
1

Comprehensive Explanation of SLA Violations
at Runtime

C. Müller(1), M. Oriol(2), X. Franch(2), J. Marco(2), M. Resinas(1), A. Ruiz–Cortés(1), M. Rodríguez(2)

(1)University of Seville, LSI, Seville (Spain), ISA research group, http://www.isa.us.es/
{cmuller,resinas,aruiz}@us.es

(2)Universitat Politècnica de Catalunya, Barcelona (Spain), GESSI research group, http://www.essi.upc.edu/~gessi/
{moriol,jmarco}@lsi.upc.edu, {franch,marcr}@essi.upc.edu

Abstract—1

Service Level Agreements (SLAs) establish the Quality of2

Service (QoS) agreed between service-based systems consumers3

and providers. Since the violation of such SLAs may involve4

penalties, quality assurance techniques have been developed to5

supervise the SLAs fulfillment at runtime. However, existing6

proposals present some drawbacks: (1) the SLAs they support7

are not expressive enough to model real-world scenarios, (2) they8

couple the monitoring configuration to a given SLA specification,9

(3) the explanations of the violations are difficult to understand10

and even potentially inaccurate, (4) some proposals either do11

not provide an architecture, or present low cohesion within12

their elements. In this paper, we propose a comprehensive13

solution, from a conceptual reference model to its design and14

implementation, that overcomes these drawbacks. The resulting15

platform, SALMonADA, receives the SLA agreed between the16

parties as input and reports the explanations of SLA violations in17

a timely and highly understandable way. SALMonADA performs18

an automated monitoring configuration and it analyses highly19

expressive SLAs by means of a constraint satisfaction problems20

based technique. We have evaluated the impact of SALMonADA21

over the resulting service consumption time performance. The22

results are satisfactory enough to consider SALMonADA for SLA23

supervision because of its low intrusiveness.24

Keywords-service level agreement; SLA; monitoring; analysis;25

violation detection and explanation; QoS.26

I. INTRODUCTION AND MOTIVATION27

Service Level Agreements (SLAs) establish the Quality of28

Service (QoS) agreed between service-based systems con-29

sumers and providers, as well as penalty/reward clauses to be30

applied when the SLA is violated. Detecting such violations31

may be complicated, consider for instance the following case.32

The Amazon Simple Storage Service (AmazonS3) guaran-33

tees a monthly uptime percentage equal to or greater than34

99.9% in its SLA1 including a clause to reward their con-35

sumers against a lack of service. However, Amazon requires36

the customer to proof this violation by sending an email within37

ten business days after the end of the billing cycle in which the38

errors occurred. Proving the violation demands the customer to39

compute the monthly uptime percentage by subtracting from40

100% the average of the error rates2.41

This Amazon scenario illustrates the need of having tech-42

niques to supervise the fulfillment of SLAs [1]. In response to43

1http://aws.amazon.com/s3-sla/
2internal server errors divided by the requests during each five minute period

this need, several quality assurance proposals have been for- 44

mulated. They deal with aspects such as: violation detection, 45

either at runtime [2]–[8] or testing time [9], [10]; violation no- 46

tification either by push (i.e. notifications to subscribed clients 47

as soon as violations are detected at runtime) [4], [5], [11] 48

or pull strategies [2], [8], [12]; and violation explanation [13], 49

[14]. The possible adoption of these proposals in real-world 50

scenarios is greatly influenced by the following factors: 51

1) Which SLAs are supported. Usually, real-world SLAs 52

(e.g. AmazonS3 SLA) describe the parties obligations 53

in natural language and they may comprise complex 54

elements such as: (1) conditional terms subject to a 55

precondition (i.e. if the precondition holds, then the 56

term applies), for instance, AmazonS3 SLA offers a 57

data durability of 99.99% only if the client choose a 58

cheaper reduced redundancy storage; (2) optional or 59

alternative terms (i.e. a set of terms that can be chosen 60

by the customers), for instance, AmazonS3 offers a set 61

of alternative support plan terms. 62

2) How the interaction with the monitor is performed. 63

In order to detect violations we need to monitor the 64

QoS offered by the providers at runtime (i.e. specific 65

values for monitorable service properties such as the 66

service availability or response time). The interaction 67

with the monitoring techniques [15] that gather such 68

QoS monitoring results, requires both: (a) to configure 69

the monitor with the location of the service, and its 70

monitorable service properties; and (b) to decide how 71

the QoS monitoring results are specified. For instance, 72

in the case of AmazonS3, the SLA determines the need 73

for monitoring and obtaining a specific value for the 74

monthly uptime percentage for each billing cycle in 75

order to detect a possible violation. 76

3) How the violations are detected and explained. The 77

SLA violations are detected by checking the agreed 78

QoS against the obtained QoS monitoring result. And, 79

ideally, the explanation of violations needs to be both 80

comprehensive and timely. By comprehensive, we mean 81

to provide a user-friendly and accurate violation report 82

including not only the violated terms, but also the 83

violation causes and even possible effects, in a form 84

that is easy to understand by humans. For instance, in 85

the AmazonS3 scenario, a comprehensive explanation 86

http://www.isa.us.es/
http://www.essi.upc.edu/~gessi/

2

would require a report including that the violated term87

is "monthly uptime percentage equal to or greater than88

99.9%" by a monthly uptime percentage of 92% mea-89

sured in a specific monthly billing cycle. By timely,90

we mean to communicate the violation as soon as it91

happens, i.e. when the QoS monitoring result has just92

been retrieved at runtime and it is checked against the93

SLA to detect and explain the violations.94

4) Which architecture is proposed. In order to ease the95

maintainability and adaptability of the system, the ar-96

chitecture should comprise loosely coupled and highly97

cohesive elements separating monitoring from analysis.98

As shown in Sec. II, current proposals do not satisfactorily99

deal with the characteristics above. Some of them may be100

completely coupled to a particular SLA notation that are101

not able to deal with all the aspects required in real-world102

scenarios, others couple the monitoring configuration to a103

given SLA specification, and most (if not all) provide very104

basic information when a violation occurs. Furthermore, not105

all proposals provide architectures with a clear separation of106

concerns between monitoring and analysis.107

The goal of this work is to design and implement108

SALMonADA, a service-based system to monitor and analyse109

SLAs in order to provide timely and comprehensive explana-110

tions of violations. SALMonADA main features are:111

1) specification of a wide range of SLA structures and com-112

plex elements based on the use of WS–Agreement [16].113

2) automated monitoring configuration through the analysis114

of the SLAs but without coupling to a given SLA115

specification.116

3) powerful detection and explanation of the SLAs vio-117

lations by means of a Constraint Satisfaction Problem118

(CSP)-based technique. A comprehensive and timely119

explanation of the SLA violations is notified either by120

push or pull strategies.121

4) low coupling in its service-oriented architecture that122

supports the independent evolution of the core monitor-123

ing and analysis components, or even their independent124

substitution when moving from one problem domain to125

another.126

The impact of SALMonADA over the resulting service127

consumption time performance and its scalability have been128

evaluated over real services. We analysed the results in alter-129

native deployment scenarios and we state that SALMonADA130

has a low intrusiveness compared to the benefits it provides.131

Moreover, we have developed a web client as a front-end to132

try it online.133

The paper is organised as follows. The related work is134

evaluated in Sec. II. The conceptual reference model of135

SALMonADA is detailed in Sec. III, while the details of its136

design and development are included in Sec. IV. Section V137

provides information about the CSP-based technique to anal-138

yse the SLA fulfillment. Section VI provides information about139

how SALMonADA checks the QoS monitoring result against140

the SLA to provide timely and comprehensive explanations.141

In turn, Section VII evaluates the impact of SALMonADA142

over the resulting service consumption time performance and143

Table I
ANALYSIS OF THE RELATED WORK

PROPOSALS Supported
SLAs

Monitor
config.

Monitoring
results

Explanation of
violations

Architecture
elements

Architecture
structure

WSLA
[2,3]

General
purpose.
Not H-U.

Automatic.
Coupled
to the SLA.

Through
API.

Detection and
partial explanation
Not H-U.

Monitor and
Analyser
separated.

CBS

Comuzzi,
Kotsokalis [4]

Particular. Automatic.
Decoupled
from the SLA.

Through
API.

Detection. Monitor and
Analyser
separated.

SOA

Michlmayr
et al. [5]

Particular. Automatic.
Coupled
to the SLA.

Through
query lang.

Detection. Monitor and
Analyser
separated.

SOA

Raimondi et
al. [20]

General
purpose.
Not H-U.

Automatic.
Decoupled
from the SLA.

Through
log.

Detection. Monitor and
Analyser in 1
component.

CBS

Sahai et al.
[17]

Particular. Automatic.
Coupled
to the SLA.

Through
a formal
model.

Detection and
partial explanation
Not H-U.

Monitor and
Analyser
separated.

CBS

Palacios
et al. [9]

General
purpose.
Not H-U.

Automatic.
Coupled
to the SLA.

[N/A] Detection. [N/A] [N/A]

Di Penta
et al. [10]

Particular. Automatic.
Coupled
to the SLA.

[N/A] Detection. [N/A] [N/A]

SLA@SOI
[11]

General
purpose.
Not H-U.

Automatic.
Decoupled
from the SLA.

Through
API.

Detection and
partial explanation.
Not H-U.

Monitor and
Analyser
separated.

SOA

TRUSTCOM
[12]

General
purpose.
Not H-U.

Automatic.
Coupled
to the SLA.

Through
API.

Detection and
partial explanation.
Not H-U.

Monitor and
Analyser
separated.

SOA

Mahbub,
Spanoudakis

[13,14]

General
purpose.
Not H-U.

Automatic.
Coupled
to the SLA.

[N/A] Detection and
explanation.
Not H-U.

Monitor and
Analyser
separated.

CBS

Comuzzi,
Spanoudakis

[19]

General
purpose.
Not H-U.

Automatic.
Decoupled
from the SLA.

Through
API.

Detection. Monitor and
Analyser
separated.

SOA

our proposal
SALMonADA

General
purpose.
H-U.

Automatic.
Decoupled
from the SLA

Through
a formal
document.

Detection and
explanation.
H-U.

Monitor
and Analyser
separated.

SOA

Functionality Architecture

H-U: human understandable

scalability. Finally, Sec. VIII concludes the paper with a 144

discussion of our contributions. 145

II. RELATED WORK 146

Several service-based systems quality assurance proposals 147

that aggregate monitoring and analysis facilities can be found 148

in the literature. To conduct the search of the related work, we 149

have revised the most relevant conferences and journals in the 150

area, selecting those papers that were scoped in the field of 151

SLA monitoring and analysis. Furthermore, we have increased 152

the results by adding relevant papers obtained from experts in 153

the field. Table I summarizes the results of this study. 154

We have examined the selected papers under the four factors 155

described in the introduction. The first three factors fall into 156

the functionality of the proposed solution, whereas the fourth 157

factor falls into its architecture. 158

Functionality. Considering the three factors for functionality 159

identified in the introduction, we focus on the following issues: 160

(1) Which SLAs are supported, (2a) How the information 161

to configure the monitor is specified, (2b) How the QoS 162

monitoring result is specified and (3) How the violations are 163

explained. 164

Architecture. The issues arising from this factor are: (4a) 165

Which architectural elements are needed and (4b) How the 166

architectural elements are structured. 167

We analyse these issues below: 168

Which SLAs are supported. The proposals fall into one of the 169

following categories: 170

3

• Ad-hoc SLA notation [4], [5], [10], [17]. The supported171

SLAs include ad-hoc information without considering172

a general-purpose structure or notation. In addition the173

proposals are not able to deal with all the aspects re-174

quired on some real scenarios. For instance, they do175

not support conditional terms subject to preconditions,176

expressive Service Level Objectives (SLOs), and optional177

or alternative terms to specify agreement variants [18]178

• General-purpose SLA notation [2], [3], [9], [11]–[14],179

[19], [20]. The supported SLAs consider a general-180

purpose structure and/or notation. Specifically, in pro-181

posals such as [9], [13], [14], [19] the SLAs sup-182

port the general-purpose structure proposed in the183

WS–Agreement specification [16], a highly flexible184

and widespread SLA notation. An advantage of WS–185

Agreement over other SLA proposals is that it supports186

the aforementioned aspects that are necessary to model187

agreements of real scenarios, namely: (1) optional or188

alternative terms to specify agreement variants, and (2)189

expressive SLOs that can be guarded by a qualifying190

condition (QC) to specify conditional terms. However,191

WS–Agreement just provides a general-purpose schema192

that must be extended up to eight different points with193

an internal sublanguage. More specifically, two of the194

eight points need to be necessarily extended to become195

a fully-fledged language, namely the service description196

terms (SDT) that defines the service functionality, and197

the SLOs. This causes that a system that can deal198

with a particular WS–Agreement notation is not able199

to deal with other WS–Agreement notations. Moreover,200

the sublanguages used in [9], [13], [14], [19] are not201

neither general-purpose to be easily mapped to each other,202

nor human understandable. Other works support SLAs203

specified with WSLA [2], [3] and SLA* [11] that include204

general-purpose structures and notations. However, such205

notations are based on XML schemas even for the SLOs206

assertions (being recursive in the case of SLA*) and thus,207

they are not as human understandable as they should be.208

How the information to configure the monitor is specified. We209

find the following situations:210

• Automatic, coupled to the SLA. Some approaches include211

a mechanism to automatically configure a monitor from212

the SLA [2], [3], [5], [9], [10], [12]–[14], [17]. However,213

in these solutions, the monitor can only be used for214

a concrete SLA specification, and if this specification215

changes, the monitor must be modified as well due to216

its high coupling.217

• Automatic, decoupled from the SLA. There are some218

works [4], [11], [19], [20] which decouple the SLA219

from the monitor by translating automatically the SLA220

to another document which includes the information221

required for monitoring.222

How the QoS monitoring result is specified. Some approaches223

do not describe how the monitoring results are reported [9],224

[10], [13], [14]. From those that describe it, some provide225

a log file [20] or an Application Programming Interface226

(API) [2]–[4], [11], [12], [19] to access the monitoring results.227

Since these logs and APIs are not standarized, they present 228

significant differences to each other. The lack of a standard 229

prevents the possibility to easily change the monitor and also 230

it requires the analyser to be compatible with the monitor’s 231

API or log. A more effective solution is found in [5] where the 232

authors propose a query language to access the measurements 233

of the monitor. However, in this solution, the monitor must 234

deal with that query language. A more advanced solution is 235

also found at [17], where the authors propose a model to store 236

the results, however such model is not explicitly described. 237

How the violations are explained. The proposals fall into one 238

of the following categories: 239

• Just detection. Some works detect SLA violations without 240

explaining the cause [4], [5], [9], [10], [19], [20]. 241

• Partial explanation. Other approaches provide the SLOs 242

that have been violated [2], [3], [11], [12], [17], leading 243

to a partial explanation of the violation as an SLO could 244

be violated for several reasons that are not detailed. 245

• Precise explanation but not human-understandable. 246

In [13], [14] the authors provide an accurate violation 247

explanation that identifies the violated SLOs and the 248

monitoring results which caused the violation. However, 249

they use Event-Calculus to express both the conditions 250

and monitoring results, which as the authors state, is not 251

user-friendly. 252

Which architectural elements are needed. We find the follow- 253

ing situations: 254

• The proposal does not include an architecture [9], [10]. 255

• The proposal includes an architecture where monitoring 256

and analysis are performed in the same component [20]. 257

• The proposal implements the QoS monitoring and SLA 258

analysis in two separated components with different re- 259

sponsibilities, increasing the cohesion and reusability [2]– 260

[5], [11]–[14], [17], [19]. 261

How the architectural elements are structured. We classify the 262

approaches into: 263

• Component-Based Systems (CBS) [2], [3], [13], [14], 264

[17], [20]. The components are specific of the system, 265

and no details regarding deployment or protocols used are 266

described, which makes them difficult to reuse or replace. 267

• Service-Oriented Architecture (SOA) [4], [5], [11], [12], 268

[19]. This architecture adds the capability of deploying 269

the different constituent services in a distributed manner, 270

adapting or replacing them, in a highly cohesive and 271

loosely coupled system. 272

As a summary of this state of the art (see Table I), we 273

can observe that in the functional part, the proposals cover 274

satisfactorily just one or even none of the four identified 275

issues. Improving this situation is the aim of our work. Our 276

solution takes all the features mentioned and either: (1) cover 277

the issues to the same degree of the best proposal of the state 278

of the art or improves the existing proposals by introducing a 279

new strategy, as it will be described in the following sections. 280

This improvement on functionality is accompanied by optimal 281

architectonic decisions (highly decoupled SOA solution). 282

Our solution includes the usage of platforms from our 283

previous works, SALMon [21] and ADA [22]. The main 284

4

SLA Violations Explainer
SLA

MMD

updated
MMD

Analyser

SLF

Client

Configurator Monitor
Consumer

Provider Service’s QoS

Figure 1. Conceptual Reference Model for SLA violations explainers

goals and initial features they had before this approach are as285

follows: ADA is a platform whose main goal is to check the286

consistency of an SLA and compatibility between SLA offers287

and SLA demands. In turn, SALMon is a monitoring platform288

whose main goal is to gather the QoS of web services and289

check simple conditions for several activities. None of these290

platforms succesfully cover the aforementioned issues on their291

own. However, under the SALMonADA platform, both plat-292

forms have been extended to fullfill the required functionality.293

ADA has been extended to support detection and explanation294

of violations, and SALMon has been extended to support295

automatic monitoring configuration and to provide monitoring296

results in a formal document. A detailed description of these297

platforms, including their enhancements in this approach are298

described in Sec. IV-C for SALMon and Sec. IV-D for ADA.299

III. THE SALMONADA CONCEPTUAL REFERENCE300

MODEL301

This section presents the conceptual reference model of the302

SALMonADA platform. This model introduces the relevant303

human and software agents that participate in the platform,304

and the data that they need to interchange. Its purpose is305

to provide a high-level view of the platform before going306

into the architectural and technological details. The conceptual307

reference model is shown in Fig. 1, using the SAP-TAM308

notation [23]. It includes the following agents:309

Client: is the user of the platform. The client goal is310

to retrieve the explanations of SLA violations and/or the311

monitoring results. To fulfill such a goal the client has the312

responsibility of providing the SLA to monitor. The role of313

client may be played by the service consumer, the service314

provider or even a third party interested in monitoring the315

assessment of the SLA.316

Configurator: is the agent that configures the monitor317

with the information included in the SLA. Thus, it decouples318

the SLA (a contractual specification understood by SLA-319

dependent agents) from the Monitor, by generating from the320

SLA a Monitoring Management Document (MMD), which321

is a specification of the monitoring directives to configure a322

monitor (see Sect. IV-B for more details about its structure).323

Monitor: is the agent responsible of monitoring the324

interaction between the provider and the consumer according325

to the monitoring directives given in the MMD. The Monitor326

obtains the measured metrics from such an interaction and327

updates the monitoring results in the MMD right after each328

consumer request.329

Analyser: is the agent that checks whether the monitor-330

ing results of a service, available in the updated MMD, is331

«service» SALMonADA

startMonitoring(MMD, nEndpoint):
idSALMonClient

stopMonitoring(idSALMon-
Client): bool

getMMD(idSALMon-
Client): bool

Notify(MMD, id-
SALMonClient)

«controller»
SALMonADA composer

getAgreement(idSLA):
WSAgreement

storeAgreement(WS-
Agreement): idSLA

getSLF(idSLA, MMD): SLF

deleteAgreement
(idSLA):bool

generateMMD(WSAgreement):MMD

retrieveMeasure(MMD)

startMonitoring
(WSAgreement,
nEndpoint): idClient

stopMonitoring(idClient)
:bool

getSLF(idClient)
: SLF

getMMD(idClient)
: MMD

Notify(SLF, idClient) updateMeasure(measures, MMD)

 «service»
MMD Manager

«service»
ADA

[carlos:] Para el pdf del paper

Client

Consumer

Provider
«service»
SALMon

Figure 2. Architectural Model of SALMonADA

compliant or not with the agreed QoS included in the SLA. It 332

ultimately produces the explanations of violations structured 333

in a document designed for this purpose, the Service Level 334

Fulfillment (SLF). 335

As a summary, the conceptual reference model shows a clear 336

separation of concerns on the management of the SLAs, the 337

MMDs and the SLFs, independent of the concrete technologies 338

used, that are described in the next section. 339

IV. THE SALMONADA PLATFORM 340

In this section we present the details of SALMonADA 341

platform which can be viewed as an instantiation of the 342

conceptual reference model presented above. The platform is 343

able to monitor and analyse expressive SLAs specified with 344

WS–Agreement. SALMonADA has a decoupled architecture 345

that integrates into a service-based system two previously 346

existing systems which in turn, have been extended to re- 347

alize this project: the SALMon monitor [21] and the ADA 348

analyser [22]. Such an architecture is shown in Fig. 2. The 349

core component of SALMonADA is its composer that provides 350

the external interface and controls the execution flow of the 351

system keeping SALMon and ADA decoupled from each other. 352

Moreover, SALMonADA also comprises the MMD Manager 353

service, which is used to generate and manipulate the MMDs 354

independently of the underlying structure of such documents. 355

In the following subsections, we provide more details about 356

these SALMonADA components. We focus on the internal 357

architectures and responsibilities. 358

A. The SALMonADA composer 359

The SALMonADA composer is the component that presents 360

the external interface to the client and controls the execution 361

flow of the system. It also orchestrates the composition of 362

ADA and SALMon to: (1) extract the monitoring information 363

to be included in an MMD from an SLA, (2) monitor SLAs, 364

and (3) analyse SLAs. The composer follows the low coupling 365

design principle, so that it is possible to replace the monitor, 366

the analyser, or the MMD manager without affecting the other 367

elements of the platform. This implies that also the formats of 368

SLAs and MMDs can be changed with minimal impact. 369

Thus, the SALMonADA composer controls the information 370

flow needed for the different constituent services such as: (1) 371

which client is interested in knowing which SLA violations; 372

(2) the MMDs obtained from the SLAs through the MMD 373

5

SALMonADA composer

Client
Manager

storeClient(idSLA, idMonitoringSession,
 nEndpoint): idClient

deleteClient(idClient): bool

getClient(idClient): Client

Client
repository

Client Data

startMonitoring(WSAgreement,
nEndpoint): idClient

stopMonitoring(idClient): bool

getSLF(idClient): SLF

getMMD(idClient): MMD

Notify(SLF, idClient)

 «service»
MMD Manager

generateMMD
(WSAgreement):MMD

«service»
SALMon

«service»
ADA

 «service»
Controller

 «service»
Publisher

Figure 3. Architectural Model of the SALMonADA composer

Manager; (3) the MMD with the monitoring results obtained374

by the monitor service; and (4) the pair SLA-MMD with the375

monitoring results that is required by the analyser service.376

Moreover, the composer provides the interface to supply to377

the clients both, the SLF information, and the MMD with the378

monitoring results to be aware of the QoS evolution at runtime.379

The architectural model of the SALMonADA composer is380

depicted in Fig. 33 and comprises the following elements:381

Controller: it provides the external interface to the client382

and controls the execution flow of the system by communicat-383

ing with the SALMon and ADA services. It is also responsible384

to interact with the other components of the composer.385

Client Manager: is responsible for storing and retrieving386

the different clients of SALMonADA from the client reposi-387

tory. Each client has associated one or more WS–Agreement388

documents to monitor.389

Publisher: This component implements the Reference390

Data Observer SOA pattern [24]. In SALMonADA it notifies391

the SLF to any subscribed service when a violation occurs.392

B. The MMD Manager service393

The MMD Manager is one of the components that delimits394

the kind of SLA supported by SALMonADA because it395

generates the MMD from a given SLA. SALMonADA aims396

to support a general-purpose SLA specification in order to397

report the SLF of as many SLAs as possible. Although any398

other MMD Manager service can be developed supporting any399

SLA specification, we choose to support the WS–Agreement400

specification due to its flexibility. As stated in Sec. II, the401

WS–Agreement schema must be extended at least with two402

sublanguages. In our proposal we use general-purpose sublan-403

guages [18] to make it easier to map from other sublanguages404

and SLA notations to our supported SLA. Specifically, we405

support specifications of: (1) the service by means of a simple406

attribute-value pairs within SDTs, and (2) the SLOs by means407

of an assertion language that is described in Sec. IV-D. Exam-408

ples of both sublanguages are included in the SLA of Fig. 4409

that comprises several SLOs relating three service properties410

of the ADA analysis service: the average service availability411

3Note that rounded squares denote stored data and repositories in SAP-TAM

1 Agreement − SALMonADA−c o m p l a i n t ADA SLA
2 Context :
3 I n i t i a t o r : IneedSLAAnalys i sCorp .
4 Responder : ADA Tool o f ISA Group , as Serv i ceProv ider ,
5 Expirat ionTime : 2014−01−01T00 : 0 0 : 0 0
6 A l l
7 ADA−SDT : S e r v i c e D e s c r i p t i o n f o r ADAService
8 / / Web s e r v i c e i n f o r m a t i o n
9 D e s c r i p t i o n = ADA i s an a n a l y s i s t o o l f o r WS−Ag . docs ,

10 Domain = A n a l y s i s t o o l ,
11 wsdlURL = h t t p : / /www. i s a . us . e s : 8 0 8 1 / ADAService ? wsdl
12 e n d p o i n t = h t t p : / /www. i s a . us . e s : 8 0 8 1 / ADAService ? wsdl
13 o p e r a t i o n s : checkDocumentCons i s t ency , g e t M e t r i c F i l e ,
14 expla inNonCompl iance , xmlToWSAg4People , wsag4PeopleToXML
15 . . . more o p e r a t i o n s a r e i n c l u d e d i n t h e r e a l SLA . . .
16

17 SP1 : S e r v i c e Property f o r ADAService
18 AverageResponseTime − measured by m e t r i c : F l o a t ,
19 / / a v e r a g e r e s p o n s e t ime of a g i v e n o p e r a t i o n
20 Genera lResponseTime − measured by m e t r i c : F l o a t ,
21 / / a v e r a g e r e s p o n s e t ime of a l l o p e r a t i o n s
22 A v e r a g e A v a i l a b i l i t y − measured by m e t r i c : P e r c e n t
23 / / I t i s t h e a v e r a g e s e r v i c e a v a i l a b i l i t y
24

25 G T g e n e r a l A v a i l a b i l i t y : Guaranteed by Provider
26 SLO : A v e r a g e A v a i l a b i l i t y >= 95
27

28 GTgenera lResponseTime : Guaranteed by Provider
29 SLO : Genera lResponseTime <= 1 . 5
30

31 GTexplainNonComplianceRespTime : Guaranteed by Provider
32 Scope : exp la inNonCompl iance ,
33 QC: Genera lResponseTime >= 0 . 5 ,
34 SLO : AverageResponseTime < 2
35

36 G T g e n e r a l R e s p o n s e T i m e R e l a t i o n s : Guaranteed by Provider
37 Scope : checkDocumentCons i s t ency , xmlToWSAg4People ,
38 wsag4PeopleToXML , g e t M e t r i c F i l e ,
39 QC: Genera lResponseTime >= 0 . 5 ,
40 SLO : AverageResponseTime <= Genera lResponseTime
41 . . . more g u a r a n t e e t e r m s a r e i n c l u d e d i n t h e r e a l SLA . . .

Figure 4. Main terms of the ADA SLA

(AverageAvailability); the average response time of 412

all service operations (GeneralResponseTime); and the 413

average between several response time measures of a given 414

service operation (AverageResponseTime). In this sense, 415

note that the two last SLOs of the SLA guarantee a certain 416

response time depending on the operations that are in the scope 417

of the guarantee term. In addition, such terms are conditional 418

terms because they are guarded by a qualifying condition 419

(QC). That is, the SLOs are only evaluated if the QCs holds. In 420

this case, the QCs holds when the GeneralResponseTime 421

is more than 0.5 seconds. 422

The MMD Manager receives the WS–Agreement document 423

and generates the corresponding MMD. Fig. 5 provides an 424

excerpt of the MMD obtained from the WS–Agreement doc- 425

ument of Fig. 4 and it depicts our selected MMD structure as 426

well as which SLA information is included in each and every 427

of its XML elements. Thus, the MMD structure is divided into 428

four elements: (1) the web service information element which 429

includes the information needed to invoke the service, that 430

is extracted from the service description terms of the SLA; 431

(2) the monitor configuration element which comprises the 432

monitoring time interval, which starts monitoring from the 433

generation of the MMD until the SLA expiration time; (3) the 434

service metrics which are the service properties used within 435

the SLOs whose scope is the whole service (i.e. to all service 436

operation in the SLA); and (4) the operation metrics which 437

6

1 <MonitoringManagementDocument>
2 <WebServiceInformation name="SALMonADA-complaint...">
3 <!--extracted from the service description term-->
4 <description>ADA is an Agreement Document Analysis
5 tool for WS-Agreement documents</...>
6 <domain>Analysis tool</...>
7 <wsdlURL>http://www.isa.us.es:8081/ADAService?wsdl</.>
8 <endpoint>http://www.isa.us.es:8081/ADAService</...>
9 <operation name="checkDocumentConsistency">

10 <soapAction>checkDocumentConsistency</...>
11 </...>
12 <operation name="explainNonCompliance">
13 <soapAction>explainNonCompliance</...>
14 </...>
15 <!--more operations were included-->
16 </WebServiceInformation>
17

18 <monitorConfiguration>
19 <globalPeriodInit>2013-05-18T18:02:38</...>
20 <!--starting monitoring time-->
21 <globalPeriodEnd>2014-01-01T00:00:00</...>
22 <!--extracted from the expiration time-->
23 </...>
24

25 <!--QoS attributes of the whole service:-->
26 <serviceMetric>
27 <metric>AverageAvailability</...>
28 <localPeriodInit>2013-05-18T18:02:38</...>
29 <localPeriodEnd>2014-01-01T00:00:00</...>
30 </...>
31 <serviceMetric>
32 <metric>GeneralResponseTime</...>
33 <localPeriodInit>2013-05-18T18:02:38</...>
34 <localPeriodEnd>2014-01-01T00:00:00</...>
35 </...>
36

37 <!--QoS attributes of specific operations:-->
38 <operationMetric opName="explainNonCompliance">
39 <metric>AverageResponseTime</...>
40 <localPeriodInit>2013-05-18T18:02:38</...>
41 <localPeriodEnd>2014-01-01T00:00:00</...>
42 </...>
43 <operationMetric opName="checkDocumentConsistency">
44 <metric>AverageResponseTime</...>
45 <localPeriodInit>2013-05-18T18:02:38</...>
46 <localPeriodEnd>2014-01-01T00:00:00</...>
47 </...>
48 <!--more operation metrics were included-->
49 </MonitoringManagmentDocument>

Figure 5. Excerpt of the MMD obtained from document of Fig. 4.

are the service properties used within SLOs whose scope is438

one or more specific operations but not to all of them. For in-439

stance, AverageResponseTime is an operation metric for440

the explainNonCompliance and checkDocumentConsistency441

operations, among others; and AverageAvailability is a442

service metric obtained from the GTgeneralAvailabity443

term. The information stored in the MMD is always accessed444

or modified through the MMD Manager. Therefore, the MMD445

structure is completely independent of the system. To achieve446

this, we have considered it as a variability point at design level447

and hence any other MMD Manager service could be used.448

C. The SALMon service449

SALMon is a service-based system aimed at monitoring450

the QoS of web services. The main features of SALMon are451

(see [21] for details): it may operate on any available technol-452

ogy (SOAP-based, RESTful, etc.) with minor and localised453

changes; it may interoperate easily with other frameworks454

(e.g., self-adaptive service-based systems [25] or cloud infras-455

tructures [26]); it is easily extensible to monitor new metrics;456

it combines passive monitoring and on-line testing [15].457

SALMon

MMD Repository

QoS
Reposit.

QoS
Data

«service»
Publisher

Get monitoring data

Activate

Store monitoring data

[carlos:] Compactando para mejorar la visibilidad

 «service»
Monitor

Monitoring Engine

Enterprise Service Bus (ESB)

Measure
Instrument

[Marc:] Con el MMD manager

 SALMon Manager

SOAP
messages

«service»
SALMon
Manager

MMD data

startMonitoring
(MMD,nEndpoint)

stopMonitoring
(idSALMonClient)

getMMD
(idSALMonClient)

 «service»
MMD Manager

updateMeasure
(measures, MMD)

Measure
Instrument

Subscribe

Notify

SOAP messages

Figure 6. Architectural Model of the extended SALMon

In the context of SALMonADA, SALMon has been en- 458

hanced with new components and services (see elements with 459

a thicker frame in Fig. 6): the SALMon Manager service, 460

the MMD repository and the Publisher service. The existing 461

components of SALMon have also been adapted to interact 462

with the new services. We describe below each module: 463

SALMon Manager: is responsible to (1) store the MMDs 464

in the repository, (2) configure the Monitoring Engine and (3) 465

update the MMD when new measured metrics are retrieved. 466

A measured metric is a metric with its value in a specific 467

timestamp (see Fig. 7). The SALMon Manager uses the MMD 468

Manager whenever it requires to get or store the monitoring 469

results to the MMD. In such a way, it can be extended to 470

support different MMD structures. 471

Monitoring Engine: is responsible to monitor the ser- 472

vices. The Monitor service creates and manages the Measure 473

Instruments. Each Measure Instrument is responsible to gather 474

a specific metric such as response time or availability (metrics 475

of the service from the client’s perspective) and store the 476

results in the QoS Repository. The module also includes the 477

Publisher to notify when a new measured metric is obtained. 478

Enterprise Service Bus (ESB): all requests and responses 479

are sent through this communication channel, which in turn, 480

feeds the Measure Instruments with the intercepted messages. 481

QoS Repository: stores the measured metrics. To reduce 482

storage consumption, it saves only the last measurements, the 483

average values and the number of invocations. 484

The generated MMD with the monitoring results is shown 485

in Fig. 7. Notice that the measured metrics related to time 486

are defined in milliseconds, as a convenient unit to express 487

the monitoring results. The platform performs afterwards the 488

required unit conversions for the SLA analysis. 489

Finally, it is important to address performance and privacy 490

issues during monitoring. The former is evaluated in depth 491

in the experimental results in Sec. VII. The latter, which is 492

strongly affected by the service policies and the deployment 493

configuration, is discussed here considering the different fac- 494

tors involved. On secure services, the ESB does not interfere 495

with the security level in the communications. However the 496

issue arises for non-secure services dealing with sensitive data. 497

For such a reason, the body of the message is never stored. 498

Moreover, the ESB can be deployed on either the client or 499

provider side under their management, so any sensitive data 500

can be encrypted using WS-Security before forwarding the 501

message to the Measure Instruments. 502

7

1 <MonitoringManagementDocument>
2 ...
3 <serviceMetric>
4 <metric>AverageAvailability</...>
5 <localPeriodInit>2013-05-18T18:02:38</...>
6 <localPeriodEnd>2014-01-01T00:00:00</...>
7 <measure>
8 <value>100</value>
9 <timeStamp>2013-05-18T18:02:38</timeStamp>

10 </measure>
11 </...>
12 ...
13 <operationMetric opName="explainNonCompliance">
14 <metric>AverageResponseTime</...>
15 <localPeriodInit>2013-05-18T18:02:38</...>
16 <localPeriodEnd>2014-01-01T00:00:00</...>
17 <measure>
18 <value>3421</value>
19 <timeStamp>2013-05-18T18:02:38</timeStamp>
20 </measure>
21 </...>
22 ...
23 </MonitoringManagmentDocument>

Figure 7. Excerpt of the MMD of Fig. 5 with the monitoring results.

D. The ADA service503

ADA is an Agreement Document Analysis framework504

aimed at extracting useful information from agreement doc-505

uments [22]. It has been developed based on our previous the-506

oretical works on applying the constraint satisfaction problem507

(CSP) [27] paradigm to the automated procurement of web508

services [28]. The main features of ADA [29] are: (1) ready-to-509

use by detecting and explaining conflicts within and between510

WS–Agreement documents [29], [30]; (2) functional suitabil-511

ity by supporting the analysis of expressive WS–Agreement512

documents with conditional, optional, or alternative terms,513

term scopes, arithmetic-logic expressions inside SLOs, et514

cetera [18]; (3) understandability by supporting a plain-text515

notation [18] that makes reading and writing WS–Agreement516

documents easier for humans; (4) interoperability through a517

triple distribution model (Java library, OSGi4 service, and web518

service); and (5) CSP solver independence.519

Similarly to SALMon, ADA has been enhanced with new520

components (see elements with a thicker frame in Fig. 8): the521

SLA Manager, several analysis facilities to detect and explain522

violations at monitoring, and repositories for SLAs and SLFs.523

The existing ADA components have also been adapted to524

interact with other components of the SALMonADA frame-525

work. ADA components are grouped into two modules with526

the following responsibilities.527

ADA Manager: is responsible for SLA storage and re-528

trieval from the repository; as well as the translation between529

several SLA models to a WS–Agreement-based normalised530

one using XML that ADA is able to analyse.531

ADA Analyser: is responsible for: (1) analysing the ful-532

fillment of the WS–Agreement document given the monitoring533

results stored in the corresponding MMD; (2) the creation of534

violation explanations when a violation is detected; and (3) the535

storage and retrieval of the SLF information. Such analysis is536

performed by means of a CSP solver tool (see Sec. V for more537

details) that supports the following assertion language:538

4www.osgi.org

ADA – monitoring compliant version

getAgreement(slaID)

WS-Agreement
Repository

Get SLA data

Store SLA data

delete-
Agreement(slaID)

store-
Agreement(WSAg)

ADA Manager

SLA Manager

CSP Solver

CSP Mapping Fulfillment
 Analyser

 Violation
 Explainer

ADA Analyser

SLA Translator

SLA data

Analysis
Results

Get Analysis data

Store Analysis data

SLF data

getServiceLevelFul-
fillment(slaID, MMD)

 «service»
MMD Manager

Analysis
Controller

retrieve-
Measure(MMD)

Versión de ADA muy SALMonADA

La versión de ADA más genérica debería tener elementos
Como:
1. la fachada de ADA con las operaciones de análisis
2. La fachada WSDL
3. OSGi compliant
4. Desglosar el translator en XMLto4People, y DSL parsers

Figure 8. Architectural Model of the monitoring-compliant ADA.

1 Unfulfillment Explantion:
2 Violated terms: GTexplainNonComplianceRespTime
3 (AverageResponseTime < 2 s.)
4 explainedBy: AverageResponseTime = 3421 ms.

Figure 9. SLF for the violation of the SLA (Fig. 4) by the MMD (Fig. 7)

P ::= P opL P | T , predicate, where opL ∈ {∧ |∨ | ¬ | ⇒ |⇔}
T ::= E opC E, term, where opC ∈ { = | 6= | > | ≥ | < | ≤ }
E ::= E opA E | var | lit, expression, where opA is an algebraic

operator defined on the domain of variables and literals

As a result, we work with an assertion language inside 539

WS–Agreement documents that is not just expressive but 540

also easy to understand by non-technical users (cf. SLOs of 541

Fig. 4). Moreover, as Fig. 9 shows, the reported SLF is also 542

understandable because the violated terms are associated with 543

the violating monitored values, both expressed in a human 544

understandable way. 545

V. A CSP-BASED TECHNIQUE TO EXPLAIN VIOLATIONS 546

The detection and explanation of violations, which is the 547

ultimate goal of this paper, is necessarily based on the align- 548

ment of the WS–Agreement document, which expresses the 549

requirements on the service, and the MMD document, which 550

collects monitoring information at runtime. To implement this 551

alignment, we need to provide semantics to both documents 552

and then define the concept of violation and the procedure to 553

get explanations. In our technique, the semantics is defined 554

through semantic mappings. Under this view, the elements 555

of the documents, that are considered as source models are 556

mapped into a target domain whose semantics have been 557

formally defined [31]. The main advantage of semantic map- 558

pings is that they enable the usage of techniques, preferably 559

automated, which are specific to the target domain in order to 560

infer properties in the source models [32]. 561

In our case, we have chosen constraint satisfaction problems 562

(CSP) [27] as the target domain. Solving problems by means 563

of CSPs has been a research topic in Artificial Intelligence 564

for years. In short [33], a CSP is a three–tuple of the form 565

(V,D,C) where V is a set of variables, D is a set of domains, 566

and C is a set of constraints. Each variable Vi ∈ V has a 567

finite domain Di ∈ D. Each constraint in C applies to a subset 568

of the variables, and restricts the combination of values that 569

www.osgi.org

8

those variables can take at the same time. A solution to a570

CSP is an assignment of a value to each variable such that all571

the constraints are satisfied. Consider, for instance, the CSP:572

({a, b}, {[0, 2], [0, 2]}, {a + b < 4}). Then, (a = 2, b = 0)573

is a possible solution since it verifies that 2 + 0 < 4, whilst574

(a = 2, b = 2) is not a valid solution.575

The reason for selecting CSP is twofold. On the one hand,576

the MMD and the most significant part of an WS–Agreement577

document are sets of constraints over service properties and,578

therefore, CSPs can be used to model the detection and579

explanation problem in a very natural way, as we showed in580

previous works [28]–[30], [34]–[36]. On the other hand, there581

is a plethora of CSP solvers available that support a wide582

range of constraints and can be used to automatically analyse583

WS–Agreement documents in an efficient manner.584

Our proposal to interpret the SLA fulfillment using CSPs585

is based on checking that the monitored metrics values are a586

possible solution for the CSP mapped from the SLA.587

The proposed CSP-based technique to detect and explain588

SLA unfulfillments takes into consideration that those WS–589

Agreement terms whose scope is a specific service op-590

eration are only affected by monitored metrics measured591

while such operation is being executed. For example, the592

AverageResponseTime attribute of a term whose scope is593

the explainNonCompliance operation, would be checked594

for fulfillment with the average of monitored response time595

of explainNonCompliance operation. To consider this596

in our system, the original WS–Agreement document ∆ is597

separated into several views ∆op by the service operation598

scope. Each view is a WS–Agreement document by itself599

restricted to both: the set of terms whose scope is a specific600

service operation; and such terms whose scope are all service601

operations (i.e. such terms that do not specify any scope602

such as GTgeneralAvailability of Fig. 4). In the603

case a term whose scope includes more than one service604

operation, but not all of them, it would be included in as many605

views as scoped service operations. For instance, the term606

GTgeneralResponseTimeRelations of Fig. 4 would607

be included in four views, one for each scoped operation.608

In general, a WS–Agreement view ∆op defines some guar-609

antees for a set of service properties whose domain has been610

previously defined. WS–Agreement views can be modelled611

in a CSP by means of the semantic mapping map(∆op)612

that is summarised in Table II, whereas Fig. 10 shows the613

CSP mapped from the explainNonCompliance view614

(∆explainNonCompliance) of the ADA SLA included in Fig. 4.615

Concerning MMDs, the original MMD M is also separated616

into several views Mop by the monitored service operation.617

Thus, each view comprises the QoS monitoring result that618

includes metric–measure pairs of a unique service operation5,619

and those affecting all service operations. Table III summarises620

the MMD semantic mapping map(Mop), whereas Fig. 11621

5Note that the measure units must match for a given scale (e.g. time) in
the service properties of the SLA and the MMD. If they do not match, a
conversion formula should be applied for each CSP constraint, as proposed
in some QoS ontologies for Web Services [37]. Fig. 15 includes different
measure units for the AverageResponseTime property: seconds in the
SLA and milliseconds in the MMD.

Table II
TERMS MAPPING FROM WS–AGREEMENT VIEW TO CSP.

WS–Agreement Element CSP Mapping
1 Agreement . . .
2 C o n t e x t : . . .
3 Responder / I n i t i a t o r : . . .

This information is not
mapped into the CSP

1 name: S e r v i c e P r o p e r t y
2 proper tyName
3 − measured by m e t r i c D e f i n i t i o n

V ← V∪ propertyName
D← D ∪
domain(metricDefinition)
C ← C

1 name: S e r v i c e D e s c r i p t i o n
2 SDTExpr

This information is not
mapped into the CSP

1 name: G u a r a n t e e d by x
2 Sc op e : S e r v i c e O p e r a t i o n’,
3 QC: QCExpr,
4 SLO: SLOExpr

V ← V
D← D
C← C ∪ (QCExpr⇒SLOExpr)

1 name: G u a r a n t e e d by x
2 Sc op e : S e r v i c e O p e r a t i o n’,
3 SLO: SLOExpr

V ← V
D← D
C← C ∪ (SLOExpr)

Table III
MONITORING QOS DATA MAPPING FROM MMD VIEW TO CSP.

Measure CSP Mapping
1 m e t r i c = v a l u e
2 f o r S e r v i c e O p e r a t i o n’

V ← V∪ metric
D← D ∪ domain(metric)
C ← C ∪ (metric = value)

shows the CSP mapped from the monitoring results of the 622

ADA SLA corresponding to the explainNonCompliance 623

operation included in Fig. 7. 624

In order to carry out the detection and explanation of SLA 625

unfulfillment, we need to use a pair of analysis techniques that 626

have been widely used in CSPs: 627

• solve(V,D,C) tries to find all CSP solutions. To this end, 628

many heuristics and techniques have been developed to 629

solve CSPs in an efficient manner [38], [39]. 630

• explain(V,D,C) tries to provide an explanation when 631

such solution is not possible [40]. This explanation is 632

a minimal set of constraints c ∈ C that makes impossible 633

to find a solution that satisfies C. For instance, the CSP 634

({a, b, d}, {[0..2], [0..2], [0..2]}, {a + b < 1, a > 0, d > 635

1}) is not satisfiable, and its possible explanations c are 636

either {(a + b < 1)} or {(a > 0)}. 637

On the basis of these operations and the previously de- 638

scribed map functions for the SLA and MMD, we may 639

trace back in order to infer the SLA fulfillment with the 640

MMD measures, providing the precise semantics for detect- 641

ing the unfulfillment and their explanation, as follows. Let 642

map(∆op) = (V,D,C) and map(Mop) = (V ′,D′,C′) 643

unfulfillment(∆op,Mop)⇔ solve(V ∪ V ′,D ∪ D′,C ∪ C′) = ∅

644

In the example above, the WS–Agreement view 645

∆explainNonCompliance is not fulfilled by the MMD measures 646

MexplainNonCompliance, due to the lack of solutions for the joint 647

CSP generated. 648

In this case, an explanation like such provided in Fig. 9 649

would be reported using the following formula: 650

unfulfillmentexp(∆op,Mop) = explain(V ∪ V ′,D ∪ D′,C ∪ C′)

9

V = { AverageResponseTime, GeneralResponseTime,
AverageAvailability }

D = { [1..∞], [1..∞], [1..100] }
C = { AverageAvailability>=95, GeneralResponseTime<=1.5,

GeneralResponseTime>0.5 ⇒ AverageResponseTime<2 }

Figure 10. CSP generated from WS–Agreement view: ∆explainNonCompliance.

V = { AverageResponseTime, GeneralResponseTime,
AverageAvailability }

D = { [1..∞], [1..∞], [1..100] }
C = { AverageAvailability=100, GeneralResponseTime=1.7,

AverageResponseTime=3.421}

Figure 11. CSP generated from MMD view: MexplainNonCompliance.

651

The algorithm is applied subsequently to the different views652

of both documents and trace the CSP constraints back to the653

corresponding WS–Agreement term or MMD measure. An654

example of the final result is provided in Fig. 9 and in Sec. VI.655

VI. SALMONADA IN USE656

SALMonADA is designed and developed to support push657

and pull interaction styles with its clients. Thus, a client, based658

on its own needs, may choose the approach that best fits659

them. Independently of the selected approach, a client shall660

start the use of SALMonADA by subscribing as such a client.661

Similarly, the client shall stop the SALMonADA monitoring662

at the end of the interaction, to be unsubscribed as client.663

As the sequence diagram of Fig. 13 shows, the client664

starts the monitoring process by providing a WS–Agreement665

document to monitor its fulfillment. In case of push approach,666

the client shall also provide the endpoint where the notification667

is awaited. Independently of the approach used, ADA stores668

the WS–Agreement document. This document is also sent669

to the MMD Manager for it to generate the MMD. Such670

MMD will store the information to configure the monitor671

and all the measured metrics obtained while monitoring the672

service agreed in the WS–Agreement document. Afterwards,673

a monitoring session is started in SALMon providing the674

endpoint where the monitoring result must be notified to675

update the MMD after a service consumption. Finally, a client676

identifier (clientID) is generated to denote the specific677

monitoring session for this SLA. If several SALMonADA678

clients wanted to monitor a unique SLA, for instance the679

service consumer and provider to be informed about the SLA680

fulfillment, a different monitoring session would be started and681

thus, a different clientID would be returned.682

When a client wants to be unsubscribed from683

SALMonADA, it provides its clientID to stop its684

monitoring process. The WS–Agreement document and the685

monitoring session is removed from SALMonADA by ADA686

and SALMon if there is no other client monitoring the same687

SLA, otherwhise SALMonADA will keep them while in688

use by these other clients. In any case, the clientID is689

removed from the system.690

timeline

MMD1 MMD2 MMD3 MMD4 MMD5

Analysis
time

MMD1 MMD2

Prefixed monitoring
time interval

Windowed
notification

SALMonADA
Early notification

MMD1 analysis
notification

…

ADA analysis
time

(MMD1 violation notification to the client)

ADA analysis
time

MMD2

fulfills

Early Windowed

Figure 12. Early analysis notification vs. windowed analysis notification.

A. Push Interaction Approach 691

The push approach is the most convenient way to interact 692

with SALMonADA due to the push nature of its service 693

monitoring and analysing. In this sense, as Fig. 12 shows, 694

the platform incorporates an early analysis notification that 695

supports the analysis of the SLA fulfillment as soon as new 696

measured metrics have been updated in the MMD. Thus, the 697

SLF notification is sent to the client without any further delay 698

than the analysis time, in contrast with windowed proposals 699

[13] that get periodically the monitored values in a prefixed 700

time interval to analyse them later. Assuming a similar analysis 701

time, the difference between both approaches is higher when 702

the violation affects to a measured metric at the beginning 703

of the prefixed time interval (see MMD1 in Fig. 12). In the 704

case that the violation affects to a measured metric at the 705

end of the prefixed time interval, the notification will be 706

delivered at the same time in both approaches. As the sequence 707

diagram of Fig. 14 depicts, once the client has started to 708

monitor, the provider service included in the reported WS– 709

Agreement document is monitored by the SALMon service. 710

Next, the MMD created from the monitored WS–Agreement 711

document is sent to the MMD Manager with the measured 712

metrics to be updated. Finally, the new MMD is notified to 713

the SALMonADA composer that sends it to the ADA service 714

to analyse the service level fulfillment of the corresponding 715

WS–Agreement document (cf. Sec. IV-D for more details). 716

Then, the client is notified about the WS–Agreement document 717

fulfillment by means of the SLF. If the WS–Agreement is not 718

fulfilled, both the specific violated WS–Agreement terms and 719

the violating metrics, are included as violation explanation. 720

Note that SALMonADA supports the same endpoint acting as 721

different clients, for instance, one of them to get the SLF, and 722

another to store reputation analytics of the service consumer 723

and provider, or even to perform self-adaptation strategies. 724

For instance, let us suppose that SALMonADA is mon- 725

itoring the WS–Agreement document of ADA depicted in 726

Fig. 4. That document specifies that some operations have 727

a higher priority and are required to be faster than the 728

average response time of the different methods of the service 729

(AverageResponseTime <= GeneralResponseTime). If there 730

was a violation, SALMonADA would report an explanation 731

right after detecting it. The explanation would identify if the 732

10

«controller»

SALMonADA
Composer

«user/application»

SALMonADA Client

«service»

ADA

«service»

MMD Manager

«service»

SALMon

slaID

MMD

monitoringSessionID

clientIDclientID

the client notification
endpoint is required only
when the SALMonADA
clients selects the push
interaction with
SALMonADA

startMonitoring(WSAg, clientNotificationEndpoint)

storeAgreement(WSAg)

generateMMD(WSAg)

startMonitoring(MMD, controllerNotificationEndpoint)

storeClient(slaID, monitoringSessionID, clientNotificationEndpoint)

Figure 13. A SALMonADA client starts monitoring.
 sd salmon notify

«service»

SALMon

Consumer

Service

Provider

Service

«service»

MMD Manager

«Controller»

SALMonADA

Composer

«service»

ADA

slf:ServiceLevel

Fulfi l lment

«user/application»

SALMonADA Client

response

measures

MMD

loop (subscribers notification)

[for each s:MMD.subscriber] SALMonADA Composer

is one of the SALMon

Subscribers

response

client:Client

alt (notifying the right client)

[client.clientNotificationEndpoint != null]

measure

analysisResult<Fulfi l lment,

ViolationExplanation>

slf

serviceRequest(params)

startMeasure()

serviceRequest(params)

stopMeasure()

updateMeasure(measures, MMD)

new(s.subscriberNotificationEndpoint)

notify(MMD, s.monitoringSessionID)

getClient(s.monitoringSessionID)

getServicelLevelFulfi l lment(client.slaID, MMD)

retrieveMeasure(MMD)

analyse(client.slaID, measure)

new(analysisResult, MMD)

new(client.clientNotificationEndpoint)

notify(slf, client.clientID)

Figure 14. Push SALMonADA approach.

violating metric is either AverageResponseTime or General-733

ResponseTime because a simple identification of the violated734

term is not enough to grasp the violation cause. Similarly,735

SALMonADA supports the explanation of violations of more736

expressive SLOs. For instance, the provider may guarantee a737

different average response time limit for the slower service738

operations, depending on the general response time of the739

service, as follows: ((GeneralResponseTime >= 0 AND Gene-740

ralResponseTime < 2) IMPLIES (AverageResponseTime < 3))741

AND ((GeneralResponseTime >= 2 AND GeneralResponseTi-742

me <= 4) IMPLIES (AverageResponseTime < 5)).743

B. Pull Interaction Approach744

The pull approach allows the client to actively request the745

results of SALMonADA for either: the current MMD with746

the most recent monitoring results obtained by SALMon; or747

the current SLF of the WS–Agreement document analysed748

by ADA. The former document is obtained by invoking the749

Figure 15. Reporting a violation with the SALMonADA client

getMMD method, whereas the latter is through the get- 750

ServiceLevelFulfillment method. In both cases, the client is 751

required to provide the clientID as input. 752

As usual in pull approaches, if the consumer(s) do not 753

invoke the service, there is not new monitoring information 754

and thus, it is possible that the client gets the same monitoring 755

information in consecutive MMD requests. 756

For demonstration purposes, we have implemented a web 757

application6 as a SALMonADA client in order to specify or 758

upload the WS–Agreement documents to monitor, execute 759

SALMonADA and receive the results. In this web appli- 760

cation, we have introduced the WS–Agreements of ADA 761

and SALMon themselves. By monitoring the SLAs of these 762

services, we assess on the one hand, the functionality of 763

SALMonADA, and on the other, the non-functional aspects of 764

its main components. Such a SALMonADA client uses the pull 765

interaction because the user press the corresponding interface 766

controls to get the MMD and the analysis results. Moreover, 767

as part of the demonstration and to assure that the service 768

subject of the SLA is being requested, we have simulated the 769

consumers that execute ADA and SALMon services. 770

With the client identifier, the SALMonADA client can get, 771

at any time, the MMD, check if a violation has occurred, and 772

in such a case, receive an explanation of the violation. 773

As Fig. 15 depicts, the web application highlights as vio- 774

lation explanation that the AverageResponseTime of explain- 775

NonCompliance operation is the violating metric because it 776

was measured as 3421 milliseconds, while the guarantee term 777

obligates the provider to respond in less than 2 seconds. As 778

stated in Sec. V, SALMonADA handles different measurement 779

units and the required unit transformation is performed to 780

evaluate the conditions. 781

VII. PERFORMANCE AND SCALABILITY EVALUATION 782

In this section we evaluate both the performance and 783

scalability of SALMonADA. Particularly, we focus on the 784

overhead introduced by including SALMonADA within the 785

consumer-provider interaction, and the maximum number of 786

service request it is able to handle without incrementing such 787

overhead. To do so, we first introduce how the components of 788

its architectural model (see Fig. 2) affects the performance: 789

6The SALMonADA web application can be tried at www.isa.us.es/ada.
source/SLAnalyzer/. A screencast is available at gessi.lsi.upc.edu/salmon/ada/

www.isa.us.es/ada.source/SLAnalyzer/
www.isa.us.es/ada.source/SLAnalyzer/
gessi.lsi.upc.edu/salmon/ada/

11

SALMonADA composer, MMD Manager and ADA: We790

have implemented two strategies to avoid them introducing791

overhead: (1) they are executed concurrently, without inter-792

fering the service consumption, because the response of the793

provider is returned to the consumer before analysing the794

SLA fulfillment (see Fig. 14), and (2) they are deployed in795

a different location from the monitored service, and hence796

they do not share the same resources (e.g. CPU, RAM,797

etc.). Consequently, although these components might be time-798

consuming (e.g. the analysis of the SLA), they do not introduce799

an overhead over the response time of the monitored service.800

SALMon: The ESB Apache Synapse included in801

SALMon adds a low overhead while handling the HTTP802

messages. The ESB has a non-blocking HTTP transport and803

multi-threaded mediation, which as we measured, results in a804

negligible 1 - 3 ms overhead. Nevertheless, in our approach,805

there are three possible locations where SALMon can be806

deployed: at the server side, at the client side, or in an807

intermediate server (i.e. in the middle). Depending on the808

location, the overhead experienced by the consumer varies.809

If SALMon is placed at the server or client side, there810

is an overhead on the resources due to the execution of the811

monitoring components. However, this overhead can be easily812

compensated by adding more resources.813

If SALMon is placed in the middle, it does not produce an814

overhead on the resources of the client or server side. However,815

the deployment of SALMon in an intermediate server adds816

a network delay from Internet Service Providers due to the817

redirection of the messages. In this scenario, SALMonADA is818

not responsible of the overhead introduced by the network,819

but under heavy usage the components of SALMon might820

experience a bottleneck. To quantify it, we evaluate by means821

of an adequate benchmark, (1) the response time overhead822

under normal operating conditions (i.e. one invocation at a823

time), and (2) the maximum throughput SALMonADA is able824

to handle without incrementing such overhead.825

a) Setting up the experiment: To perform the evaluation,826

we invoke a set of real services, and compare the response time827

by invoking the services both directly and through SALMon.828

The agents involved in the experiment are the monitored829

services, the client and SALMon.830

To obtain a set of representative services, we started from831

a list of 393 services available in a public repository7. Then832

we applied the following criteria: (1) We first considered the833

most recently submitted services under the assumption that834

recent services are more likely to be available and running835

than older services. Considering the length of the list, we836

established as threshold the 1/3 of the complete list. (2)837

From the resulting 131 services, we removed those ones838

falling into any of the following situations: were not available,839

were payment services, required registration or didn’t have840

stateless operations, resulting in 23 services. (3) We tested841

these 23 services and removed those ones that had errors842

in their descriptions (WSDL), or that gave faulty results in843

their functionality when invoked, resulting in a final list of 11844

services from 8 different service providers, deployed on their845

7http://www.xmethods.net/ve2/Directory.po

0%

5%

10%

15%

20%

25%

30%

35%

5 30 55 80 10
5

13
0

15
5

18
0

20
5

23
0

25
5

28
0

30
5

33
0

35
5

38
0

40
5

43
0

45
5

48
0

50
5

53
0

55
5

58
0

60
5

63
0

outliers

Figure 16. Response time distribution of ISBN service

respective servers (i.e. out of the control of the experiment), 846

see Appendix A for the full list. 847

The client that invokes those services has been deployed in 848

Seville in an Intel i7 of 2,20 GHz, 8 GB of RAM, a download 849

speed of 13,92 Mbps and upload speed of 8,15 Mbps. 850

SALMon has been deployed in Barcelona in a dedicated 851

server Intel 2,6Ghz, 6GB RAM, a download speed of 56,57 852

Mbps and upload speed of 15,71 Mbps. 853

b) Conducting the experiment: We first conducted the 854

experiments under normal conditions executing 100 service 855

calls per each service in both direct and redirected forms by us- 856

ing synchronous calls (i.e. one invocation at a time). Then, we 857

conducted asynchronous calls to test the maximum throughput 858

of the system starting from a throughput of 1 invocation 859

per second to a throughput of 100 invocations per second. 860

We performed 100 invocations per each throughput in both 861

direct and redirected forms. Some services have limitations 862

to be tested under these circumstances (e.g. restrictions on 863

the number of concurrent invocations) and the scalability have 864

been analysed on the services that didn’t have these limitations 865

(6 of the 11 services). 866

c) Analysing the results: One key issue regarding the 867

analysis of the results is dealing with outliers (e.g. network 868

failures that increase the response time of an invocation). 869

Commonly used methods to deal with outliers require that 870

the data follow a Gaussian distribution [41]. However, from 871

the experiment results we have observed that response times 872

do not follow a Gaussian distribution, but an exponentially 873

modified Gaussian or inverse Gaussian distribution. For in- 874

stance, the distribution of the response time of one of the 875

monitored services is depicted in Fig. 16. As shown, the 876

population grows rapidly on the left-hand side and decreases 877

slowly on the right-hand side in the form of a tail. Those 878

elements that are far away from the mean are considered 879

outliers. To deal with these outliers, we followed the methods 880

described and evaluated by Ratcliff for dealing with response 881

time outliers [42]. Although Ratcliff studied response time of 882

people in the field of psychology, the results can be applied 883

to any model that follows the inverse Gaussian distribution. 884

According to Ratcliff, we will not compute directly the average 885

response time (which is not a robust estimator in front of 886

outliers), but we will use two other robust estimators, namely, 887

the inverse transformation and removing outliers at a standard 888

deviation distance. The first estimator consists on applying 889

the inverse response time (1/R) on each individual invocation, 890

calculate the average, and then invert the result. The second 891

12

y = 0,9 x + 88,3
0

200

400

600

800

0 200 400 600 800

Inverse transformation estimator

y = 1,0 x + 86,30

200

400

600

800

1000

0 200 400 600 800

Average deleting outliers at 1SD

RT in direct invocation (ms)

RT in direct invocation (ms)

RT
 th

ro
ug

h
SA

LM
on

(m
s)

RT
 th

ro
ug

h
SA

LM
on

 (m
s)

Figure 17. Response time of the service with SALMon with respect to direct
invocation

estimator consists on calculating the average response time892

after removing the outliers at a standard deviation distance. We893

computed these methods over the invocations on each service894

for both directed and redirected invocations. As a result, we got895

two robust estimators per each service. We applied these esti-896

mators to the response time of direct and redirected invocations897

in order to calculate the response time overhead introduced898

in the service interaction by the deployment of SALMon in899

the middle. We decided to relate the two parameters with900

a linear interpolation curve fitting method with the aim of901

obtaining mathematical functions approximating the response902

time overhead. Fig. 17 shows the obtained functions for each903

of the two applied robust estimators methods, which are:904

y = 0.9x + 88.3ms and y = 1.0x + 86.3ms.905

Then, using the same estimators, we calculated what is the906

maximum throughput without incrementing such overhead. As907

shown in the results of Fig. 18, the maximum throughput of908

redirected invocations is 41 invocations per second. Above909

this number, the overhead response time raises significantly.910

Notice that some monitored services present a lower maximum911

throughput, but as shown, it is because they are unable to912

process such amount of invocations (either direct or redi-913

rected). We conclude that the response time overhead of the914

deployment of SALMon in the middle has a constant value915

betweeen 86 and 89 ms, and its maximum throughput is 41916

invocations per second.917

We must remark that this overhead does not interfere with918

the SLA analysis, because the monitored response time corre-919

sponds to the real response time of the service. Nevertheless,920

as the consumer of the service experiences this delay, it is921

worthy to mention some deployment strategies to mitigate922

any concern. On the one hand, deploying SALMon at the923

0
10
20
30
40
50
60

in
vo

ca
tio

ns
 p

er
 se

co
nd

Throughput without incrementing overhead

Direct invocation Invocation through SALMon

41

+

Figure 18. Throughput without incrementing response time

client or server side is suitable for service consumers that 924

require extremely fast response times and need to avoid the 925

86-89 ms overhead caused by the network delay. Moreover, as 926

discussed before, this deployment is also suitable for services 927

dealing with sensitive data. On the other hand, for other 928

types of services, we argue that a deployment in the middle 929

is preferred, since this solution is less intrusive to both the 930

client and the provider server, as it does not require the 931

installation of the monitor in their infrastructures. Moreover, 932

if a throughput higher than 41 requests per second is required, 933

multiple instances of the ESB can be replicated in different 934

servers under the same SALMon platform. 935

VIII. CONCLUSIONS AND DISCUSSION 936

In this paper we have presented a solution to monitor and 937

analyse SLAs in order to provide timely detection and com- 938

prehensive explanations of their violations. Such information 939

is really appealing for decision-making activities performed 940

at runtime. For instance, the consumers of AmazonS3 sce- 941

nario mentioned in Sec. I would be benefited from using 942

SALMonADA because they are able to decide if they have to 943

claim for a reward or not due to the service level fulfillment 944

information provided. Other scenarios that may benefit from 945

our proposal are the renegotiation of SLAs or the adaptation of 946

SBSs. Our solution addresses satisfactorily the different issues 947

identified in Sec. II: 948

• SALMonADA’s supported SLAs are general-purpose 949

because they follow the WS–Agreement [16] struc- 950

ture, completed with general-purpose sublanguages [18]. 951

Moreover, the used notation is more human understand- 952

able than such proposed in [2], [3], [9], [11], [13], [14], 953

[19] making it easier to be managed by human users. 954

• The SALMonADA platform is able to extract automat- 955

ically from the SLA the information needed to config- 956

ure the monitor in order to detect violations. This is 957

done through a document, the Monitoring Management 958

Document (MMD), which supports decoupling the SLA 959

structure from the monitor service. 960

• SALMonADA uses the MMD itself to store the monitor- 961

ing results coming from the monitor. The advantage of 962

our approach is to have the MMD as the unique document 963

that centralise all monitoring-related information without 964

coupling to a specific API or query language. 965

13

• We introduce the Service Level Fulfillment (SLF) as a966

document to explain accurately the violations by identi-967

fying explicitly the violated terms and the violating mon-968

itored results. The explanations are computed through969

the application of a powerful CSP-based mechanism.970

SALMonADA supports reporting such SLF information971

either as soon as a violation is detected (push), or when972

the client requests it (pull).973

• SALMonADA’s architecture keeps the monitor and anal-974

yser services decoupled from each other allowing thus in-975

dependent evolution and eventually selective substitution.976

The MMD and SLF documents support this decoupling.977

• The organization of SALMonADA as a SOA makes the978

interoperability of the platform with other tools easier.979

Moreover, we have performed an evaluation of the impact980

that SALMonADA has over the performance of the service981

consumption. The evaluation has been performed over real982

services using suitable estimators for response time to evaluate983

both its overhead and scalability. Although a low overhead is984

added either in the resources consumption or in the service985

response time, we expose how to mitigate it either by adding986

more resources, or deploying SALMonADA in alternative987

locations. Despite such an overhead, the client and the service988

provider are benefited from using our proposal. On the one989

hand, the client gets the real QoS of the service, which is990

required for several activities, such as self healing, claiming991

rewards due to SLA penalties, et cetera. On the other hand, the992

service provider can manage its services with the knowledge993

of the QoS, which is helpful to take appropriate decisions such994

as adding more resources to a specific service, renegotiating995

the SLA, et cetera.996

As Future work we plan to study how to integrate997

SALMonADA on different self healing systems as such pro-998

posed in [13], [19]. In doing so, we will demonstrate that999

SALMonADA can be easily deployed with other monitors and1000

analysers, as well as supporting other MMDs and SLAs.1001

ACKNOWLEDGMENT1002

This work has been partially supported by: S–Cube, the1003

European Network of Excellence in Software Services and1004

Systems; the European Commission (FEDER); the Spanish1005

Government under the CICYT projects SETI (TIN2009–1006

07366), TAPAS (TIN2012–32273) and ProS–Req (TIN2010–1007

19130–C02–01); and by the Andalusian Government under the1008

projects THEOS (TIC–5906) and ISABEL (P07–TIC–2533).1009

REFERENCES1010

[1] M. P. Papazoglou, K. Pohl, M. Parkin, and A. Metzger, eds., Service1011

Research Challenges and Solutions for the Future Internet - S-Cube,1012

vol. 6500 of LNCS, Springer, 2010.1013

[2] A. Keller and H. Ludwig, “Defining and monitoring service level1014

agreements for dynamic e-business,” in Proc. of the 16th USENIX System1015

Administration Conference, no. November, 2002.1016

[3] A. Keller and H. Ludwig, “The WSLA Framework : Specifying and1017

Monitoring Service Level Agreements for Web Services,” Network,1018

vol. 11, no. 1, pp. 57–81, 2003.1019

[4] M. Comuzzi and C. Kotsokalis, “Establishing and monitoring SLAs in1020

complex service based systems,” Web Services, 2009.1021

[5] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Comprehensive1022

qos monitoring of web services and event-based sla violation detection,”1023

in 4th Int. Workshop on Middleware for Service Oriented Comp., 2009.1024

[6] B. Pernici, “Adaptation of web services based on QoS satisfaction,” 1025

Service-Oriented Computing, pp. 65–75, 2011. 1026

[7] R. Kazhamiakin, B. Wetzstein, D. Karastoyanova, M. Pistore, and 1027

F. Leymann, “Adaptation of service-based applications based on process 1028

quality factor analysis,” in ICSOC Workshops, vol. 6275 of LNCS, 2009. 1029

[8] O. Moser and F. Rosenberg, “Non-intrusive monitoring and service 1030

adaptation for WS-BPEL,” in Proc. of the 17th Int. Conf. in WWW, 1031

pp. 815–824, 2008. 1032

[9] M. Palacios, J. Garcia-Fanjul, J. Tuya, and C. De La Riva, “A Proactive 1033

Approach to Test Service Level Agreements,” 5th Int. Conf. on Software 1034

Engineering Advances, pp. 453–458, 2010. 1035

[10] M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno, “Search- 1036

based testing of service level agreements,” in Proc. of the 9th Conf. on 1037

Genetic and evolutionary computation, pp. 1090–1097, ACM, 2007. 1038

[11] SLA@SOI, “Reference architecture for an sla management framework 1039

(whitepaper of deliverable d.a1 a framework architecture),” 2011. 1040

[12] M. Wilson et al., “Trustcom framework v4,” 2007. 1041

[13] K. Mahbub and G. Spanoudakis, “Monitoring ws-agreement s: An event 1042

calculus-based approach,” in Test and Analysis of Web Services, pp. 265– 1043

306, Springer, 2007. 1044

[14] G. Spanoudakis and K. Mahbub, “Non-intrusive monitoring of service- 1045

based systems,” International Journal of Cooperative Information Sys- 1046

tems, vol. 15, no. 3, pp. 325–358, 2006. 1047

[15] S. Benbernou, L. Cavallaro, M. Sahid-Hacid, R. Kazhamiakin, G. 1048

Kecskemeti, J-L. Poizat, F. Silvestri, M. Uhlig, B. Wetzstein, “State of 1049

the Art Report, Gap Analysis of Knowledge on Principles, Techniques 1050

and Methodologies for Monitoring and Adaptation of SBAs (S-Cube 1051

deliverable PO-JRA-1.2.1),” 2008. 1052

[16] A. Andrieux et al., “Web Services Agreement Specification (WS- 1053

Agreement) (v. gfd-r.192),” 2011. OGF - Grid Resource Allocation 1054

Agreement Protocol WG. 1055

[17] A. Sahai, V. Machiraju, M. Sayal, A. P. A. v. Moorsel, and F. Casati, 1056

“Automated sla monitoring for web services,” in 13th IEEE International 1057

Workshop on Distributed Systems: Operations and Management, 2002. 1058

[18] C. Müller, A. Durán, M. Resinas, A. Ruiz-Cortés, and O. Martín-Díaz, 1059

“Experiences from building a ws–agreement document analyzer tool,” 1060

Tech. Rep. ISA-10-TR-03, http://www.isa.us.es/, Jul 2010. 1061

[19] M. Comuzzi and G. Spanoudakis, “Dynamic set-up of monitoring 1062

infrastructures for service based systems,” pp. 2414–2421, ACM, 2010. 1063

[20] F. Raimondi, J. Skene, and W. Emmerich, “Efficient online monitoring 1064

of web-service slas,” in 16th ACM SIGSOFT Int. Symposium on Foun- 1065

dations of software engineering, (New York, NY, USA), ACM, 2008. 1066

[21] M. Oriol, X. Franch, J. Marco, and D. Ameller, “Monitoring adaptable 1067

soa-systems using salmon,” in Workshop on Service Monitoring, Adap- 1068

tation and Beyond (Mona+), pp. 19–28, 2008. 1069

[22] C. Müller, M. Resinas, and A. Ruiz-Cortés, “A Framework to Anal- 1070

yse WS–Agreement Documents,” in 4th Workshop on Non-Functional 1071

Properties and SLA Management in SOC (NFPSLAM-SOC’10), 2010. 1072

[23] S. AG, Standardized Technical Architecture Modeling: Conceptual and 1073

Design Level. Version 1.0. SAP, 2007. 1074

[24] T. Erl, SOA Design Patterns. Prentice Hall PTR, 1st ed., 2009. 1075

[25] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl, 1076

“Usage-based online testing for proactive adaptation of service-based 1077

applications,” in COMPSAC, pp. 582–587, IEEE Comp. Soc., 2011. 1078

[26] A. Kertesz, G. Kecskemeti, M. Oriol, P. Kotcauer, S. Acs, M. Rodríguez, 1079

O. Mercè, A. Marosi, J. Marco, and X. Franch, “Enhancing federated 1080

cloud management with an integrated service monitoring approach,” 1081

Journal of Grid Computing, pp. 1–22, 2013. 1082

[27] E. Tsang, Foundations of Constraint Satisfaction. Academic Press, 1995. 1083

[28] A. Ruiz-Cortés, O. Martín-Díaz, A. Durán, and M. Toro, “Improving 1084

the Automatic Procurement of Web Services using Constraint Program- 1085

ming,” I. J. on Cooperative Information Systems, vol. 14, no. 4, 2005. 1086

[29] C. Müller, M. Resinas, and A. Ruiz-Cortés, “Automated Analysis of 1087

Conflicts in WS–Agreement Documents,” in press Transactions on 1088

Services Computing, 2012. 1089

[30] C. Müller, M. Resinas, and A. Ruiz-Cortés, “Explaining the Non- 1090

Compliance between Templates and Agreement Offers in WS- 1091

Agreement*,” in Proc. of the 7th Int. Conf. on SOC, pp. 237–252, 2009. 1092

[31] D. Harel and B. Rumpe, “Meaningful modeling: What’s the semantics 1093

of "semantics"?,” IEEE Computer, vol. 37, no. 10, pp. 64–72, 2004. 1094

[32] J. Rivera, E. Guerra, J. de Lara, and A. Vallecillo, “Analyzing rule- 1095

based behavioral semantics of visual modeling languages with Maude,” 1096

in Software Language Engineering, LNCS, pp. 54–73, 2009. 1097

[33] A. Swearngin, B. Choueiry, and E. Freuder, “A reformulation strategy 1098

for multi-dimensional csps: The case study of the set game,” 2011. 1099

http://www.isa.us.es/

14

[34] O. Martín-Díaz, A. Ruiz-Cortés, A. Durán, D. Benavides, and M. Toro,1100

“Automating the Procurement of Web Services,” in Proc. of The 1st Int.1101

Conf. on Service-Oriented Computing, LNCS, pp. 91–103, 2003.1102

[35] O. Martín-Díaz, A. Ruiz-Cortés, A. Durán, and C. Müller, “An approach1103

to temporal-aware procurement of web services,” in Proc. of The 3rd Int.1104

Conf. on Service-Oriented Computing, pp. 170–184, 2005.1105

[36] C. Müller, A. Ruiz-Cortés, and M. Resinas, “An Initial Approach to1106

Explaining SLA Inconsistencies,” in Proc. of the 6th Int. Conf. on1107

Service-Oriented Computing (ICSOC), pp. 394–406, 2008.1108

[37] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A qos-aware selection1109

model for semantic web services,” in Proc. of The 4th Int. Conf.1110

in Service-Oriented Computing (A. Dan and W. Lamersdorf, eds.),1111

vol. 4294 of LNCS, pp. 390–401, Springer Berlin / Heidelberg, 2006.1112

[38] F. Laburthe, N. Jussien, G. Rochart, H. Cambazard, C. Prud’homme,1113

A. Malapert, and J. Menana, “Choco constraint solver web site,” 2010.1114

http://www.emn.fr/z-info/choco-solver/index.html.1115

[39] IBM, “IBM ILOG web site,” 2013. http://www-01.ibm.com/software/1116

websphere/ilog/.1117

[40] U. Junker, “Quickxplain: preferred explanations and relaxations for1118

over-constrained problems,” in Proc. of the 19th Int. Conf. on Artifical1119

intelligence, pp. 167–172, AAAI Press, 2004.1120

[41] D. Hawkins, Identification of outliers. Chapman and Hall London, 1980.1121

[42] R. Ratcliff, “Methods for dealing with reaction time outliers.,” Psycho-1122

logical bulletin, vol. 114, pp. 510–532, Nov. 1993.1123

Carlos Müller is a Research Assistant and member1124

of the Applied Software Engineering Group (ISA,1125

www.isa.us.es) at University of Sevilla, Spain. His1126

current research line includes service oriented com-1127

puting, specifically the automated analysis of service1128

level agreements and the application of such analysis1129

at SLA design and monitoring.1130

1131

Marc Oriol is a PhD student in Computer Science1132

and member of the GESSI research group at the at1133

Universitat Politècnica de Catalunya (UPC), Spain.1134

He obtained a Msc in Computing from this Uni-1135

versity. His current research lines include Service-1136

Oriented Computing, Quality-of-Service and moni-1137

toring.1138

1139

Xavier Franch is Associate professor and Head1140

of the GESSI research group at the Universitat1141

Politècnica de Catalunya (UPC), Spain. He obtained1142

his PhD and Msc in Informatics from this University.1143

His current research lines include Service-Oriented1144

Computing, Requirements Engineering, Software1145

Quality and Software Architecture, among others.1146

1147

Jordi Marco is Associate professor and member 1148

of the GESSI research group at the Universitat 1149

Politècnica de Catalunya (UPC), Spain. He obtained 1150

his PhD and Msc in Computing from this Uni- 1151

versity. His current research lines include Service- 1152

Oriented Computing, conceptual modelling, con- 1153

tainer libraries, and computer graphics. 1154

1155

Manuel Resinas is a Lecturer at the University of 1156

Sevilla, Spain. He obtained his PhD in Computer 1157

Science from this University. His current research 1158

lines include analysis and management of service 1159

level agreements, business process compliance, and 1160

process performance management. Previously, he 1161

worked on automated negotiation of service level 1162

agreements. 1163

1164

Antonio Ruiz-Cortés is Associate Professor and 1165

Head of the Applied Software Engineering Group 1166

(ISA, www.isa.us.es) at University of Sevilla, Spain. 1167

He obtained his PhD in Computer Science from 1168

this University. His current research lines include 1169

service oriented computing, software product lines, 1170

and business process management. 1171

1172

Marc Rodríguez is an undergraduate student and 1173

PAS researcher of the GESSI research group at the 1174

Universitat Politècnica de Catalunya (UPC), Spain. 1175

His current research lines include Service Oriented 1176

Computing, Quality-of-Service and monitoring. 1177

1178

http://www.emn.fr/z-info/choco-solver/index.html
http://www-01.ibm.com/software/websphere/ilog/
http://www-01.ibm.com/software/websphere/ilog/
http://www-01.ibm.com/software/websphere/ilog/

	Introduction and Motivation
	Related Work
	The SALMonADA Conceptual Reference Model
	The SALMonADA Platform
	The SALMonADA composer
	The MMD Manager service
	The SALMon service
	The ADA service

	A CSP-Based Technique to Explain Violations
	SALMonADA in Use
	Push Interaction Approach
	Pull Interaction Approach

	Performance and scalability evaluation
	Conclusions and Discussion
	References
	Biographies
	Carlos Müller
	Marc Oriol
	Xavier Franch
	Jordi Marco
	Manuel Resinas
	Antonio Ruiz-Cortés
	Marc Rodríguez

