
Assessing Open Source Communities’ Health using
Service Oriented Computing Concepts

Marc Oriol, Oscar Franco-Bedoya, Xavier Franch and Jordi Marco
Universtat Politècnica de Catalunya

Barcelona, Spain
{moriol, ohernan, franch}@essi.upc.edu, jmarco@lsi.upc.edu

Abstract—The quality of Open Source Software products is
directly related to its community’s health. To date, health analysis
is made accessing available data repositories or using software
management tools that are often too static or ad hoc. To address
this issue, we propose to adopt principles and methods from the
Service Oriented Computing field. Particularly, we propose to
adapt the concepts of quality service and service level agreement,
and propose to reuse the existing body of knowledge and
techniques from SOC monitoring. To demonstrate the feasibility
of the approach, we use a service monitoring framework called
SALMonOSS as a proof of concept to realize the implementation
of the proposal.

Keywords—Monitoring, Open Source Software, Community
Health, OSS, SOC

I. INTRODUCTION

Open Source Software (OSS) has become a strategic asset
for a number of reasons, such as its short time-to-market
software service and product delivery, reduced development
and maintenance costs, introduction of innovative features
and its customization capabilities. By 2015, an estimated
85% of all commercial software packages will include OSS
components [1]. Under these circumstances, ensuring OSS
quality becomes crucial.

Quality assessment is always a difficult endeavour, and it
is even more difficult in the OSS arena, where new patches
and releases are constantly deployed and an increasing number
of niche players want to participate in the resulting software
community [2]. An aspect that makes OSS quality analysis
different is the existence of communities. OSS components
are managed and distributed in a collaborative way by an
OSS community following some particular communicational
processes and involving some typical resources. Contributors
communicate bugs, committers confirm patches, the com-
munity produce releases, branches/forks may occur at any
moment, etc. Community members interact using mailing lists,
blogs, forums, etc. These processes and resources need to be
considered in a comprehensive quality assessment program. It
has been already argued that quality and sustainability of OSS
components heavily depends on the behaviour and evolution
of OSS communities along time [3], i.e., their health. Being
able to effectively assess the health of OSS communities is the
ultimate objective of our work.

Health is a term from biology, which refers to the status
of an ecosystem and is a metaphor in the context of OSS
communities [4]. OSS ecosystem health operationalization,
using the data from collections of open source projects that

belong to the ecosystem, is provided by Jansen in [5]. Perez et
al. studied the correlation between OSS community health and
software quality [6]. Abreu and Premraj showed a statistically
significant correlation between communication frequency and
number of injected bugs in the software [7]. This example
illustrates that software development is a social-technical ac-
tivity, where there exists a statistically significant correlation
between social activities and software quality [8]. It also shows
how OSS community health diagnostic requires monitoring
the data related to the community such as mailing lists, bug
tracking systems and version repositories [9], for this reason
it is necessary to develop tools that collect the values of OSS
community metrics anytime.

There has been in the last decade a considerable amount
of research, especially of quantitative nature, instrumenting
OSS community health analysis through a set of metrics (e.g.,
average time to resolve a critical bug), which are used in
real scenarios to improve the quality of the OSS [10]. Still,
this existing work mainly focuses on engineering accurate and
efficient solutions to the data gathering problem, e.g. how to
access to resources like bug trackers, how to analyse commu-
nity members’ messages in order to find relevant information
(e.g., sensitivity analysis), etc. Being this necessary, there is
also a need of well-established solutions to:

1) Manage this set of metrics along time according to
some pre-established plans.

2) Link the gathered values with client’s needs.
3) Engineer a portfolio of methods and techniques to

support OSS communities and OSS adopters in the
exploitation of this data.

4) Avoid very large list of metrics by defining a set of
key health indicators to evaluate the OSS communi-
ties’ health.

To solve these issues, we envision that the knowledge,
practices and methods in other fields with similar challenges
can provide a robust solution to accomplish the aforementioned
goals. Particularly, we believe that the current state of the
art in Service Oriented Computing (SOC) related to quality
assessment has strong similarities that can be ported into OSS
community health analysis.

To this aim, in this paper we present a new framework,
named SALMonOSS, which adopts the techniques from mon-
itoring Quality of Service (QoS) of services to monitor the
OSS community health. By following analogue principles, we
argue that a set of techniques and applications based on top
of the monitored data can be also ported from SOC to OSS.



The paper is organized as follows: In section II we present
the related work of quality assessment for both OSS and SOC.
In section III, we discuss the alignment we envision in the two
fields. We present the proposed framework, SALMonOSS, in
section IV, including some preliminar results. In section V
we describe a list of applications that can benefit from our
approach. Finally conclusions and future work are discussed
in section VI.

II. RELATED WORK

This section provides an overview of the related work in
the fields of OSS and SOC.

A. Assessment of OSS community health

The assessment of OSS community health is usually re-
alized by tools for a particular community or for a specific
platform. For instance, there exists several solutions in the liter-
ature for monitoring and analysis of specific OSS communities
by accessing directly to their available data repositories, e.g.
Nagios [3], GNOME [8], Ruby [11], Debian [12], Eclipse [13]
and Sourceforge [14]. Generally, these tools are specifically
designed for one or a few scientific experiments [8]. Con-
sequently, these tools are not available once the research is
finished and are not suitable to monitor other communities.

On the other hand, there are frameworks and tools that
automate the monitoring and analysis over specific reposi-
tories, e.g. FLOSSMETRICS (flossmetrics.org), QUALIPSO
(qualipso.org), QUALOSS (qualoss.eu), the ongoing OSSME-
TER (ossmeter.eu), LTC (passion-lab.org/projects), MARKOS
(markosproject.eu), Ohloh (ohloh.net) and finally Goeminne
and Mens [8]. Each work introduces a generic and extensible
framework for studying OSS communities. Although these
tools are more generic and reusable, most of the presented
works are limited to specific technologies (e.g. Bugzilla, CVS,
Git, Jira) that are monitored separately. Hence, the analysis is
performed without a clear picture of the system as a whole
(e.g. an OSS community may decrease the number of forum
posts because they tend to use more the mailing list and not
because the community shrinks).

B. Quality assessment in SOC

In the field of SOC, there are several works addressing the
challenges of monitoring the QoS of services and the analysis
of the compliance of their Service Level Agreements (SLAs)
(which is a document that states the levels of acceptance with
respect to the QoS). The automation of monitoring has been
already achieved by different works (either by gathering the
data using online testing [15], passive monitoring [16] or a
combination of both). Most of the monitoring solutions are
domain-independent, and can be used for different services
regardless the domain. The analysis of the SLAs has also
been addressed in depth, eventually providing a comprehensive
explanation of the cause of SLA violations [17].

To the best of our knowledge, there is only one work, from
Ghezzi et al. [18], that applies the idea of implementing data
repositories of an OSS into services. In this work, they present
a framework named SOFAs, that implements the different
repositories as RESTful services to monitor the evolution of
OSS. However, their work is restricted to software evolution,

and the analysis performed is not suitable to check the OSS
community health.

III. ALIGNING OSS AND SOC

A. OSS Health

Key Performance Indicators (KPIs) can determine the
health of an ecosystem. For example, Iansiti and Levien have
introduced three determinants KPIs of business ecosystem
health: robustness, productivity and niche creation [19]. The
concept Key X Indicator is not only related to performance.
Ferguson et al. used the KPI for quantifying uncertainty in
early lifecycle cost estimation [20], Raanan and Kenett used
Key Risk Indicators (KRIs) for monitoring risks in business
unit [21]. Furthermore, KRIs were used in the RISCOSS Ana-
lytics tool for the development of a risk management approach
applicable to the adoption and deployment of OSS [22]. In
this work, we have defined the concept Key Health Indicators
(KHIs) as a valid instrument to evaluate the OSS community
health. This is inspired by a Software Engineering Institute
(SEI) approach called QUELCE [20] for handling early stage
project planning estimation. Consequently, KHIs may support
strategic decision making within the OSS community and
the OSS adopter. To this aim, KHIs should be continuously
monitored to evaluate the OSS community health.

The list of health indicators may be very large. Therefore,
the KHIs should be reduced to an efficient set of indicators
that capture the impact on the OSS community health. To do
this, in first place, values of OSS community variables are
extracted from data and metadata saved in OSS community
repositories (e.g., version control systems, mailing lists, bug
trackers, websites, wikis, discussion forums). Secondly, so-
cial network data is generated using social network analysis
tools (e.g., NodeXl [23]). Subsequently, KHIs are calculated
using Bayesian networks by fusion of community variables
and domain expert knowledge to support the definition of
relations between OSS community measures and KHIs [20]
(e.g., number of commits and activeness of the community).

We have defined an architecture for extracting and process-
ing OSS data, based on the 3-layered approaches proposed
by Franch et al. [24] and Geommine and Mens [8] (See
Fig. 1). Layer I is for extracting raw data from OSS community
repositories. In layer II, the measurements are processed and
structured, e.g. in terms of the member relationships collected
from community social media. This social data is gathered
via natural language processing techniques. In layer III, the
KHIs are calculated using Bayesian networks and OSS experts
assessment based on their experience in OSS communities.

B. Alignment with SOC

Fig. 2 shows graphically how we substantiate the idea
of aligning SOC and OSS. In the field of SOC, illustrated
in the left-hand side of the figure, services are provided
by service providers, who must guarantee a certain quality
of the service (QoS) as to fulfill the client’s needs about
performance, availability, etc., which are operationalized into
an SLA. An SLA is composed of a set of Service Level
Objectives (SLOs), which constrain the permissible values that
service metrics (throughput, response time, etc.) may take. The
QoS is computed in a regular basis using a monitor, which



SLA 1
SLO 1.1

SLO 1.2...

SLA 1
SLO 1.1

SLO 1.2...

Service
Service

Service Provider

Service

provides

Monitor
measures

obtains

applies to

Service Client

+

Analyzer

informs

SLA 
SLO 1.1

SLO 1.2...
QoS

+

negotiate
checks checks

SLA 1
SLO 1.1

SLO 1.2...

SLA 1
SLO 1.1

SLO 1.2...

OSS comp.
OSS comp

OSS Community

OSS comp.

distributes

Monitor
measures

obtains

applies to

+

Analyzer

CLA 
CLO 1.1

CLO 1.2...
Comm.

indicators

+

negotiate
checks checks

Service Oriented Computing Open Source Software

Proactive adaptation ...

Additional techniques on top

triggers

OSS adopter

informs

OSS selection ...

Additional techniques on top

triggers

Fig. 2. Service and OSS monitoring

Layer II Data processing

Data post processing

Layer I OSS-data extraction

Framework for extracting and analyzing OSS data.

Version

repository

Mailing

list

Bug

tracker

Layer III Application

Natural language 

processing

Bayesian 

network 

analysis 

Key Health 

Indicator 

Calculation

Scenarios 

assessment

Community social 

network analysis 

Fig. 1. Architecture for extracting and analyzing OSS data.

measures the behaviour of the services during their execution.
The monitoring results are checked against the SLA by an
analyser, and possible violations are detected and reported. On
top of this basic schema, several tasks as service selection [25],
and techniques as proactive adaptation [26], may benefit of
the monitoring infrastructure. In the right-hand side of the
figure, we may see that OSS communities are the counterpart
of service providers, since they distribute the OSS component
outside. OSS adopters (the counterpart of service clients) need
to operationalize the quality that they demand to the OSS
component in terms of what we may call Component Level
Objectives (CLO) which together conform a Component Level
Agreement (CLA).

As said above, in this paper we focus on those CLOs that
involve metrics that are bound to the information gathered from
the community through resources like bug trackers and forums
(mean time to repair a bug, volume of messages per day,...).
These metrics can be aggregated to evaluate and assess KHIs
(like timeliness and activeness). On top of this scenario, several
tasks as OSS selection, and techniques as social network
analysis, may benefit from this monitoring schema.

IV. SALMONOSS

To prove the feasibility of the approach, we haved imple-
mented a framework named SALMonOSS. SALMonOSS is
an OSS Health monitoring framework based on an existing
technology named SALMon [27] developed in our research
group. SALMon is a versatile monitoring framework to moni-
tor the QoS of services. Here we describe how we have aligned
the problem of assessing OSS community health with service
monitoring, and the enhancements of SALMon to support OSS
monitoring, resulting in the SALMonOSS framework.

A. General requirements

The process of monitoring the OSS community health has
a set of high-level requirements that must be addressed to
properly develop a monitoring solution for OSS. Based on the
different aspects of the monitoring process in SOC and their
applicability to the OSS domain, we have identified the set of
requirements that are briefly described bellow.

Servizitation. OSS development and maintenance usually
requires different software management tools, such as mailing
lists, bug tracking systems and version repositories; each one
providing an aspect of the OSS community health. Require-
ment 1. OSS management tool functionalities shall be offered
as services. Options are: 1) the tool already provides a web
service interface (e.g., the JIRA bug tracking system provides
a RESTful service), 2) the management tool is wrapped into
a web service (see Fig. 3). By monitoring services instead
of components, OSS community health can be assessed by
current service monitoring technologies with minimal changes.

Monitoring
Software 

management
tool

Service

Fig. 3. Wrapping a tool into a service



Strategies. SOC provides two strategies to conduct monitor-
ing, active monitoring and passive monitoring. Requirement
2. In order to not losing the potential of SOC monitoring,
SOC strategies need to be applicable in OSS community health
analysis. The meaning needs to be slightly adapted, though:

• Active: Under this approach, monitoring can be per-
formed without the involvement of the OSS commu-
nity. A software component invokes periodically a set
of operations of the services that retrieve the status of
the OSS. By monitoring the results of these invoca-
tions, the metrics related to the OSS community health
are computed. This is analogous to active monitoring
(or online testing) in SOC.

• Passive: Under this approach, OSS communities are
required to manage the development and maintenance
of the OSS using the wrapping services (e.g. any new
bug is reported using the service interface). Transpar-
ently to the service client, services are continuously
monitored and whenever a new event occurs, the
metrics related to the OSS community health are
calculated. This is analogous to passive monitoring in
SOC.

It is worth to remark that these approaches are not mutually
exclusive and they can be combined. That is, when monitoring
the health of an OSS community, some data can be retrieved
using the passive approach and the rest of the data using the
active approach.

Extensibility. It is difficult to predict in advance the full
set of metrics that may need to be monitored. We can expect
that this may be even more difficult in the future since
the field of OSS community health analysis still has room
for improvement. Requirement 3. OSS community health
analysis tools need to be extensible to host new metrics.

Interoperability. In SOC, monitoring tools are the basis
for applying more sophisticated treatments: self-adaptation,
prediction, etc. This potential should not be lost when adapting
to the OSS field. Requirement 4. OSS community health
analysis tools need to support interoperability with other, po-
tentially unknown, tools. This way, we can think on supporting
tasks like assessing in the decision of going or not for an update
in a given moment, or to decide to start risk mitigation actions
when some community indicator goes beyond some threshold.

CLA-aware. We have already explained the importance that
SLA has in SOC monitoring. SLAs are a way to express the
expectations of end users on the monitored system, and this
concept seems also useful for our OSS context. Requirement
5. OSS community health analysis tools need to be customized
in a particular deployment according to the contents of the
CLA. Therefore, the tool will just monitor the metrics that are
required to check the CLA, that is the ultimate goal of the
monitoring process.

B. Monitoring process

SALMonOSS supports both passive and active approaches
to monitor the required services(Req 2). To combine both
approaches (see Fig. 4), the Invoker (1a) uses the same infras-
tructure as used by the OSS community (1b). In both cases,
the invocations are performed through the same Enterprise

Service Bus (ESB), which is a middleware able to handle and
manage the communication between services. When receiving
a service request, the ESB notifies to the Monitor the event (2).
The Monitor then, notifies it to the Measure Instruments that
are responsible to handle such request (3). In parallel to the
previous monitoring activities, the ESB forwards the service
request to the Software management tool, who may have been
wrapped if it is not providing a service itself (Req 1) (4). The
service invokes the software management tool (5), and receives
the response (6). The response is sent through the ESB (7)
to the initiator of the request, either the Invoker or the OSS
community (8). In parallel, the same response is notified to the
Monitor (9), which notifies it to the Measure Instruments (10),
which ultimately calculates the measurements (11).

Invoker

ESB Service Bus

service
Monitor

Measure
Instrument

service
service

Software management tool

(1a)

(4)

(3)
(7)

(10)

(5) (6)

OSS community

(1b)

(2) (9)

(8)

SALMonADA

composer

ADA 
analyzer

SLA 
SLO 1.1

SLO 1.2...

QoS
(11)

(ii)

(i)

Fig. 4. OSS monitoring process in SALMonOSS

SALMon has been implemented as a service based system
by itself, and so does SALMonOSS. By following the SOA
principles, SALMonOSS can be easily integrated to different
frameworks that require monitoring (Req 4), as happened with
SALMon that was used to support self-adaptive service based
systems [28], federated cloud management [29], or service
selection [25], among others. On the other hand, being the
monitor service an aggregate of measure instruments, satisfies
Req 3: measure instruments are pluggable components that
deal with a particular metric each, so that the monitor instan-
tiates and manages the required set of measure instruments.
By following this approach, new metrics can be calculated by
implementing the required measure instruments.

Finally, SALMonOSS can be automatically configured to
monitor the metrics included in a CLA, with the combination
of the ADA software (Req 5). ADA is an Agreement Document
Analysis framework aimed at extracting useful information
from agreement documents [17], and with SALMon constitute
a combined framework named SALMonADA. Under this
framework, the CLA is parsed by the Composer, and the
Monitor is configured through its interface (i). Whenever new
measurements are computed, they are reported to ADA through
the composer (ii) in order to perform the analysis of the CLA
fulfillment.

For example, with SALMonOSS it is possible to monitor
metrics of the OSS community such as commits per day or
time to resolve a bug. When a new commit or bug is captured
by the ESB (either by passive or active approach), the Measure
Instruments compute the metrics, which are then analysed
against the CLA to check if there is any violation over the
conditions which would compromise the KHIs. In such a case,



the interested parties are notified.

C. Implementation and preliminary results

The current implementation of the prototype is focused
on monitoring mailing lists, bug tracking systems and version
repositories. Particularly, the technologies chosen are Mark-
mail, Jira and GIT, respectively. All these technologies are re-
quired to be used as services. Jira already provides a RESTful
service interface, whereas Markmail and GIT tools have to be
wrapped. With respect to the GIT tool, we have implemented
a service that wraps the GIT with the methods to retrieve the
details related to commits. Preliminary results of monitoring
the GIT repository using the active monitoring strategy are
shown in Fig. 5. We have monitored the behaviour of the
commits performed, which is an indicator for the activeness of
the community, on the xwiki1 during the month of December.
Particularly we have monitored the following metrics: number
of commits per day, files changed per day, lines added per
day, lines removed per day, average files changed per commit,
average lines added per commit and average lines removed
per commit. As shown, we can observe that the community
is active during weekdays, but inactive during weekends and
holidays.

All the retrieved information is then checked against the
CLA, in order to identify possible deviations and eventually
assess their KHIs.

V. APPLICATIONS

Applying the same paradigm from SOC to OSS puts
forward the capability to transfer and reuse the knowledge and
techniques from one field to the other. Particularly interesting
are those techniques which have a straightforward resemblance
on their objectives. We describe below some clear applications:

A. OSS selection

As a first step for OSS adoption, a particular OSS has
to be selected. There are different OSS that fulfill the same
functional requirements for an OSS adopter, hence the se-
lection of an OSS should be based not only on the func-
tional requirements but also on the quality and sustainability
of the OSS, which is directly related to the health of the
OSS community. The selection process can be facilitated in
an automated manner through technologies that implements
algorithms based on multiple-criteria decision analysis. There
are several frameworks that implements those algorithms in
the field of service selection [25], which we argue could be
applied in the field of OSS.

B. OSS violation prediction

During the execution of the OSS, violations of the CLA
can be forecasted before they occur by applying analysis over
statistical models using the monitored data. The results of
such forecasting can be reported to the OSS community, who
in turn, can apply the required mechanisms to mitigate any
risk and avoid such violations (e.g. reallocating resources and
assigning new priorities). There exists different techniques in

1xwiki is a free wiki software platform developed and maintained with the
support of an OSS community (http://www.xwiki.org/)

weekday
weekend or holiday

Total files changed Avg files changed

Total lines added Avg lines added

Total lines removed Avg lines removed

Total commits

day day

day day

day day

day

Fig. 5. Metrics related to GIT monitored with SALMonOSS

the field of SOC that predict violations of SLAs [30], we
believe that the same techniques could by applied to predict
violations of CLAs for OSS.

C. OSS adaptation

In case of a CLA violation, the OSS adopter might be inter-
ested on performing an adaptation to reestablish the indicators
specified in the CLA. For instance, if there’s a critical security
bug on an OSS component without a clear commitment by the
OSS community to solve it in a short period of time, the OSS
adopter might replace or disable the OSS until the issue is
solved. In the field of SOC, automatic adaptation of services
has been a major topic of study. In SOC, when a SLA is
violated, an adaptation need is triggered, which prompts the
generation of an adaptation plan that is ultimately enacted by
a component able to execute the adaptation [31]. Although
service and OSS adaptation have their differences in terms of
technology and standardization, the progress and results made
could be reused and applied in the field of OSS.



VI. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrate how current SOC monitoring
techniques can be ported and used to assess the OSS com-
munity health. Particularly, we have presented SALMonOSS,
an OSS community health monitoring framework able to: (1)
monitor a list of community health metrics along time (2)
link the gathered values with client’s needs by operationalizing
conditions in CLAs and (3) engineer a portfolio of methods and
techniques that supports OSS communities and OSS adopters
(e.g. OSS selection, proactive adaptation, etc.). Furthermore,
the solution follows a layered architecture that structures the
data from low-level metrics to KHIs.

As future work we plan to extend the list of services to
monitor in order to include more data repositories, implement
bayesian network analysis for KHIs, and apply some of the
techniques described that benefits from the monitoring data
(e.g. OSS selection).

ACKNOWLEDGMENTS

This work is a result of the RISCOSS project, funded
by the EC 7th Framework Programme FP7/2007-2013, agree-
ment number 318249. Oscar Franco-Bedoya has a grant from
Universidad de Caldas, Colombia. We would also like to
thank the student Francesc Trull for his contribution on the
implementation of the prototype.

REFERENCES

[1] M. Driver, “Hype cycle for open-source software,” Gartner, Tech. Rep.,
2013.

[2] S. Jansen and G. van Capelleveen, “Quality review and approval meth-
ods for extensions in software ecosystems,” in Software Ecosystems
Analyzing and Managing Business Networks in the Software Industry.
Edward Edgar Publ. Lim., 2013, p. 187.

[3] J. Gamalielsson, B. Lundell, and B. Lings, “The Nagios community:
An extended quantitative analysis,” in Open Source Software: New
Horizons. Springer, 2010, pp. 85–96.

[4] D. Wynn Jr., “Assessing the Health of an Open Source Ecosystem,” in
Emerging Free and Open Source Software Practices, S. K. Sowe, I. G.
Stamelos, and I. Samoladas, Eds. IGI Global, Jun. 2007, pp. 238–258.

[5] S. Jansen, “Measuring the health of open source software ecosystems:
Moving beyond the project scope,” Information and Software Technol-
ogy, p. in Press, 2014.

[6] J. Pérez, R. Deshayes, M. Goeminne, and T. Mens, “Seconda: Software
ecosystem analysis dashboard,” in Software Maintenance and Reengi-
neering (CSMR). Szeged,Hungary: IEEE, 2012, pp. 527–530.

[7] R. Abreu and R. Premraj, “How developer communication frequency
relates to bug introducing changes,” in Proceedings of the joint interna-
tional ERCIM workshops on Principles of software evolution (IWPSE)
and software evolution (Evol) workshops. ACM, 2009, pp. 153–158.

[8] M. Goeminne and T. Mens, “A framework for analysing and visualising
open source software ecosystems,” in 13th International Workshop on
Principles on Software Evolution. ACM, 2010, pp. 42–47.

[9] C. Jergensen, A. Sarma, and P. Wagstrom, “The onion patch: migration
in open source ecosystems,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of
software engineering (ESEC/FSE). ACM, 2011, pp. 70–80.

[10] P. Rotella and S. Chulani, “Implementing quality metrics and goals at
the corporate level,” in Proceedings of the 8th Working Conference on
Mining Software Repositories (MSR). ACM, 2011, pp. 113–122.

[11] J. Kabbedijk and S. Jansen, “Steering insight: An exploration of the ruby
software ecosystem,” in International Conference on Software Business
(ICSOB), 2011, pp. 44–55.

[12] E. Ververs, R. van Bommel, and S. Jansen, “Influences on developer
participation in the debian software ecosystem,” in Proceedings of
the International Conference on Management of Emergent Digital
EcoSystems (MEDES). ACM, 2011, pp. 89–93.

[13] S. Jansen, S. Brinkkemper, J. Souer, and L. Luinenburg, “Shades of
gray: Opening up a software producing organization with the open
software enterprise model,” Journal of Systems and Software, vol. 85,
no. 7, pp. 1495–1510, 2012.

[14] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi,
D. Poshyvanyk, and et al., “An empirical investigation into a large-
scale java open source code repository,” in Proceedings of the ACM-
IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), 2010, pp. 11:1–11:10.

[15] M. Palacios, J. Garcia-Fanjul, J. Tuya, and G. Spanoudakis, “Identifying
test requirements by analyzing sla guarantee terms,” in IEEE 19th
International Conference on Web Services (ICWS), 2012, pp. 351–358.

[16] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, and R. Yahyapour, “Estab-
lishing and monitoring slas in complex service based systems,” in IEEE
International Conference on Web Services (ICWS), 2009, pp. 783–790.

[17] C. Muller, M. Oriol, X. Franch, J. Marco, M. Resinas, A. Ruiz-Cortes,
and M. Rodriguez, “Comprehensive explanation of sla violations at
runtime,” IEEE Transactions on Services Computing (TSE), vol. PP,
no. 99, pp. 1–1, 2013.

[18] G. Ghezzi and H. Gall, “A framework for semi-automated software evo-
lution analysis composition,” Automated Software Engineering, vol. 20,
no. 3, pp. 463–496, 2013.

[19] M. Iansiti and R. Levien, “Keystones and dominators: Framing the op-
erational dynamics of business ecosystems,” Harvard Business School,
2002.

[20] R. W. Ferguson, D. Goldenson, J. M. McCurley, R. W. Stoddard,
D. Zubrow, and D. Anderson, “Quantifying uncertainty in early lifecycle
cost estimation (quelce),” Carnegie Mellon University, Tech. Rep., 2011.

[21] Y. Raanan, R. S. Kenett, and R. Pike, Operational Risk Management:
an overview. John Wiley & Sons, Ltd, 2010, pp. 19–38.

[22] B. Nili, B. Yehuda, R. Ben, and R. Kenett, “Intermediate proposal for
risk management techniques,” RISCOSS Project, Tech. Rep., 2013.

[23] M. A. Smith, B. Shneiderman, N. Milic-Frayling, E. Mendes Rodrigues,
V. Barash, C. Dunne, T. Capone, A. Perer, and E. Gleave, “Analyzing
(social media) networks with nodexl,” in Proceedings of the fourth
international conference on Communities and technologies. ACM,
2009, pp. 255–264.

[24] X. Franch, R. Kenett, F. Mancinelli, A. Susi, D. Ameller, R. Ben-jacob,
and A. Siena, “A layered approach to managing risks in open source
sofware projects,” in Int. Conference on Open Source Systems, 2014.

[25] O. Cabrera, M. Oriol, X. Franch, L. Lopez, J. Marco, O. Fragoso, and
R. Santaolaya, “Wessqos: a configurable soa system for quality-aware
web service selection,” Universitat Politècnica de Catalunya, Tech. Rep.,
2011.

[26] L. Baresi and S. Guinea, “Self-supervising bpel processes,” IEEE
Transactions on Software Engineering (TSE), vol. 37, no. 2, pp. 247–
263, 2011.

[27] M. Oriol, J. Marco, X. Franch, and D. Ameller, “Monitoring adapt-
able soa-systems using salmon,” in Workshop on Service Monitoring,
Adaptation and Beyond (Mona+), 2008, pp. 19–28.

[28] O. Sammodi, A. Metzger, X. Franch, M. Oriol, J. Marco, and K. Pohl,
“Usage-based online testing for proactive adaptation of service-based
applications,” in Computer Software and Applications Conference
(COMPSAC), 2011, pp. 582–587.

[29] A. Kertesz, G. Kecskemeti, M. Oriol, P. Kotcauer, S. Acs, and et al.,
“Enhancing federated cloud management with an integrated service
monitoring approach,” Journal of Grid Computing, vol. 11, no. 4, pp.
699–720, 2013.

[30] A. Metzger, E. Schmieders, O. Sammodi, and K. Pohl, “Verification
and testing at run-time for online quality prediction,” in Workshop
on European Software Services and Systems Research - Results and
Challenges (S-Cube), 2012, pp. 49–50.

[31] A. Bucchiarone, C. Cappiello, E. Nitto, R. Kazhamiakin, V. Mazza,
and M. Pistore, “Design for adaptation of service-based applications:
Main issues and requirements,” in Service-Oriented Computing. IC-
SOC/ServiceWave 2009 Workshops, 2009, pp. 467–476.

View publication statsView publication stats

https://www.researchgate.net/publication/263482898



