is exponentially stable if and only if the following two conditions are satis�ed:

(i) iR ⊂ ρ(A),
(ii) lim

|λ|→∞
‖(iλI − A)−1‖L(H) <∞.

Lemma 4.5. The operator A de�ned in (4.10) satis�es iR ⊂ ρ(A).

Proof. We here follow the arguments given in the book of Liu and Zheng ([17], page 25). Let us
assume that the intersection of the imaginary axis and the spectrum is non-empty. Therefore,
there exist a sequence of real numbers λn with λn → $, |λn| < |$| and a sequence of vectors
Un = (vn, wn, θn, φn, ψn) in the domain of the operator A and with unit norm such that

(4.12) ‖(iλnI − A)Un‖ → 0.

In our case, writing this condition term by term we get

(4.13) iλnvn − wn → 0 in H1,

(4.14) iλnwn −
1

ρ

(
µD2vn − βDφn − βτDψn

)
→ 0 in L2,

(4.15) iλnθn − φn → 0 in H1,

(4.16) iλnφn − ψn → 0 in H1,

(4.17) iλnψn −
1

cτ

(
−βDwn + kD2φn + k∗D2θn − τψn

)
→ 0 in L2.

In view of the dissipative term for the operator, we see that

(4.18) Dφn → 0 in L2.

From (4.15) we also see that Dθn → 0 in L2. We now want to see that ψn tends to zero in L2.
To this end we multiply (4.16) by ψn to see that

(4.19) i〈φn, λnψn〉 − ||ψn||2 → 0

The convergence of ψn will be guaranteed whenever we show that 〈φn, λnψn〉 → 0. From (4.17)
we see

(4.20) icτ〈φn, λnψn〉 = 〈φn,−βDwn + kD2φn + k∗D2θn − τψn〉
After integration by parts and taking into account the convergences previously noted we see that
the right hand side tends to zero and therefore the convergence of ψn to zero follows in L2. We
now prove that vn tends to zero in H1. We see from (4.17) that

(4.21) −βDvn + λ−1n kD2φn + λ−1n k∗D2θn → 0 in L2.

After multiplication by Dvn we see

(4.22) β||Dvn||2 + k〈Dφn, λ−1n D2vn〉+ k∗〈Dθn, λ−1n D2vn〉 → 0.
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But from (4.14) we see that λ−1n D2vn is bounded. Therefore we see that 〈Dφn, λ−1n D2vn〉 and
〈Dθn, λ−1n D2vn〉 tend to zero and therefore we also obtain that Dvn converges to zero. The
convergence of wn is obtained after multiply (4.14) by vn. This contradicts the fact that the
sequence has unit norm and the lemma is proved. �

Lemma 4.6. The operator A satis�es

lim
|λ|→∞

‖(iλI − A)−1‖L(H) <∞.

Proof. The proof also follows a contradiction argument. Suppose that the thesis is not true. It
follows the existence of a sequence of real numbers λn such that |λn| → ∞ and a sequence of
unit vectors in D(A) in such a way that (4.12) holds. Therefore, conditions (4.13)�(4.17) still
hold. Now we can use a similar argument to the one used in the proof of the previous lemma
because the key point is that λn does no tend to zero. �

The two previous lemmas give rise to the following result.

Theorem 4.7. The C0-semigroup S(t) = {eAt}t≥0 is exponentially stable. That is, there exist
two positive constants M and α such that ‖S(t)U‖ ≤M‖U‖e−αt.

Proof. The proof is a direct consequence of the two previous Lemmas and the Theorem 4.4. �

5. Instability of solutions

The aim of this section is to prove that when k < k∗τ we can �nd a solution of the problem
which is unstable. To make the calculations easier we assume that l = π. Our analysis is similar
to the one proposed for the dual-phase-lag equation [31].

The solutions in this case will be combinations of functions of the form

(5.1) v = A exp(ωt) sinnx, θ = B exp(ωt) cosnx.

We obtain the following homogeneous system with the unknowns A and B:

(5.2) A(ρω2 + µn2)−Bβn(ω + τω2) = 0

(5.3) Aβnω +B((cω2 + cτω3 + kωn2 + k∗n2)) = 0

Our aim is to obtain a nontrivial solution. To this end, we impose that the determinant of the
system above is zero. Here ω must be a solution of the equation

(5.4) ρcτx5 + ρcx4 + (ρkn2 + β2n2τ + µn2cτ)x3

(ρk∗n2 + µn2c+ β2n2)x2 + µn4kx+ µn4k∗ = 0.

We use the Hurwitz theorem that says that the necessary and su�cient condition to guarantee
that the solutions of the equation

(5.5) x5 + q1x
4 + q2x

3 + q3x
2 + q4x+ q5 = 0,

have negative real part is:

(5.6) Λ1 = q1 > 0,Λ2 = det

(
q1 1
q3 q2

)
> 0,Λ3 = det

q1 1 0
q3 q2 q1
q5 q4 q3

 > 0,
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(5.7) Λ4 = det


q1 1 0 0
q3 q2 q1 1
q5 q4 q3 q2
0 0 q5 q4

 > 0, and Λ5 = det


q1 1 0 0 0
q3 q2 q1 1 0
q5 q4 q3 q2 1
0 0 q5 q4 q3
0 0 0 0 q5

 > 0.

We have that in our case

(5.8) Λ2 =
n2

c
(τ−1k − k∗)

which is less than zero whenever k < k∗τ . Therefore the instability of solutions follows.

Again the analysis does not depend on the length of the interval and our argument can be
extended without troubles to intervals with arbitrary but bounded length.

6. Further comments

The equations studied previously can be extended to consider problems depending on the history.

We assume that

lim
t→−∞

qi(x, t) is bounded .

We have that

(6.1) τ q̇i + qi = τ(q̇i + τ−1qi) = τ exp(−τ−1t) d
dt

(qi exp(τ−1t)).

In view of (2.4) we see

(6.2)
d

dt
(qi exp(τ−1t)) = τ−1 exp(τ−1t)

(
kij(x)θ,j + k∗ij(x)α,j

)
and

(6.3) qi exp(τ−1t) =

∫ t

−∞
exp(τ−1s)

(
τ−1kij(x)θ,j(s) + τ−1k∗ij(x)α,j(s)

)
ds.

Then

(6.4) qi =

∫ t

−∞
exp(−τ−1(t− s))

(
τ−1kij(x)θ,j(s) + τ−1k∗ij(x)α,j(s)

)
ds.

This relation can be generalized in the following form

(6.5) qi =

∫ t

−∞
h(t− s)

(
kij(x)θ,j(s) + k∗ij(x)α,j(s)

)
ds,

where h(s) is a non-increasing function.

Moreover we can think in the expression

(6.6) qi =

∫ t

−∞
(hij(x, t− s)θ,j(s) + h∗ij(x, t− s)α,j(s))ds,

where hij(s) and h
∗
ij(s) are non-increasing functions.
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The juxtaposition of these equations with equation (2.1) determines a possible extension of the
MGT-equation to the context of the heat conduction. Therefore our equation becomes

(6.7) cθ̇ =

∫ t

−∞
(hij(x, t− s)θ,j(s) + h∗ij(x, t− s)α,j(s)),ids.

As far as the author knows this equation has not deserved much attention in the literature yet.

The same happens if we consider (3.1) and (3.3) and the proposed equations for the heat �ux
vector. Therefore we can determine a new system of equations for the thermoelasticity.

Of course to determine the problems we need to impose initial and boundary conditions, but
this is a natural task.
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