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Abstract—This paper addresses the deadlock (DL)-free
scheduling problem of flexible manufacturing systems (FMS)
characterized by resource sharing, limited buffer capacity, rout-
ing flexibility, and the availability of material handling systems.
The FMS scheduling problem is formulated using timed colored
Petri net (TCPN) modeling where each operation has a certain
number of preconditions, an estimated duration, and a set of
postconditions. Based on the reachability analysis of TCPN mod-
eling, we propose a new anytime heuristic search algorithm which
finds optimal or near-optimal DL-free schedules with respect to
makespan as the performance criterion. The methodology tackles
the time-constrained problem of very demanding systems (high
diversity production and make-to-order) in which computational
time is a critical factor to produce optimal schedules that are
DL-free. In such a rapidly changing environment and under
tight customer due-dates, producing optimal schedules becomes
intractable given the time limitations and the NP-hard nature
of scheduling problems. The proposed anytime search algorithm
combines breadth-first iterative deepening A* with suboptimal
breadth-first heuristic search and backtracking. It guarantees
that the search produces the best solution obtained so far within
the allotted computation time and provides better solutions when
given more time. The effectiveness of the approach is evaluated on
a comprehensive benchmark set of DL-prone FMS examples and
the computational results show the superiority of the proposed
approach over the previous works.

Index Terms—Anytime heuristic search, deadlock-free, flexi-
ble manufacturing systems (FMS), Petri nets (PN), reachability
analysis, scheduling.

[. INTRODUCTION

FLEXIBLE manufacturing systems (FMS) can efficiently
produce several part types simultaneously using various

automated transport and production resources such as robots
and computer numerically controlled machines. Products are
manufactured according to an ordered (defined) sequence of
operations or tasks. The operation of some jobs may be pro-
cessed by more than one machine (routing flexibility) or
certain machines may be used to process more than one job
type (machine flexibility). When an operation is completed,
parts may be moved to the next machine through material
handling systems (MHS) (conveyors, robots, pallets, and auto-
mated guided vehicles) or transferred to intermediate buffer
facilities. The increased flexibility offered by an FMS can pro-
vide greater productivity [1] and allows the system to adapt
rapidly to changes in production plans in response to changing
demand patterns. However, this gives rise to a scheduling prob-
lem, which involves the efficient allocation of resources over
time to perform a collection of tasks (jobs) considering capac-
ity and precedence constraints where one or several objectives
have to be optimized [2]. For example, the minimization
of the makespan or total completion time, the manufactur-
ing lead time, or the work in process are some of the most
well-accepted objectives.

The scheduling algorithms developed for traditional manu-
facturing systems (job shop, flow shop, etc.) assume infinite
buffer capacity and do not take into account material han-
dling systems [3], [4]. In practice, however, the allocation of
resources in an FMS is usually difficult to manage due to
inherent resource limitations like no buffer storage, limited
buffer capacity, and MHS availability. The concurrent com-
petition for a finite number of resources in a manufacturing
environment usually results in deadlock (DL) situations, which
bring the system to a permanent halt state. A DL occurs when
a set of parts are in “circular waiting,” i.e., each part in the set
waits for a resource held by another part in the same set [5].
DL problems in FMS cause poor resource utilization, produc-
tion inefficiencies, long down-time, etc., and can drastically
affect other key performance indicators. Therefore, it is crucial
to develop appropriate resource allocation and scheduling tech-
niques to optimize the system performance while preventing
DL situations [6], [7].

DL resolution strategies can be seen from either con-
trol or scheduling perspective. Most of the research works
on DL resolution have focused more on control strategies
vis-a-vis prevention [8]-[16], avoidance [5], [17]-[19], and



detection and recovery [20], [21]. Li et al. [22], [23] provide
a comprehensive state-of-the-art review of DL control meth-
ods for FMS. However, DL-free scheduling has received little
attention in the literature [7]. Control methods try to avoid
or prevent the system from entering DL situations in order to
guarantee DL-free operations. Unfortunately, these methods
are not suitable to optimize system performance since they do
not take operation times into account [7], [24].

DL-free scheduling problems of FMS have been formu-
lated using three modeling approaches: 1) mathematical
programming [25]; 2) disjunctive graph [26]; and 3) discrete-
event  system  modeling [31, [6], [7], [24], [27]-[32].
Ramaswamy and Joshi [25] present mathematical for-
mulations for the DL-free scheduling of an automated
manufacturing workstation that considers material handling
and finite buffer capacity. Because of solution time consid-
erations, a Lagrangian relaxation heuristic is used to extend
the basic formulations to solve more realistic problems.
However, practical constraints related to MHS, resource
sharing situations, DLs, finite buffer sizes, multiple lot
sizes, and routing flexibility are usually difficult to describe
mathematically [24], [33]. Mati et al. [26] extend disjunctive
graph representation to job shop scheduling with blocking
and use a taboo search based on neighborhood structure to
find optimal DL-free schedules.

In the discrete-event system approach, two model-
ing formalisms are commonly used because of their
capability to explicitly represent DL states in an FMS:
1) Petri net (PN) [3],[24], [34], [35] and 2) auto-
mata (AA) [27], [36], [37]. PNs have been used extensively
to model, simulate, and analyze manufacturing systems where
there is a high level of concurrency, parallelism, causal
dependency, and synchronization [33]. In this paper, FMS
are formalized using timed colored PN (TCPN) modeling
(a high-level PN with time extension) in which the structure,
processes, and functionality for each product in a high
diversity production environment can be understood from a
discrete-event system approach. In such an approach, each
operation has a certain number of preconditions, an estimated
duration, and a set of postconditions. Colored PN (CPN)
modeling is preferred since it provides a more compact
representation of the system while maintaining the same
modeling power of PN.

Two different approaches have been developed to deal
with DL-free scheduling based on PN modeling. The first
approach [3], [24], [28], [29], [38], [39] performs scheduling
on DL-prone PNs and only takes into account DL situa-
tions during the scheduling process. DL detection phases
are incorporated into their optimization procedures. Here, the
scheduling problem is formulated as a search problem through
the generation of the reachability graph (or the state space)
of a DL-prone PN. The objective is to find the optimal
sequence of transition firings from the initial marking to
a defined goal marking which minimizes a given perfor-
mance measure. A DL-free schedule is guaranteed if the
firing sequence reaches the defined goal marking. As the
graph is generated, DL markings are detected if no tran-
sition is enabled. The paths leading to these markings are

marked and they are not considered for further exploration.
Reachability graph analysis is a reliable and efficient method
to obtain optimal schedules; however, the computational com-
plexity is so high that it is practically impossible to explore
the full state space of an industrial-sized system due to the
explosion problem. Atrtificial intelligence (Al)-based heuristic
search methods [3], [24], [28], [29], [38], [39] have been pro-
posed to simulate only the best scenarios by generating partial
reachability graphs with heuristic functions.

The second approach [6], [7], [31], [32], [40], [41] intro-
duces DL control policies [8]-[11], [19] into DL-prone PNs
to make them live (or DL-free) before scheduling is car-
ried out. A live PN ensures that no DL state is reached
during the system evolution. Based on the live PN, an opti-
mal DL-free schedule is obtained using search algorithms.
Structural PN objects, namely siphons [8]-[11], [42], [43] and
resource-transition circuits [19], [42], have been used to char-
acterize DLs and develop DL control policies for FMS. For
example, siphons are implemented by adding control places
and arcs to enforce liveness in the PN such that no siphon
can be emptied (a necessary and sufficient condition for a
DL-free PN).

However, this integration requires that DL control poli-
cies must be optimal, i.e., they must consider all the possible
rules or scenarios that do not restrict the firing of a feasible
transition that can lead to a better scheduling performance.
Since the computation procedure of optimal control poli-
cies is NP-hard [7], [31], [42], these methods [7], [31] are
system-specific and more suitable to a particular set of FMS
problems where the capacity of the same kind of resource
and lot sizes of parts are larger. References [8]-[11] and [42]
have focused on how to efficiently compute siphons and
design a live PN. Also, the controllers are conservative and
impose constraints on the system by considering a limited
number of alternatives, which in turn affects the system’s
performance. Genetic search algorithms [7], [31], [32] and
reachability graph methods [6], [44] have been used to search
for near-optimal DL-free schedules. Another approach [27]
based on AA uses Ramadge—Wonham’s [45] supervisory con-
trol theory to synthesize a DL-free controller for FMS models,
and A* heuristic search for scheduling. This paper focuses on
the first approach using CPN since the control rules in PN
cannot be easily obtained in CPN.

Besides the state explosion problem, one of the challenges
of the reachability graph is how to deal with a large number
of DLs that can occur during generation. This prevents solu-
tions from being returned at reasonable computation time and
may saturate the memory very quickly. Also, it can take a
considerable amount of time to obtain optimal schedules with
classical heuristic search algorithms like A* even when the
memory required is sufficient to explore the full state space.
Several heuristic search methods [3], [24], [28], [39] do not
return a solution until termination and they may fail to return
one at memory run out for sizable problems. In addition, the
run-time overhead for PN-based methods using reachability
graph is usually quite high since the time spent to obtain an
optimal DL-free schedule includes not only the generation of
the state space but also DL detection and node evaluation [27].



Owing to the time-critical decision making and deadline
pressure in production scheduling environments, a limited
amount of time is given to produce optimal or near-
optimal DL-free schedules. Since scheduling is an operational
decision-making activity that must be dealt with in a short-
term horizon, computation time becomes a critical factor. In
such a rapidly changing environment and under tight cus-
tomer due-dates, producing optimal solutions is considered
intractable given the time limitations and the NP-hard nature
of scheduling problems. Thus, it is more appropriate to accept
suboptimal solutions if the computation time can be reduced.

Anytime heuristic search algorithms have been proposed
in the AI domain to work under time-critical condi-
tions [46]-[49]. Rather than waiting for the search to ter-
minate, a first suboptimal solution is found quickly. This
solution is then improved continuously over time until the
search converges to an optimal solution, provided the com-
putation time is sufficient to prove optimality. Basically, they
trade off computation time and solution quality (SQ) to over-
come the drawbacks of classical heuristic search algorithms
that often take a long time to find optimal solutions to large-
sized problems. Anytime algorithms guarantee that the search
produces the best solution obtained so far within the allotted
computation time and they are expected to return better solu-
tions when given more time. A recent study [50] adapted the
anytime column search [51] to schedule FMS without con-
sidering DL situations. The proposed approach called anytime
layered search (ALS) combines breadth-first iterative deepen-
ing A* search (BFIDA") with suboptimal breadth-first heuristic
search (sBFHS) [52] and backtracking to provide a sequence
of improving solutions. The underlying search space of the
ALS is based on the condensed state space (CSS) of TCPN
models, which provides a compact representation of the timed
state space using untimed marking equivalence.

The rest of this paper is organized as follows. Section II
gives the background to TCPN modeling using a practi-
cal example of DL-prone FMS and an illustrative scenario
on how to obtain a DL-free model with control policies.
Section III introduces the scheduling of FMS based on reach-
ability graph analysis and CSS of TCPN models. Section IV
describes the proposed ALS algorithm for DL-free schedul-
ing while Section V evaluates and compares the performance
of the ALS method on an extensive set of DL-prone exam-
ples with state-of-the-art algorithms. Section VI concludes this
paper by giving a summary of the research and ideas for
future work.

II. FMS MODELING WITH TCPN

A CPN is a directed bipartite graph with two node types
called places and transitions where the nodes are connected via
directed arcs. In a CPN, the advantages of classical PNs are
enhanced by a condensed representation of the model with the
use of a data value called colored token. In an FMS descrip-
tion, a place containing tokens represents a job or resource
status, a transition describes the event (the start or comple-
tion) that may occur (or fire) based on the preconditions of
input arc expressions and guards, while an arc models the

flow of parts. Graphically, places, transitions, arcs, and guards
are represented by circles, boxes, arrows, and square brackets,
respectively.

To conduct performance analysis, a CPN is extended with a
time concept based on the introduction of a global clock. The
global clock represents the model time and each token has a
time attribute called the time stamp. The time stamp describes
the earliest time at which a token becomes available (ready to
be used). The time representation can be used to model activity
durations, earliness, delays, deadlines, etc. Deterministic time
values are considered in this paper.

Definition 1 [53]: Formally, a timed nonhierarchi-
cal CPN can be defined as a nine-tuple, TCPN =
(P,T,A,>,V,C,G,E,I) where:

P finite set of places {p1,p2,...,pm};

T finite set of transitions {¢1,1,...,t;}
such that PN T = 0,

A finite set of directed arcs {ay, as, ..., ai}
suchthat ACPxTUT x P;

> finite set of nonempty types called col-

ored sets that determine the data values
(tokens) and the operations and functions
that can be used in the net inscriptions
(i.e., arc, guard, and initialization expres-
sions). Each color set is either timed or
untimed;
Vv finite set of typed variables such that
Type[v] € Y for all variables v € V;
color set function that assigns a color set
to each place. A place p is timed if C(p)
is timed; otherwise, p is untimed;
guard function that assigns a guard to
each transition ¢ such that Type[G(¢)] =
Bool;
arc expression function that assigns an
arc expression to each arc a such that
Type[E(a)] = C(p)ms if p is untimed
and Type[E(a)] = C(p)rums if p is timed,
where p is the place connected to the arc
and Cys denotes the set of all multisets
over C;
initialization function that assigns an ini-
tialization expression to each place p
such that Type[l(p)] = C(p)ms if p is
untimed and Type[/(p)] = C(p)rus if p
is timed.

The current state of the system is defined by the distri-
bution of tokens over the places called marking. A marking
maps each place into a timed multiset of token elements and
a timed marking is a pair (M, #), which consists of the mark-
ing M together with the time stamps of the tokens and 7# € R
the value of the global clock [53]. The initial timed marking
M consists of the markings of each place (written above the
place) in the model representing the initial state of the system.
In a TCPN, transitions are associated with a delay interpreted
as machine processing or transportation time in a manufac-
turing environment, represented as “@+time value.” Also, the
TCPN formalism allows time delays to be specified for places

G : T — EXPR,

E: A — EXPR,

I: P — EXPRy



Raw material for J1  Robot 1 Finished product of J2
Machine 1 B Machine 2

E Robot 3

Machine 3

I e B B B I

Raw material for J2 Finished product of J1
Robot 2

Fig. 1. Layout of FMS Example 1 [27].

TABLE 1
ROUTING AND PROCESSING TIMES OF JOBS

Job/Operation 1 2 3
J1 M1 (5) M2(8) M3(2)
Jo M3(7) M (3) M2 (9)

or arcs. This paper focuses on only transition delays. The inter-
ested reader is referred to [53] for a detailed tutorial on CPN
formulations and theory.

Example 1: To illustrate the TCPN modeling of a DL-prone
system, let us consider an FMS example [28] of a no-buffer
system (with blocking) where each job has to wait on a
machine until it can be processed on the next machine.
The loading, unloading, and transportation operations are
performed with multiple shared MHS (robots). The FMS con-
sists of three machines M;, M>, and M3 and three robots
R1, Ry, and R3 with two job types J; and J> to be produced.
The layout of the FMS is shown in Fig. 1 and the routing
and processing times of jobs are given in Table I. In Table I,
M (5) means the first operation of job J; must be performed
on machine M| during five time units. Each machine can pro-
cess only one part at a time. The robots move parts between
machines and each one can transport only one part at a time.
Robot R; is shared by M| and M> and can be used to load raw
material of product J; to M, and unload finished product J;
from M. Robot R, is used to load M3, to deliver raw material
of product J>, and unload finished product J; from M3. Robot
R3 is shared by the three machines to transport intermediate
parts. The loading and unloading times are not considered as
a decision variable.

Fig. 2 shows the TCPN model of the FMS example together
with the color sets and variables. The TCPN consists of
five places (P1, P2, ..., Ps) and three transitions (77, T2, 73).
The interpretation of the places (including the conditional arc
expression T1P4) and colors is given in Tables II and III,
respectively. In the model, the symbol & is used as the equiv-
alent of andalso and a single + for the multiset of tokens
instead of the standard ++-. The arc expression 7'1P4 describes
the routing and processing times of jobs. It is not placed in
the figure for legibility. The cardinality (weight of each token)
in place P represents the lot size of the corresponding job.

1'(1,1,1,1,00@0+1'(2,3,2,1,0)@0

-
1'(rip) 1'(m.jp)
1'G,m,ogr,mn,r,d)  1'(1,0)0@0+1'(2,0)@0+
1'(1,0)+1'(2,0) d 1'(3,0)@0+1'(0,0)@0
1'(3,0)

if mn=0 { (mn.0)

else 1'(r

\ 1'(,mn,rn,opr+1,j)

colset INT = int;

colset MC = product INT*INT timed;

colset RC = product INT*INT;

colset JOB = product INT*INT*INT*INT*INT timed;
colset PRED = product INT*INT*INT*INT*INT*INT timed;

var j,m,r,opr,jp,mn,rn,d : INT;

Fig. 2. TCPN model of FMS Example 1.
TABLE II
PLACES AND THEIR MEANINGS
Place  Meaning
Py Raw materials available at the loading station for operation 1 or

ready to be loaded or currently being transported by robot to the
machine for the next operation
P> Robot idle or busy
P3 Machine idle or busy
Py Job ready to be processed by machine
Ps Jobs waiting to be transported by robot to machine for the next
operation or finished products waiting to be unloaded
if j =1 & opr = 1 then 1/(j,m,0pr,2,3,5) else if j = 1
& opr = 2 then 1/(j,m,opr,3,3,8) else if j = 1 &
opr = 3 then 1’(j,m,opr,0,2,2) else if j = 2 & opr =1
then 1/(j,m,opr,1,3,7) else if j = 2 & opr = 2 then
1'(4, m, opr, 2, 3, 3) else 1’(j, m, opr,0,1,9)

T1P4

The same model can be used for lot sizes of job greater than 1
by changing the weight of each token in place P;. Place P, is
the only untimed place in the net since the transportation times
of robots are ignored. The loading (unloading) of the part onto
(from) the machine before (after) the operation is regarded as
one operation [1]. There are 2, 3, and 4 tokens in places Py, P3,
and P3 respectively, while the others are empty. Token 1'(0, 0)
is used as a dummy machine to synchronize the transporta-
tion of the job to the unloading station after the last operation
is performed. As seen in the output arc expression 73P1, the
value of the operation type color opr is increased when the part
is being unloaded from the machine for the next operation.
The time stamps of the tokens are written after the
symbol @ and the global clock is at time 0. The time stamps of
the tokens in places Py, P4, and Ps represent the time at which
a job starts or finishes its last operation while those in place
P3 represent the time at which a machine finishes processing
a job or when the last job was unloaded from the machine.
The untimed marking M, of My, i.e., Mo(M,,) is obtained by



TABLE III
COLORS AND THEIR MEANINGS

Color Meaning

J Job type

opr  Operation type identifier

m Machine identifier

r Robot identifier

Jp Job type currently being loaded at machine or transported by robot (0
- raw material or machine/robot is available)

mmn  Machine identifier to process job for next operation

rn  Robot identifier to transport job for next operation

d Processing time of operation

removing all the time stamps from the tokens in places Pj,
P3, P4, and Ps.

Transition 77 describes the loading process event when a job
is being transported from the load station or from a machine
after processing. Transition 7, represents the execution of a
job’s task in a machine with an assigned duration of @ +-d, the
start and completion of the job processing, while 73 describes
the unloading process of jobs from the machines. 71 and 73
are immediate transitions without duration as transportation
time is omitted. They are implicitly assigned a zero time delay
@ +0.

A transition ¢ is time-enabled at time 7; in a marking M
denoted by M[t);, if all the tokens to be consumed from
the input places have a time stamp not later than time
T [54]. For example, if transition 77 is enabled by the tokens
1'(1,1,1,1,0)@0, 1'(1, 0), and 1'(1,0)@12 in places Py, P,
and Pz, respectively, T is said to be enabled at time 12. If a
transition ¢ fires at time 7, it changes M to a new marking M’
denoted by M[t), M’. M is said to be reachable from M. This
means that the tokens are removed from the input places and
added to the output places of the firing transition. The number
and color of the tokens are determined by the arc expressions,
evaluated for the occurring bindings [53]. A transition delay
applies to all output tokens created at transition firing. The
time stamp of a token is defined at its generation time. Firing
a transition ¢ at time 7 with a delay d time stamps the output
tokens with the time value 7 + d.

For transition 77 to be enabled, the machine assigned to
process a job for the next operation must be free or be tied
to a specific job during the unloading process of the same job
from the previous operation, the assigned robot is available
or currently transporting the job from the previous operation
and the number of operations required to complete the job is
less than 4 (opr < 4). Transition 73 is enabled if both the
assigned machine and the robot to transport the job for the
next operation are free. Otherwise, the job continually waits at
the machine used for the current operation until the resources
become available. Also, this impedes another operation to be
performed at this machine if another job needs to be processed
on it. This situation can lead to a DL. A marking M is called
a DL marking if no transition is enabled in M. For example, if
the TCPN model in Fig. 2 is simulated with a lot size of 2 for
each job and it reaches a marking M1,

P 1'(1,1,1,1,00@0; P> 1'(1,0)++1"(2,0)++1'(3,0); P3 1(0,0)@0
P4 empty; Ps 1'(1,2,2,3,3)@13++1/(2,1,2,2,3)@10++1'(2,3,1,1,3) @ 14

1(1,1,1,1,00@0+1'(2,3,2,1,0)@0

1'(Wip+1)
1'(rjp) 1'(m.jp)
Y_ r0)
RED #_GD
1(,mogr,mn,m,d)  1(1,00@0+1'(2,0)0@0+ INT
T(1,0)+1'2,0)4 . 0+11(0.0)@0 A
1(3,0)
3
MC
RC™J A
if mnfFO then
if mn=0 then 1'(rn,0) Tm,p)+1'(mn.0)
else 1)) d else [I'(m,0)+1'(mn,j)

1'(wip)
if opr+1=4 then 1'(wip-1)
else 1'(wip)

1'(,mn,rm,opr+1,j)

Fig. 3. Modified model of FMS Example 1 using a DL control policy.

by firing the following sequence of transitions from My:

Ty j=2.m=3,r=2,0pr=1 jp=0 Ty y=1m=1,r=1,0pr=1,jp=0

My M, M
Ty3j=2.m=3,0pr=1,mn=1,rm=3 Tysj=1,m=1,0pr=1,mn=2,rn=3

M M3 My
T3:j=1.m=1.0pr=1,mn=2,rn=3 Ty y=1,m=2,r=3,0pr=2,jp=1

My Ms Me
T3:j=2,m=3,0pr=1,mn=1,rm=3 Ty 3j=2,m=3,r=2,0pr=1,jp=0

Mg M7 Mg
Ty:j=1.m=2,0pr=2,mn=3,rm=3 Ty:j=2.m=3,0pr=1,mn=1,rn=3

Mg My Mo
Ty j=2.m=1,r=3,0pr=2,jp=2 Ty:j=2,m=1,0pr=2,mn=2,rn=3

Mo My Mi;.

Marking M2 depicts a DL situation in the FMS and the
system is said to be in a DL state. The job type J; at the load
station (token in Pj) cannot be picked up by the free robot
because the assigned machine for its first operation is being
occupied by another job J, in place Ps. Although the robots
are available, all the three machines have been blocked by the
jobs. The jobs in Ps remain in a permanent block state since
they continually wait to be transferred for their next operations
even though the required machines are not processing any job.
The system stops evolving since the machines cannot be freed.

To analyze the impact of DL control policies on scheduling
performance, we implement a least-cost strategy that controls
the flow of jobs [55], [56] in order to guarantee a DL-free
design of the system. It restricts the number of active jobs
(work-in-process) that flow within the system simultaneously
so as to reduce resource competition. It is based on the notion
that the number of DLs increases with the number of active
jobs, i.e., the higher the number of jobs introduced, the higher
the number of DLs that will be generated. Fig. 3 shows the
DL prevention model of FMS Example 1. To implement this
policy, two new places (P and Pg) and one transition (7p) are
added to the original model in Fig. 2. Transition T describes
the event that controls the release of jobs. The variable maxwip
is a parameter that determines the maximum number of jobs
allowed in the system, as a condition to guarantee DL-free
operations. It can be used as a constraint to completely avoid
DLs or reduce the number of DLs depending on the value
introduced. New jobs are not released to the system until the
color value wip is below the threshold maxwip, i.e., the guard



condition wip < maxwip is satisfied. The value of wip is
decreased by one each time a job exits the system, as shown
in the output arc expression 73P6.

III. TCPN SCHEDULING OF FMS USING
STATE SPACE EXPLORATION

Once the TCPN of the FMS is specified, the different
configurations of the FMS can be simulated by generat-
ing its reachability graph. As such, an optimal DL-free
schedule can be obtained by finding the optimal path
from the initial marking My to the goal marking M.
The goal marking syntax (without the time stamps) for
the TCPN in Fig. 2 can be represented as: My =
Py 2/(x, %, %,4,%); P 3/(%,0); P3 4(x,0); Py empty; Ps
empty; (¥ means any color value). This means that all the jobs
must have completed their operations (opr = 4 in place P),
the robots and machines are free (P and P3), and there are
no jobs being processed or waiting to be unloaded from any
machine (P4 and Ps).

The reachability set of a TCPN R(TCPN, Mp) comprises
the set of all possible markings reachable from the initial
marking My by executing any sequence of enabled transi-
tions. If a marking M is in the reachability set R(TCPN, M),
it means that there exists a firing sequence transforming My
into M. The timed state space of a TCPN [57] can be rep-
resented as a directed graph 7SS = (V,E, M), where V
is the set of nodes, E is the set of directed edges or arcs
E={M,t,M), € Vx (T xR)x VIM[f);M'} and My is
the initial marking. The nodes in the TSS represent mark-
ings (the states of the system) and include the global clock
and time stamps [53]. A marking M’ € V is a successor of
marking M € V if (M,t,M'),, € E. We say M’ is reachable
from marking M. Expanding a marking involves the computa-
tion of its successors. A visited marking M is a marking that
has been expanded or encountered for the first time. A path
between two markings Mo and M, is a sequence of mark-
ings o = Mo[to), M1[t1), ..., My—1[t,—1), M,, connected by a
sequence of edges with enabling times such that Vi € [0, n—1],
(M;, t;, Miy1) € E.

In TSS exploration, timed transitions are fired depending
on the earliest possible time of enabling either as an earliest
time state space (ESS) class or a reduced earliest time state
space (RSS) class [57]. The ESS class offers an event-driven
solution by generating new markings in an untimed manner
without considering time constraints, whereas RSS enforces
time constraints in which the firing of one transition may dis-
able the others. RSS is used to resolve transition conflicts when
a marking enables more than one transition at different times.

For the optimization of production scheduling problems,
RSS does not always guarantee optimality since it restricts
the number of markings to be explored [58]. Also, RSS may
fail to return a feasible solution where there are a high num-
ber of potential DLs [59]. Owing to the limitations of RSS,
this paper considers the ESS. It has been used in TCPN-based
scheduling methods proposed in [50], [60], and [61].

While constructing the state space, the search algorithm ver-
ifies whether or not a marking has been previously generated.

There are situations where the execution of different sequences
of transitions from the initial marking leads to the same
marking called duplicate. For example, consider the two mark-
ings M; = Pl 1'(1,2)@5 + +1'(2,4)@7;, P2 1'(1)@2 +
+1'2)@4 + +1'3)@8 and M, = Pl 1'(1,2)@3 +
+1'(2,9H@4; P2 1'(1H)@7 + +1'(2)@2 + +1'(3)@8. Both
are practically the same except that the time stamps of the
tokens are different. In the ESS duplicate detection procedure,
the time stamps are carried over into the state space. As such,
they will be listed as two unique nodes. Exploring the duplicate
marking will lead to the same future behavior with differing
time evolutions and could even lead to an infinite exploration
in some systems [50].

We consider the CSS method [50], [61], [62] that explores
the state space in a compact form by separating the evaluation
of the untimed marking from the time stamps. The CSS fac-
tors out the notion of time for duplicate detection. A unique
marking M is differentiated from another marking M’ by com-
paring M(M,) and M'(M,). Using the CSS approach, it is
quite attractive to obtain a finite state space but it becomes
more complicated when used for optimization purposes due
to the varying time stamp of each equivalent token. It faces
a difficult task of selecting the marking with the best time
stamp set that would optimize the path to the optimal solution.
References [60] and [61] select the most promising marking
by comparing the time stamps of each token to determine the
marking with lower time stamps. This process may become
time-consuming if the number of tokens involved is quite
large. We use the criterion described in [50] that employs the
actual path cost to reach a marking M from the initial marking
My denoted as g(M).

For the CSS procedure CSS(g(M1), g(M>)), there exist three
possible scenarios depending on the g(M) values of the stored
marking M; and the newly generated duplicate marking M.

1) g(My) < g(M3): Marking M, is discarded since its time
stamps may not lead to a better goal marking.

2) g(My) > g(M3): The time stamp set of M| is replaced. If
M has been expanded, M is reevaluated and its previous
descendants are pruned to maintain time consistency in
the state space.

3) g(My) = g(M>): First, the time stamps of the two mark-
ings are compared for equality. M> is discarded if the
time stamp set matches. Otherwise, an additional cri-
terion is required to determine the better marking. Tie
breaking can be performed using the global clock values.

A CSS can be used to alleviate the state explosion problem
but it is still not a guarantee to prevent the untimed state space
from exploding. The proposed anytime approach focuses on
the condensed ESS as the underlying search graph.

IV. ANYTIME HEURISTIC SEARCH ALGORITHM
FOR DL-FREE SCHEDULING

First, this section introduces the baseline search
algorithm (BFIDA*) and its limitations. Then, we present the
anytime search algorithm used to generate the condensed ESS
of TCPN models to obtain optimal or near-optimal DL-free
schedules with respect to makespan as the performance
criterion.
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A. BFIDA*

Typically, A* generates and stores all the successors of
an expanded marking, some of which are never expanded
since they have a cost value greater than the optimal sched-
ule. These markings fill up the memory and may prevent the
search from reaching a goal marking. BFIDA* [52] reduces
the memory requirements of A* by performing repeated iter-
ations of breadth-first branch and bound searches (BFBnB)
controlled by successively increased cost bound. Each itera-
tion is guided by the same evaluation function (f-cost) as A",
f(M) = g(M) + h(M) where h(M) is a heuristic function that
estimates the lower bound on the cost of the best path from
M to a goal marking My. Unlike A", the idea is to avoid stor-
ing markings that are not likely to lead to an optimal solution
at the expense of repeated search effort. At each iteration, it
prunes markings with an f-cost that exceeds a hypothetical
upper bound (hUB).

BFIDA* starts the iterative search using f(My) as the ini-
tial hUB. The search terminates successfully if a goal marking
is found. Otherwise, BFIDA* restarts the search by increasing
hUB by one or to the minimum f-cost of all unexpanded mark-
ings from the previous iteration, until a solution is found. The
search guarantees that the first solution obtained is optimal
provided that the heuristic function #(M) is admissible, i.e.,
it does not overestimate the cost to the goal marking. Each
successive iteration of BFIDA® expands a larger number of
markings than the previous iteration, but it never regenerates
a marking in the same iteration. In the last iteration, BFIDA*
expands the same number of markings as A*. Also, it removes
the overhead of maintaining a priority queue.

The admissible heuristic function used in [63] has been
adapted: h(M) = max;{§;(M),i = 1,2, ..., N}, where & (M)
is the sum of operation times of those remaining operations
for all jobs, which are planned to be processed on the ith
resource when the current system marking is represented by
M. N is the total number of resources. For FMS with rout-
ing flexibility, this heuristic function is not applicable. It is
incomplete and may become inadmissible. Because of the
combinatorial effects of alternative routings, we set h(M) = 0,
i.e., f(M) = g(M), which assumes that no heuristic informa-
tion is available to maintain admissibility. The same function
has been used in [1] and [27].
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(a) Condensed ESS of the 2 x 2 job shop. (b) and (c) BFIDA* iterations 1 and 2, respectively.

To illustrate how the BFIDA* search works, Fig. 4 shows its
application to the condensed ESS graph of the 2 x 2 job shop
TCPN given in [61]. The marking descriptors are omitted for
clarity. A marking with more than one f-cost value indicates
a marking class with different time stamp sets. The BFIDA*
search requires two iterations to obtain the optimal schedule
[Fig. 4(b) and (c)]. In the first iteration, the search stops at
level L(2) since f(Mg) and f(M7) is greater than f(Mp) = 17.
The second iteration set hUB = 22, the f(Ms) from the pre-
vious iteration. The search terminates at this iteration since a
goal marking of f(Mg) = 22 is obtained. The peak memory
requirement for BFIDA* is 7, whereas A* stores nine markings.
A* has to keep markings M3 and Mg in the state space even
if they will not be expanded. The reduction becomes signifi-
cant for a larger instance, especially for problems with large
branching factors.

However, BFIDA* has four major weaknesses.

1) It has reexpansion overhead. Each time the search is
restarted, the markings in the previous iteration must be
expanded to regenerate the pruned markings.

2) It can take a long time to return the optimal schedule if
the distance of the initial hUB to the optimal solution
is quite big such that hUB increases by a small margin
resulting in a large number of iterations.

3) It does not return a solution until it reaches an iteration
where hUB = optimal schedule. Also, no solution is
returned in a situation where the memory required to
reach a goal marking exceeds the available memory.

4) The expansion of markings proceeds in a BFS order, i.e.,
all the markings in a layer must be fully expanded before
moving to the next one. The time to reach a goal marking
becomes more expensive if the number of markings in
each layer with f(M) < hUB is quite large.

The proposed ALS algorithm overcomes these limitations,

with a focus on DL-free schedules.

B. ALS DL-Free Algorithm

To avoid restarting the search each time the minimum
f-cost (hUB) is increased, the proposed ALS algorithm favors
a forward or depth search, thereby reducing the time to
return a solution. The ALS combines BFIDA* with subop-
timal BFHS (sBFHS) [52] and backtracking. It relies on the



layered structure of the breadth-first search (BFS) in which
the state space graph is partitioned into a set of levels or lay-
ers, V = Uf.l;“g* L(i) where dmax is the maximum depth of
the optimal solution path (the number of layers required to
reach the optimal solution). A layer L(i) comprises the set of
markings with an exact distance of i (the level index) from
M. Like A*, ALS maintains two lists: 1) open and 2) closed.
The open list (OPEN) is implemented as a priority queue
that stores the markings that have been generated but not yet
expanded, whereas the closed list (CLOSED) which is usu-
ally represented by a hash table, stores the expanded (visited)
markings.

The ALS performs a series of BFIDA® and sBFHS iter-
ations with two upper bounds, hUB and suboptimal upper
bound sUB. In the first iteration, it starts with BFIDA* using
f(Mp) as the initial hUB. Here, hUB is used only for expand-
ing markings with f(M) < hUB and it does not prune the
markings with f(M) > hUB. This is to avoid the reexpansion
overhead of BFIDA*. If the search is unable to find a goal
marking with the first hUB, i.e., BFIDA*® expansion stops at a
depth drontier called the frontier layer, it continues to expand
markings from dfontier+1 With SBFHS using sUB as the upper
bound for marking expansion until a goal marking is reached.
The initial sUB is set to infinite since SBFHS has no prior
information of the search space. Then, sUB is updated with
the current best f(My). The search terminates if sUB is less
than or equal to the hUB of unexpanded markings in OPEN
between d = 0 and dfronter- At this point, the search is said
to have converged and an optimal solution has been reached.
Otherwise, it backtracks to the deepest layer having the newer
minimum f-cost hUB to start another iteration. The search con-
tinues to find improved solutions until an optimal goal marking
is reached.

In a nutshell, the ALS divides the state space into two parts:
an upper segment from layer L(0) to L(dfrontier) in Which mark-
ings are expanded according to BFIDA* with hUB and a lower
segment from L(dfrontier+1) t0 L(dmax) Where only markings
with f(M) < sUB are considered for expansion. A similar
approach was adopted by [64] in which depth-first search
is used as an extended search with IDA*. The frontier layer
dfrontier 18 the last depth of the BFIDA*® search area in the cur-
rent iteration where the markings have at least a successor M
with f(M) > hUB. The upper bound hUB is the minimum
f-cost of the markings in the OPEN list of the BFIDA" area
from layer L(0) to L(dfontier) While sUB is the current best
solution obtained from sBFHS and it is updated each time a
goal marking with a better f(My) is found. Like BFHS [52],
sBFHS expands markings in a BFS order and uses the same
heuristic function as A*. However, sBFHS only considers the
markings at the frontier of the BFIDA*, i.e., it starts construct-
ing its own search space from dfronger+ 1 and does not remove
layers from memory.

To reduce the memory requirements, ALS performs admis-
sible pruning using sUB. It periodically prunes the state space
when the incumbent sUB is improved. ALS removes markings
with f(M) > sUB in the two search areas to avoid keep-
ing a large number of unexpanded markings that would not
lead to an optimal solution. Although there is a time overhead

Algorithm 1 ALS Algorithm

1: procedure ALS(TCPN, My, Mg, CPUjjm;)
2: i < 0, dfrontier <= 00, dmax < 00,

3 8(Mp) < 0, f(Mp) < h(Mp)

4: hUB <« f(Mj), sUB « oo

5: OPEN(i] < {My}, CLOSED <« {M,, i}
6:

7

8

9

while hUB < sUB and CPUjjp,;; is not exceeded do
SEARCH(, dfyontiers dmax, hUB, sUB)
hUB <« minimum f-cost of OPEN[k], Yk € [0, dfrontier]
i < backtrack to the deepest layer with hUB and update

dfrontier
10: if IsImproved(sUB) then
11: Prune all M € OPENIk], Yk € [0,d] : f(M) > sUB
12: end if

13: end while

14: return My, sUB and solution path if sUB # oo else return
no solution

15: end procedure

associated with this process [46], the algorithm has more con-
trol over memory usage. Notwithstanding, the pruning process
can be delayed until memory is running low.

Algorithm 1 gives the pseudocode of the ALS algorithm.
The required inputs are the TCPN structure, the initial marking
My, the defined goal marking M,, and the CPU time limit
CPUjimit. The f-cost of M is computed and the parameter hUB
keeps track of the minimum f-cost of unexpanded markings
in the OPEN list across the layers in the BFIDA* area (line 8)
as one of the conditions for solution convergence (line 6). The
OPEN and CLOSED lists are indexed by layer index i (line 5).

Each iteration of the search algorithm runs within the
while loop (lines 6-13) and calls the SEARCH procedure in
Algorithm 2 to explore all the markings whose f-cost does not
exceed UB (line 19) given i, dfrontiers dmax> hUB, and sUB as
inputs. The search starts with BFIDA* without pruning, setting
the upper bound UB = hUB (line 17) and ends with sBFHS
provided the BFIDA*® search does not terminate with a goal
marking. It switches search at lines 49-52 and updates dfrontier
accordingly.

Both search methods have the same marking generation
algorithm (line 29) based on ESS and expands only markings
with f(M) < UB (line 19). When new markings are generated,
the algorithm checks whether or not M’ is a goal marking. In
case it is a goal marking, it performs a second check to deter-
mine if its f-cost is better than sUB. Each time the schedule
is improved, sUB is updated and a path from the new solu-
tion is constructed back to the initial marking (line 32). For a
nongoal marking, its f-cost is compared with sUB. The mark-
ing is pruned admissibly if f(M’) > sUB. Otherwise, duplicate
detection is performed against the CLOSED list (lines 38—43).
The algorithm adds the new marking to OPEN[i+1] and
CLOSED provided the untimed marking M’(M]) does not
already exist. A duplicate untimed marking goes through the
CSS procedure CSS(g(Mgtored), g(M")) (line 42) described in
Section IIT to determine whether the time stamp set of the
already stored marking must be replaced, given the g(M) of
the two markings.

Each time the BFIDA* extends the frontier, dfontier 1S
updated and the initial layer of the sBFHS is also updated.



Algorithm 2 BFIDA* and sBFHS Algorithm

16: procedure SEARCH(, dfm,me,, dmax, hUB, sUB)
17: UB <« hUB

18: while OPEN[i] # ¥ do

19: for all markings M € OPENIi] : f(M) < UB do
20: OPEN([i] < OPENIi] \ {M}
21: if NoEnabledTransitions(M) and IsNotGoal(M) then
22: M, < Parent(M)
23: while NumSuccessor(My) =1 do
24: CLOSED < CLOSED \ {M}
25: M, < Parent(M,)
26: end while
27: Mark M, as potential deadlock path and store
transition binding
28: else
29: for all enabled transitions t+ € T : M [t)ko’ R
P < o - Mlt)z, do
30: if IsMg(M') then
31: if SUB > f(M’) then
32: sUB < f(M'), My < M,
construct solution path
33: end if
34: if dmax = 00 or dmax > i + 1 then
35: dmax =i+ 1
36: end if
37: else if f(M’') < sUB then
38: if M'(M,,) ¢ CLOSED then
39: CLOSED < CLOSED U {M',i+ 1}
40: OPEN[i + 1] <~ OPEN[i + 11U {M'}
41: else
42: CSS(g(Mgtored), (M)
43: end if
44: end if
45: end for
46: end if
47: end for
48: i<—i+1
49: if fimin(OPEN[i]) > hUB then
50: UB < sUB — 1
51 dfrontier < 1 — 1
52: end if

53: end while
54: end procedure

AS drrontier 18 increased in subsequent iterations, the previously
generated layers in the sBFHS area merge with the upper
area to form part of the BFIDA® region. When a layer from
the sBFHS search space is moved into the BFIDA* area, the
expansion order changes according to hUB. The previously
generated markings eligible under sUB are only selected for
expansion if their f-cost values are less than or equal to hUB.
Depth dpax is updated each time a goal marking with an
improved solution (of lesser number of transition firings) is
reached (lines 34-36). This is to ensure that the search is
always confined to the shortest path depth. The ALS algo-
rithm terminates when the two upper bounds converge or the
search exceeds the given time limit CPUjjp; (line 6).

A DL detection phase is incorporated into the algorithm
when markings are selected for expansion from the OPEN list
(lines 21-27). It determines whether a marking is deadlocked
or not and steps are taken to avoid a repeated occurrence of
such a situation, using the information derived from the tran-
sition bindings. A marking is detected as a DL if no transition
is enabled and the path leading to the marking is no longer

explored. Keeping all dead markings in the CLOSED list may
lead to a quick state explosion if there are many DLs in the
state space [29]. However, they are no longer relevant to obtain
a schedule. Since the reachability graph is explored in frag-
ments and guided by a heuristic function, not all DLs are
encountered (or selected) by the search algorithm.

In the ALS algorithm, dead markings are either pruned
by this procedure (lines 21-27) when selected or removed
from the state space when their f-cost values exceed sUB. A
selected dead marking is pruned from the CLOSED list as well
as its immediate ascendants with one successor on the path to
DL. The pruning stops until it gets to an ascendant marking
M, having more than one successor (lines 23-26). Then, M,
is marked as a potential DL. marking with forbidden paths,
and the transition binding that triggers the generation of the
DL path is stored. The stored binding is used as a look-ahead
option to avoid the repeated exploration of a previously gen-
erated DL path. This is necessary when the same DL path is
reachable from different markings in the state space or when a
marking with better g(M) is reached in subsequent iterations.

ALS is equivalent to BFIDA* without pruning if a goal
marking is reached at the first iteration. The ALS algorithm
is complete and optimal provided that:

1) h(M) is a lowerbound on the cost to goal, i.e.,
h(M) < h* (M), VM where h*™ (M) is the real optimal
remaining cost;

2) g(M) does not discard markings leading to an optimal
solution in the time stamp evaluation for CSS;

3) the two upper bounds converge before memory runs
out or before the search is terminated.

A good anytime behavior of the algorithm depends on the
number of markings at the frontier and the degree of the
branching factor. The larger the branching factor and the num-
ber of markings at dfronger, the longer the time it takes to reach
a solution. To provide timely suboptimal solutions, especially
for problems with large branching factors, we propose to limit
the number of markings to be expanded at each layer to a
given width value w in each iteration, i.e., the most promising
o markings. o is called the expansion width and is similar to
the beam width [65], [66]. The significant difference between
o and beam width is that » is not oriented toward satisfy-
ing memory constraints but rather to enhance time-efficient
solutions. Also, it does not prune the remaining markings not
selected for expansion unlike the beam width. Since the search
is guided by cost functions, DL markings can be given prior-
ity over the nonDL ones. This can lead to a wrong selection
of potential DL markings at the early decision stages in the
state space, thereby increasing the time overhead. As such,
the expansion width must be large enough to avoid frequent
backtracking.

Fig. 5 shows the ALS exploration of the condensed ESS
in Fig. 4. The scheduling problem is solved in the first iter-
ation. The BFIDA* search stops at dfonter = 2 since the
successors of marking My have f-cost values greater than the
initial hUB = 17. Then, the sBFHS extends the search from
layer L(3) and obtains a new solution sUB = 22 when the
goal marking Mg is reached. The search terminates without
backtracking as sUB is equal to the next hUB value (f(M5)).
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Fig. 5. ALS exploration of the condensed ESS in Fig. 4.

V. COMPUTATIONAL RESULTS

The performance of the proposed ALS algorithm is eval-
uated on three application examples. The first example has
been described in Section II, the second is an FMS taken from
a real automated manufacturing workstation [24], [25], while
the last example is a well studied FMS problem with flexible
part routing and multiple resource capacity [7]-[9], [19], [31].
Five different cases of DL-prone situations are considered to
investigate the impact of resource competitions and limited
buffer capacity on FMS scheduling.

ALS is compared with BFIDA* and other existing meth-
ods on DL-free scheduling. The two algorithms described in
this paper (ALS and BFIDA*) and the TCPN simulator used
for computing transition firings were implemented using C++.
The graphical structures of the models are defined in ASCII
files whose syntax follows the standard rules of the TCPN
formalism. The experiments were conducted on a 2.60 GHz
AMD Opteron processor PC with 4 GB RAM. We set CPUjimit
at 3600 s. The performance measures considered are: the last
hUB value in the state space at termination, the number of
markings expanded Nmark, the optimal or best makespan
returned Cso], the CPU time (in s) and the SQ. SQ is measured
between 0 and 1 as Cpest/Cyoir Where Cheg 1S the best-known
makespan and Cygr is the makespan of the solution returned
at time 7" within the time slot given. For each table, we showed
the makespan of the first solution Cy,—; and the time it was
obtained CPU,,;_1. Also, the solutions obtained at different
CPU time intervals over the time-limit horizon were shown
except in those cases where the best solutions converged at
the first iteration.

Example 2: This example considers the scheduling of an
automated manufacturing workstation, which forms a subset
of an FMS shop floor control system [24], [25]. The sys-
tem is composed of three machines M1, M>, and M3, a robot
R, and a part load/unload station. The robot is responsible
for loading/unloading and handling the transportation of parts
from one machine to another. There are four job types Ji, Ja,
J3, and J4 to be processed. It is assumed that jobs come into
the workstation on a transport device like a cart or an auto-
mated guided vehicle which moves out as soon as the job
is picked up by the robot. In a similar way, carts move out
from the exit point as soon as they are loaded. The production

TABLE IV
PROCESSING SEQUENCE AND OPERATION TIMES

Machine processing time Transport operation time

Jobs
1 2 3 1 2 3 4
J1 M7:40 M>:100 M3:36 5 3 5 4
Ja Mo:45 M;7:65 M3:98 5 3 6 4
J3 Mi:212 Mo:73 M3:32 6 7 4 5
Ja M3:55 M>:65 Mi:35 4 3 5 5
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Fig. 6. SQ comparison of expansion width values (w = 5, 10, 20, 50,

and 100) for all cases of lot size 10 for each job. Inscriptions of CPU time
at each SQ point.

sequence and processing times of jobs and transportation times
of the robot are given in Table IV. Each job has seven oper-
ations in total: three machining and four handling operations
performed by the robot. The transfer times of the robot are
sequence-independent. Transportation times 1 and 4 repre-
sent the loading and unloading time from and to the station,
respectively, while transportation times 2 and 3 represent the
movement of the jobs for the second and third machining
operation, respectively.

The TCPN of the workstation is similar to that of
Example 1. The model is not shown here due to space con-
straints. Place P, is converted to a timed place that adds
the robot time stamp in the scheduling process. Additional
untimed places Pg and P; are attached to T} and 73 respec-
tively. They provide the movement times of the robot for
loading/transporting (Pg/T1) and unloading (P7/T3) opera-
tions. 77 and 73 become timed transitions with assigned
durations. We extended the model to two cases of finite buffer
capacity and no MHS (assuming MHS tasks are ignored).

In all cases, ALS was executed without w for lot sizes
(of each job) between 1 and 5 classified as low branching
factor instances. For large lot sizes (> 10), we considered
the selection of an appropriate width on a case-by-case basis
using the lot size of 10 as a sampling instance. Each instance
is tested with varying w between 5 and 100. It has already
been demonstrated in [67] that SQ does not always monoton-
ically improve with an increase in width size. Based on the
sampling performance, a width value is then chosen taking
into account SQ-time trade-off. Fig. 6 shows the comparison



TABLE V
CASE 1—SCHEDULING RESULTS FOR DIFFERENT LOT SI1ZES

Lot sizes BFIDA* ALS HHS AA
. . Optimal/best solution
First solution
JiJp Depth Nmark Cpaz  CPU (CPU=3600) Csot Cso1 CPU
Csolfl CPUsol—l Nmark Csol CPU

1 1 18 58 22 0.02 29 0.00 69 22% 0.02 22 22 1
2 2 36 259 39 0.11 46 0.05 364 39 0.14 39 39 2.6
5 5 90 1,420 90 0.66 97 1.06 3,680 90* 1.70 90 90 8.1
10 10 180 5,035 175 2.54 182 0.34 1,494 175%* 0.72 175 175 19
20 20 360 18,565 345 10.11 352 0.76 3,074 345% 1.62 351 _ _
50 50 900 109,555 855 70.86 862 2.36 7,814 855% 4.96 _ _ _
100 100 1800 429,205 1702 352.51 1712 6.13 15,714 1705%* 12.76

of different width performances for the first four cases with
CPU inscriptions.

A. Case 1—No Buffer Storage With Multiple Shared MHS

Let us consider Example 1: the three robots as shared
resources are used to move parts from one machine to the
other without intermediate buffer storage. Note that the trans-
portation time is neglected in this case. The algorithms’
performance is examined on the TCPN model with increasing
lot sizes. In Fig. 6, the SQ graph is constant over the different
widths for case 1 while the CPU time is not improved as the
width increases. All the solutions converged before the time
limit irrespective of the width. As such, a small width value
w =5 is sufficient to explore the search graph for large lot
sizes.

Table V presents the DL-free scheduling results obtained
for lot sizes of 1,2,5,10,20,50, and 100 (for each job
type). Besides BFIDA*, ALS performance was benchmarked
against two prior works: a PN-based hybrid heuristic
search (HHS) that combines best-first search with controlled
backtracking [28] and an A* search based on AA formalism
that employs supervisory control theory to synthesize DL-free
models for scheduling [27]. Note that computation times were
not reported for the HHS. The asterisk (¥) in the result
table indicates an optimal schedule in which the makespan
converged before the specified time limit. BFIDA* returned
optimal DL-free schedules for all the instances under the avail-
able memory but the CPU time increases with the problem
size. For the ALS, the optimal schedules are obtained in rel-
atively short computation times even for the lot size of 100.
In comparison with BFIDA*, ALS expanded lesser number of
markings for larger lot sizes (> 10) and needed only three iter-
ations to obtain the optimal schedules for each instance. HHS
fails to obtain the optimal schedule for the lot size of 20.
Solutions were not reported for lot sizes > 20 in previous
works.

B. Case 2—No Buffer Storage Without MHS

Using Example 2, this case assumes that parts can move
automatically from one machine to the next one without
MHS and no buffer storage for work-in-process [24]. The
width w = 100 is selected given the SQ comparison pro-
file in Fig. 6 for case 2. It returns the best solution within
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Fig. 7. Case 2—Anytime performance comparison for different expansion
width values of lot size (10, 10, 10, 10).

the first 20 min. The anytime performance profiles in Fig. 7
showed that smaller width values quickly return a stream of
improving schedules for the first 2 min whereas larger width
values (> 50) start off with higher quality solutions requir-
ing more computational effort. Although the smaller widths
needed more time to reach the same SQ obtained by the larger
ones.

Table VI reports the DL-free scheduling results obtained for
several different lot sizes. As expected, ALS expanded lesser
number of markings and needed short computation time when
compared with BFIDA*. BFIDA* took over 18 h to obtain the
optimal schedule for lot size (5, 5, 5, 5) which is unacceptable
for a moderate instance size. On the other hand, ALS only
needed 530 s to find the optimal schedule. The best makespan
obtained for lot size instances (> (10, 10, 10, 10)) did not
converge within the first 3600 s. Though the gap between the
last hUB values and the best solutions returned is quite large,
it is expected to improve if given more time.

C. Case 3—Finite Buffer Capacity Without MHS

Case 3 is an extended version of Example 2 consider-
ing finite buffer size (bf) without using the robot to move
parts from one machine to the other. An intermediate buffer
is placed between two machines with a given capacity. As
shown in Fig. 6 for case 3, width value w = 10 is sufficient



TABLE VI
CASE 2—SCHEDULING RESULTS FOR DIFFERENT LOT SI1ZES

Lot sizes BFIDA* ALS
. . Optimal/best solution
First solution _
Ji  J2 J3 Jy Depth Nmark Chnaz CPU hUB (CPU=3600)
030571 CPUsol—l Nmark Csol CPU
1 1 1 1 36 9,749 512 2.79 512 533 0.22 1,181 512% 0.30
2 2 0 2 54 59,567 603 19.46 603 639 0.13 2,936 603* 0.45
3 4 1 2 90 2,860,993 1061 1129.46 1061 1061 10.05 36,075 1061* 10.05
5 5 5 5 180 136,301,623 2311 67270.70 2311 2356 200.24 2,212,418  2311* 529.82
10 10 10 10 360 _ _ . 3837 4718 17.02 6,258,173 4635 1143.26
20 20 20 20 720 _ _ _ 7256 9438 42.54 5,473,263 9265 3455.39
50 50 50 50 1800 . . _ 17731 23431 152.80 4,084,656 23364 2946.55
TABLE VII
CASE 3—SCHEDULING RESULTS FOR DIFFERENT LOT SIZES WHERE BUFFER CAPACITY IS 2
Lot sizes BFIDA* ALS HHS
First solution Optimal/best solution
Ji J» J3 Ji Depth Nmak Ciee CPU  RUB (CPU=3600) Csol
Csoi—1 CPUgy—1 Nmark Csor CPU
2 2 0 2 54 164,366 455 86.06 455 455 4.06 15,993 455% 4.06 455
5 4 6 3 162 0.0.m 0.0m  0.0.m 1837 1942 2.98 1,430,778 1837+ 1051.21 1942
10 10 10 10 360 _ . _ 3520 3811 20.44 3,749,469 3520%* 3139.54 3638
20 20 20 20 720 _ . . 7040 7331 96.05 3,942,860 7110 457.67 7171
50 50 50 50 1800 17600 19118  651.63 3,395,074 17670 2325.96
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3700 —
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Buffer size

Fig. 8. ALS scheduling results of lot size (10, 10, 10, 10) for different buffer
sizes ranging from 1 to 10.

for a good anytime performance profile to explore large lot
sizes. Fig. 8 shows the DL-free scheduling results for lot size
(10, 10, 10, 10) with buffer sizes ranging from 1 to 10. As
seen in the figure, the bf = 1 places more restrictions on
the system which led to a higher total completion time. Since
there is insufficient space for work-in-process parts, the num-
ber of DL states increases requiring more computation time
to find the best solution. Note that the solution did not con-
verge within the time limit for this experiment. However, an
optimal and constant makespan is obtained for bf > 2. The
computational time to obtain the converged schedule decreases
considerably as capacity increases. Although there is a CPU
rise from bf > 7, the computation time is relatively low
when compared with those of buffer sizes between 1 and 3.

From the depicted performance, we can conclude that systems
that assume infinite buffer capacity are easier to solve.

Table VII presents the scheduling results of different lot
sizes (up to 50 for each job type) where bf = 2. BFIDA*
could not solve lot sizes from (5, 4, 6, 3) since it runs out of
memory and fails to return any solution. ALS obtained the
optimal schedules for the first three problems while the SQ
returned for the other problems is high and the best schedules
obtained are quite close to the last hUB. Also, ALS outper-
formed HHS as HHS could only solve the smallest instance to
optimality.

D. Case 4—No Buffer Storage With Single Shared MHS

Case 4 considers Example 2 without extension. This case
is more complex than the previous cases as it integrates the
movement time of the robot into production scheduling. Based
on the anytime performance shown in Fig. 9 and the makespan
performance profile in Fig. 6 for different widths, @ = 100 is
considered appropriate to achieve a good SQ-time trade-off.
In this case, increasing the width actually improves the SQ.
Fig. 9 shows that smaller values of w can considerably reduce
solution times while still obtaining high-quality solutions.

Table VIII gives the scheduling results of different lot sizes
(up to 50 for each job). ALS obtained the best solutions
with much lesser computation times than the other methods.
Similar to case 2, it took BFIDA* more than 22 h to reach
a goal marking for lot size (5,5,5,5), whereas ALS solved
the same problem in 516 s. The AA method in [27] con-
cluded that optimal makespan values have been reached for
all the instances solved in their work. However, the optimal
schedules obtained by ALS and BFIDA* have demonstrated
otherwise. This implies that the integration of DL controllers



TABLE VIII
CASE 4—SCHEDULING RESULTS FOR DIFFERENT LOT SIZES

Lot sizes BFIDA" ALS AA
. . Optimal/best solution
First solution -
Ji Ja Js Ji Depth Nmark Cras CPU hUB (CPU=3600) Csot CPU
Csol—1 CPUsp1—1 Nmark Csol CPU

1 1 1 1 36 30,814 560 9.70 560 643 0.09 1,021 560%* 0.25 560 2.3
2 2 0 2 54 150,836 660 53.62 660 660 0.75 3,065 660* 0.75 665 32
3 4 1 2 90 3,314,356 1157 1391.72 1157 1157 8.53 33,601 1157* 8.53 1244 12.1
5 5 5 5 180 127,064,461 2503 81522.80 2503 2535 133.01 1,051,727 2503%* 516.21 2513 175
10 10 10 10 360 _ _ _ 3985 5119 17.71 6,201,302 5008 3425.08 _ _
20 20 20 20 720 _ _ _ 7402 10185 42.04 5,558,489 10006 1152.11 _ _
50 50 50 50 1800 . 17708 25299 145.06 4,187,435 25014 3451.30
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Fig. 9. Case 4—Anytime performance comparison for different expansion
width values of lot size (10, 10, 10, 10).

does not always guarantee optimality even when the control
policies are considered to be optimal as in [27]. The actual
quality of the best makespan returned for lot sizes (> 10)
cannot be reported. The hUB may not be a good parameter to
measure how close the solutions are to optimality since it is a
hypothetical bound that depends on the evolution of the cost
values in the state space.

E. Case 5—Routing Flexibility With Multiple
Resource Capacity

Case 5 is the third FMS example [7]-[9], [19], [31] that
consists of four machines M, M, M3, and M4 and three
robots Ry, Ry, and R3. Each machine can hold two parts
at the same time while the robots can move only one
part at a time. Parts enter the system through three load-
ing buffers 71, 12, and I3 and leave the system through
three unloading buffers O1, 02, and O3. No intermedi-
ate buffers exist in the system. Three types of jobs Ji,
J>, and Jz are produced. The operation sequence (and
processing times) for job J; is Rx(8), M2(34),and R>(5)
with three operations while job J3 has five operations,
R3(5), M4(22), Ry(4), M3(17), and R1(6). Job J> has two dif-
ferent processing routes; Ry (4), M1(32), R2(8), M2(38), R2(5)
or Ry (4), M3(23), Ry(6), M4(20), R3(5). The TCPN model is
not described in this paper due to space considerations.

The ALS algorithm is tested on 16 instances of the sys-
tem proposed by [31]. It contains four instance sets of
different resource capacities (numbers of machines C(M;) : i €
{1,2,3, 4} and robots C(R;) : i € {1, 2, 3} in each type), where
each set has four instances of different multiple lot sizes in
the order (8, 12, 8), (10, 20, 10), (15, 20, 15), and (20, 20, 20)
for each job type Ji, J2, and J3 respectively.

1) In01-In04: The original system configuration with

CM;) =2 and C(R;) = 1.

2) In05-In08: C(M;) =2 and C(R;) = 2.

3) In09-In12: C(M;) =3 and C(R;) = 2.

4) In13-In16: C(M;) =3 and C(R;) = 3.

ALS performance 1is compared with the genetic
algorithm (GA2) proposed by [31] which embeds five
different DL controllers, namely E + GA2, L + GA2, H +
GA2, X 4+ GA2, and P + GA2. The BFIDA* algorithm was
not considered for this experiment as it could not handle the
state space size of the systems due to the large number of
parts and resources involved. A width of 10 is used to explore
the state space. Table IX shows the performance comparison
of the scheduling results obtained using the proposed ALS
algorithm and the GA2 method for the 16 instances. For most
of the instances, a very good solution was found quickly in
less than 5 s and this solution is in each case better than
the best solution reported for the GA2 algorithm, especially
E + GA2 and L + GA2. ALS provided improved solutions
(in bold) for 11 instances out of 16 whereas the X + GA2
performed better in the rest, specifically three of the four
instances in the last set In13—-In16. X + GA2 proved to be
more efficient in the last instance set. The ALS performance
in this set can be attributed to the quality of the heuristic
function for a larger capacity of resource set. The results
show that solutions were greatly improved in the first 5 min
while for few instances like /n04, Inl1, In12, and Inl15, better
schedules were periodically found. As expected, increasing
the number of resources results in reduced makespans.

F. Comparison Between DL Prevention and
DL-Prone Models

The performance of the ALS algorithm for the DL con-
trol policy described in Section II is compared with the
DL-prone versions of the system. Table X shows the com-
putational results for increasing values of wipmax for lot sizes
Ji=5h=4J3=6,J4,=3and J} =3,/h = 4,J3 =1,
Js = 2 in cases 3 and 4, respectively. The DL column in



TABLE IX
COMPARISON OF SCHEDULING RESULTS OBTAINED USING THE PROPOSED ALS ALGORITHM AND GA2 METHOD [31]

ALS GA2

Instance <t solution S"l““"“s(;‘inif;g)mter"als l(gg;‘US:;‘g(‘)g‘)‘ E+GA2 1+GA2 H+GA2 X+GA2 P+GA2

Csolfl CPU 5 10 20 40 Csol CPU Csol Csol Csol Csol C’sol
o1 47 212 301 301 208 298 293 243622 420 416 338 352 331
n02 469 357 403 402 402 397 397 163747 645 644 525 531 475
n03 822  3.96 497 490  __ __ 490 5868 760 784 648 717 612
[n04 1037 431 610 595 595 589 587  3057.53 907 895 87 890 803
In05 271 257 271 266 266 40317 294 319  __ 254
In06 389 3.88 374 368 368 55578 438 510 370
n07 493 5.07 453 452 450 450 85301 545 601 485
n08 894  8.69 59 569 29150 629 691  __ 602
n09 275 2.90 198 9% 196 57591 219 239 18  __
In10 288 487 277 277 273 269 269 193060 327 356 278
Inll 509  5.49 347 335 332 332 102422 404 437 3%
In12 663 6.13 439 416 416 409 409 188893 490 523 426
Inl3 28  3.07 193 189 189 187 186 323568 191 200 1710  __
Inl4 288 470 22 276 275 275 174154 285 318 241
Inl5 493 543 367 349 331 327 327 139934 347 406 332
Inl6 43 672 407 407 401 396 396 135338 418 475 389

TABLE X

PERFORMANCE COMPARISON OF THE PROPOSED ALGORITHM
WITH DL PREVENTION AND DL-PRONE MODELS

Deadlock prevention TCPN Deadlock-prone TCPN

Instance

wipmax DL Csol CPU DL Csol CPU
C4 1 0 2166  1.59 719 1157 853
34,12

2 583 1234 12.78

3 1352 1157 4538

4 2186 1157  95.69

5 2678 1157  145.99

6 2117 1157  182.85

7 1590 1157  184.72

8 1276 1157 159.03

9 1142 1157  111.17

10 1101 1157  56.52
C3 1 0 2132 1471 12560 1837  1051.21
54,63

2 0 1907  22.20

3 13565 1872  98.41

4 3715 1837  1379.04

5 4743 1837  2207.75

6 5923 1837  3009.40

7 6599 1872 169.37

8 5601 1837  3395.02

the table refers to the number of DLs encountered during the
scheduling process and not the total number of DLs that exist
in the system. Note that the algorithm did not converge for
wipmax = 3 and wipmax = 7 for case 3. The results show
that the SQ produced is quite low when DLs are completely
avoided in the model. Thus, DL control policies can be used to
reduce the search space, but they do not necessarily enhance
the scheduling performance. However, the algorithm perfor-
mance is improved with respect to the computation time as
observed in the table. Han et al. [31] already pointed out that
the performance of a system can vary depending on the policy
adopted since different policies impose different restrictions.
This clearly demonstrates the restriction of control policies
on the system performance and shows that better scheduling

performance can be obtained with DL-prone models using the
proposed approach.

VI. CONCLUSION

An anytime heuristic search method has been proposed for
the DL-free scheduling problem of FMS with shared resources,
modeled as a discrete-event system. It finds optimal or near-
optimal DL-free schedules for a given initial marking of the
system based on the reachability graph of TCPN modeling.
DL are avoided in schedules during the construction of the
graph by checking whether or not the sequence of transi-
tion firings lead to a marking from which no other transition
can be fired. The proposed algorithm overcomes the limita-
tions of conventional heuristic search algorithms. It returns
quick solutions and gradually improves the incumbent feasi-
ble solution obtained over time until the solution converges or
the run-time limit is exceeded. The approach is applicable to
time-constrained environments and real-time situations where
decisions must be taken at the slightest possible time.

The algorithm has been tested extensively on five different
cases of DL-prone situations that take into account limitations
that arise in realistic manufacturing systems. Case 5 is the most
difficult while cases 2 and 4 proved to be more challenging
than cases 1 and 3. Lesser number of DL are encountered with
multiple shared resources or when there is sufficient buffer
capacity. Also, the inclusion of the robot transportation time as
an operation increases the problem complexity. For instances
that did not converge within the specified time limit, the time
can be extended to allow the algorithm obtain the optimal
schedule.

Computational results demonstrate that solutions of high
quality can be found quickly (less than 100 s in most cases)
with the proposed anytime search algorithm. The best solutions
provided in the result tables do not indicate the algorithm’s
limit but rather its effectiveness in producing solutions of high
quality in a limited time frame. None of the experiments ran



out of memory within the time limit. However, it is expected
that the search space will exceed the available memory over
time. This can be circumvented by parallelizing the anytime
search on a number of processors with distributed memory in
order to increase the amount of memory available as well as
to reduce the time to return improved solutions and solution
convergence.

In anytime approaches, it is expected that the search keeps
improving the solution at regular time intervals, but this is
not definitely true as shown in Figs. 7 and 9 and Table IX.
ALS can go on for a long time without finding an improved
schedule. One of the possible reasons can be due to the fact
that ALS might have reached the optimal schedule unknow-
ingly with the current sUB. Since hUB is increased according
to the evolution of minimum f(M) such that the number
of iterations can be quite large if there is a big distance
between the two. To speed up convergence, it is proposed
to increase hUB to the incumbent sUB after an x time
period without solution improvement to validate the opti-
mal DL-free schedule. Also, an incremental cost strategy can
be implemented to compute a new hUB based on the dis-
tance of the hUB from sUB with respect to the depth of the
graph. The application of the proposed approach to simultane-
ous production scheduling and conflict-free routing problems
for automated guided vehicles [4] will be investigated in a
future work.
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