
Mobile Feature-oriented Knowledge Base
Generation Using Knowledge Graphs

Quim Motger1[0000−0002−4896−7515], Xavier Franch1[0000−0001−9733−8830], and
Jordi Marco2[0000−0002−0078−7929]

1 Department of Service and Information System Engineering,
Universitat Politècnica de Catalunya

{joaquim.motger,xavier.franch}@upc.edu
2 Department of Computer Science, Universitat Politècnica de Catalunya

jordi.marco@upc.edu

Abstract. Knowledge bases are centralized repositories used for devel-
oping knowledge-oriented information systems. They are essential for
adaptive, specialized knowledge in dialogue systems, supporting up-to-
date domain-specific discussions with users. However, designing large-
scale knowledge bases presents multiple challenges in data collection and
knowledge exploitation. Knowledge graphs provide various research op-
portunities by integrating decentralized data and generating advanced
knowledge. Our contribution presents a knowledge base in the form of
a knowledge graph for extended knowledge generation for mobile apps
and features extracted from related natural language documents. Our
work encompasses the knowledge graph completion and deductive and
inductive knowledge requests. We evaluated the effectiveness and perfor-
mance of these knowledge strategies, which can be used as on-demand
knowledge requests used by third-party software systems.

Keywords: knowledge base · knowledge graph · mobile app

1 Introduction

Knowledge-based chatbots are dialogue systems embedding real-time, central-
ized access to domain-specific information systems [16]. These knowledge bases
(KB) assist in resolving user intent and entity recognition tasks for a particu-
lar knowledge domain. With the emergence of disruptive large language models
(LLMs) like GPT-4 [18], these KBs offer great potential in terms of accuracy,
scalability and performance efficiency for highly adaptive knowledge modelling
[29]. While LLMs excel in various tasks they are pre-trained or fine-tuned for,
re-training for dynamic knowledge adaptation requires significant time, energy
consumption and economic expenses [19].

In this context, one of the main challenges is extending these KBs with
advanced knowledge generation techniques. To this end, the use of knowledge
graphs (KG) as the underlying infrastructure of a KB is becoming a research
trend [8]. The combined use of KGs with machine/deep learning techniques re-
veals the potential of leveraging graph-structured data towards effective and

This version of the contribution has been accepted for publication, after peer review but is not the Version of Record and 
does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://
dx.doi.org/10.1007/978-3-031-42941-5. Use of this Accepted Version is subject to the publisher's Accepted Manuscript 
terms of use http://www.spingernature.com/gp/open-research/policies/accepted-manuscript-terms"



2 Quim Motger, Xavier Franch, and Jordi Marco

scalable extended knowledge generation [24, 25]. Nevertheless, constructing and
exploiting a KG for a given domain is still a challenging task in terms of KG com-
pletion and the design of derived knowledge strategies [8]. Mobile applications
and app stores exemplify highly-adaptive knowledge domains [20]. Google Play,
the leading global app store [3], releases an average of 75K new apps monthly
[4]. Among their top 1000 downloaded apps, 62% are updated at least once a
month [1]. Given this context, feature-based knowledge generation, which lever-
ages the knowledge exposed by documented app functionalities, emerges as a
relevant research area, benefitting from the abundance of large natural language
corpora (e.g., app descriptions, user reviews) in these repositories [10, 13].

In this paper, we present the design and development of a KB in the form of
a KG supporting feature-oriented extended knowledge generation in the field of
mobile app catalogues. Our main contributions are: (1) a distributable knowl-
edge graph in the field of mobile app repositories to support document-based
and feature-oriented data management tasks; (2) a state-of-the-art method for
feature-oriented extended knowledge generation in the context of mobile apps;
and (3) an effective, scalable approach for designing and developing a semantic
web-based KB in the context of LLM-based chatbots for real-time consumption.

2 Background

Based on the notation from Zhao et al. [31], we denote a KG instance as
G = (V,E), where V = {v1, v2, ..., vn} denotes the nodes of the graph and
E = {e1, e2, ..., em} denotes the edges in a labelled directed graph [8]. Each e is
defined as (vi, p, vj), where vi is the source node, vj is the target node and p is
the relation type from vi to vj . A particular type of labelled directed graphs are
Resource Description Framework [22] or RDF graphs. They are built as semantic
web networks based on subject-predicate-object (vi,p,vj) triples. The specifica-
tion of V and E entities is built through a data-modelling vocabulary known as
the RDF Schema, for which there are public repositories defining shared schemas
for modelling structured data on the Internet. Knowledge representation and ex-
traction in dynamic, large-scale KGs involve deductive and inductive techniques
[8]. Deductive techniques entail precise, logic-based transformations G → G′

based on particular data observations, while inductive techniques involve pat-
tern generalizations within a given G which, although potentially imprecise, can
be used to generate novel and complex predictions [8].

A particular instance G is a context-specific representation of real world
entities and relations. This research focuses on the context of mobile software
ecosystems [7], which involves actors (e.g., users, developers, platform vendors)
and entities (e.g., apps, app stores, mobile OS platforms). From the user perspec-
tive, these ecosystems provide access to a catalogue or a set of mobile apps, which
users access to build their own application portfolio [17]. A potential descriptor
for mobile apps is the set of features they expose, representing functionalities
from the user’s perspective, implemented by one or multiple mobile apps in their
portfolio [17]. Extended knowledge about app features plays a crucial role in var-



Extended knowledge generation using knowledge graphs 3

ious tasks, such as optimization ranking algorithms [26] and version modelling
for app recommendation [15]. Research in this area primarily focuses on using
available documents through natural language processing (NLP) techniques for
tasks like feature extraction and topic modelling [13, 26, 15].

3 Research method

3.1 Project vision

Using the Goal Question Metric (GQM) template, we defined the following goal:

Analyse extended feature-based knowledge generation supported by KGs
for the purpose of adaptive KB generation for LLM-based dialogue systems
with respect to the correctness and efficiency of extended knowledge requests
from the point of view of dialogue system developers
in the context of mobile software repositories.

Fig. 1: Knowledge base: project vision

We define two types of feature-based knowledge generation requests:

1. Given a feature f , which mobile apps from the catalogue expose a set of
features equivalent or similar to f?

2. Given a mobile app m from the catalogue, which mobile apps are more
similar to m based on the features they expose?

Figure 1 summarizes the KB generation process. KG completion involves de-
centralized data collection from web-based app repositories, followed by modeling
and storage in the KG. Knowledge generation extends the KG using deductive
techniques based on NLP for feature extraction from available documents. The
extended KG exposes knowledge requests for third-party software systems. Com-
plementary materials and resources are available in the replication package3.

3 Available at https://doi.org/10.5281/zenodo.8038301



4 Quim Motger, Xavier Franch, and Jordi Marco

3.2 Research plan

To guide the design of this KB, we define the research question (RQ) as follows:

RQ. How does KB development in mobile app repositories benefit from KGs
and extended knowledge requests? Specifically, how does this approach con-
tribute to correctness, efficiency, and adaptability?

To respond to this RQ, we conducted an evaluative sample study [27], struc-
tured through the following stages: (1) sample study definition, including
scope, specifications and limitations of the sample data set; (2) KG comple-
tion, including data source selection and data collection techniques; (3) knowl-
edge generation, including feature-oriented, NLP-based inductive and deduc-
tive knowledge strategies; and (4) evaluation of the aforementioned strategies.

3.3 Sample study: multicategory Android mobile apps

We limited the research scope to publicly accessible Android mobile apps in a
repository, focusing on trailing and sport activity related apps due to: (1)
feature heterogeneity (e.g., geolocation, biomonitoring, social networking); (2)
integrated use with common, daily-use mobile apps (e.g., instant messaging, task
management, note-taking); and (3) increased popularity post COVID-19 [14].
This specification was formalized through the selection of a set of representative
apps from 10 domain-related application categories based on their features. For
each category, we used one representative feature as a trigger keyword to search
for a representative app for that feature. We used Google Play as the leader app
store worldwide [3] to retrieve the most popular apps for each representative
feature. Finally, we manually inspected the top 10 apps retrieved by each search,
and based on their suitability with the representative feature, we selected one
representative app for each of these categories.

4 Knowledge graph completion

Data collection → To support the KG completion and data source identifica-
tion, we conducted a literature review focused on grey literature [11], including
technical reports and specialized, mobile-oriented publishers. As a result, repre-
sentatives of three types of mobile app data sources were covered, including: app
store programs (i.e., Google Play); sideloading repositories (i.e., F-Droid4);
and app search engines (i.e., AlternativeTo5). For each type, we have devel-
oped two data collection operations. The query operation uses a set of domain-
related keywords as input to search for related apps based on keyword search
algorithms from data sources. The resulted set is used as the input for the scan
operation, which collects all available data items (i.e., metadata and documents)

4 https://f-droid.org/es/
5 https://alternativeto.net/



Extended knowledge generation using knowledge graphs 5

for each app. We considered 4 document types categorized into 2 categories: (i)
Proprietary Documents (i.e., summaries, descriptions and changelogs), defined
by developers and platform vendors; (ii) User Documents (i.e., reviews), de-
fined by users. We used web scraping, an essential tool for web-based knowledge
design [12], to collect data from static and dynamic web sources like F-Droid
and AlternativeTo, where alternative access methods are unavailable. Whenever
possible, we utilized API consumption mechanisms, including non-official REST
APIs that wrap the web scraping process, enabling direct HTTP-based access.

Data normalization→We followed the semantic schema definition process
for knowledge graph design as described in [8]. We decided to use an RDF
semantic schema [2], being a directed edge-labelled graph schema focused on
the standardization and interoperability of web-based bodies of knowledges [8],
which are some of the main purposes of the resulted knowledge base. For the
data schema definition, we used existing schemas from Schema.org6 as the most
popular public schema repository for RDF graphs.

Data and schema integration→ For schema integration [28], we combined
key matching techniques and manual inspection of app repository schemas, en-
suring conformance with Schema.org’s RDF data schemas. For data integration,
entity recognition relied on key matching using app name and package prop-
erties. Strategies for data inconsistencies prioritized completeness and correct-
ness, including app repository prioritization based on data quality and document
merging for increased natural language content availability.

5 Knowledge generation

5.1 KG definitions

We define a KG as G = (V,E) = (M ∪ D ∪ F,Emd ∪ Emf ). Nodes include
mobile apps (M), documents (D), and user annotated features (F ), where D =
PD ∪ UD, including proprietary documents (PD) and user documents (UD).
Edges are represented by Emd, linking apps to their related documents, and
Emf , linking apps to user annotated features. The extended KG, G′ = (V ∪
F ′, E ∪ Edf ∪ Eff ), includes the set of extracted features F ′ from documents,
the links Edf between documents and their respective extracted features, and
explicit semantic similarity between features (fi, fj) represented by Eff . De-
ductive techniques process D using NLP to (1) extend the set of features (F ′)
and (2) link mobile apps to their features through transitivity based on the
documents these features were extracted from (Edf ). These transformations are
batch processes, as they are expected to be executed only once for a given
G. Inductive techniques use the extended G′ to resolve the knowledge requests
depicted in Section 3.1. Hence, these are on-demand processes given that, for
a given G′, they are expected to be executed once for each user request. Figure 2
illustrates a partial representation of G′ focused on the Strava app and a subset
of its annotated features, extracted features and related apps linked to Strava
through direct or indirect connections via each feature fi.
6 https://schema.org/



6 Quim Motger, Xavier Franch, and Jordi Marco

Fig. 2: Partial representation of G′ focused on Strava app

5.2 Deductive knowledge: extracting features

ExtractFeatures → Each document di ∈ D is processed through a NLP-
based feature extraction process in the form of a pre-trained RoBERTa-based
transformer pipeline built for this purpose [6]. This pipeline utilizes linguistic
annotations and PoS-based expression patterns to identify natural language fea-
tures in the documents. As a result, for each di ∈ D we extend G through
V ← V ∪F ′(d1)∪F ′(d2)...∪F ′(dn) and E ← E ∪Edf (d1)∪Edf (d2)...∪Edf (dn),
where F ′(di) ⊂ F ′ includes all features extracted from di (e.g., RecordActivity)
and Edf (di) ⊂ Edf includes all links between those features and di.

LinkSimilarFeatures → Each feature fi ∈ F ∪ F ′ is processed through
a semantic similarity pipeline to compute a similarity score sim(fi, fj) for all
(fi, fj) ∈ F ∪ F ′ using a TF-IDF-based search index built upon the database
management system for scalability and applicability in large repositories [21]. For
all sim(fi, fj) >= thr, where thr is a domain-dependent similarity score thresh-
old, we extend G through E ← E∪Eff (f1)∪Eff (f2)...∪Eff (fn). Eff (fi) models
the link between all (fi, fj) for which sim(fi, fj) >= thr (e.g., RecordActivity is
semantically linked to RecordManyActivities and RecordActivityHours).

5.3 Inductive knowledge: finding apps

FindAppsByFeature → Two feature-to-app similarity methods were de-
signed and compared. The index-based method uses a term-to-document simi-
larity index for each PD type (i.e., summary, description, changelog). For a given
fi (e.g., ShareRealTimeLocation), the index returns a ranked list of mj ∈M (e.g.,
app.zenly.locator) sorted by sim(fi,mj) in descending order. This approach is
parameterized to allow similarity evaluations filtered by a given document type
(e.g., descriptions), or to compute an aggregated similarity score based on all
available Emd(mj) from dk ∈ PD. The graph-based method relies on a Python
adaptation [23] of the SimRank* algorithm [30], designed for scalable similarity



Extended knowledge generation using knowledge graphs 7

search, which has proven to be an effective approach for its adoption in large-
scale graphs. For a given fi, the graph-based method computes a similarity score
based on its shared paths with respect to Edf (di) ∪Eff (fj) for all di ∈ D. This
method is parameterized to allow similarity based on di ∈ PD (i.e., without
reviews), or based on dj ∈ D (i.e., with reviews).

FindSimilarApps→Given a mobile app m ∈M (e.g., com.strava), we have
applied the same algorithm implementation approach as in FindAppsByFeature.
The index-based method relies on a document-to-document index for each PD
type. For a given mi, the index returns a ranked list of mj sorted by sim(mi,mj)
in descending order. The index-based approach is parameterized for a given
document type or for aggregated results as in FindAppsByFeature. On the other
hand, the graph-based (adapted from SimRank* algorithm) computes for a
given mi a similarity score based on its shared paths with respect to Emd(mj)∪
Edf (dk) ∪ Eff (fl) for all mj ∈M , parameterized by document type.

6 Evaluation

We focus the evaluation on the functional correctness and performance efficiency
[9] of the inductive knowledge requests. The evaluation plan is defined as follows:

1. Run ExtractNLFeatures for all di ∈ PD.
2. Create/update the graph database indexes with the extended G′.
3. Run LinkFeatures using all thresholds (thr) within [0.1, 0.2, ..., 0.9].
4. For each thr, run FindAppsByFeature using the representative features.
5. For each thr, run FindSimilarApps using the representative apps.
6. Compute the precision7 rate@k (k <= 20) for both inductive algorithms.
7. Run ExtractNLFeatures for all di ∈ UD and repeat 2→6.

Functional correctness → Figure 3 reports precision rate@k for both in-
ductive algorithms obtained with the optimal value for the similarity threshold
score in Step 3 (i.e., thr = 0.7). At each k value, the plots show how many
recommended apps found by each algorithm matched the category of the input
item, which we considered as ground-truth for evaluation (i.e., representative
feature for FindAppsByFeature, and representative app for FindSimilarApps).
Both figures report the aggregated results for all categories. For FindAppsByFea-
ture, index-based algorithms show similar precision using description, summary,
or aggregated document types, while the graph-based version performs poorly.
However, for FindSimilarApps, the graph-based version (without reviews) is the
best algorithm. Including reviews in the feature extraction algorithm worsens the
quality of the prediction. For the best algorithm version of each inductive tech-
nique (i.e., index-based with description for FindAppsByFeature, graph-based
without reviews for FindSimilarApps), both algorithms report a precision rate
>= 80% at the top positions of the returned ranked list (i.e., k <= 3). At k = 5
FindSimilarApps still reports a precision rate of 80%, while FindAppsByFeature
reports 72% of matched suggestions.
7 We focus on precision to maximize recommendation quality at the top positions



8 Quim Motger, Xavier Franch, and Jordi Marco

(a) FindAppsByFeature (aggregated) (b) FindSimilarApps (aggregated)

Fig. 3: Precision rate@k (k=20) for inductive knowledge algorithms

Performance efficiency → Table 1 reports the average execution time for
both deductive (i.e., ExtractNLFeatures, LinkFeatures) and inductive (i.e., Find-
AppsByFeature, FindSimilarApps) algorithms. Batch processes (i.e., deductive
algorithms) for the whole sample data set are particularly time-consuming, espe-
cially when processing user reviews and their extracted features (up to 44 hours
including ExtractNLFeatures and LinkFeatures). However, updates on the KG
instance (i.e., adding a new app) only require a few seconds for ExtractNLFea-
tures and less than 1 second for LinkFeatures on average. On the other hand,
on-demand processes (i.e., inductive algorithms) take on average less than 1
second, with the exception of FindSimilarApps when processing all reviews.

T(s) w/o reviews w/ reviews
/item total /item total

ExtractNLFeatures 2.48 s 1570 s (˜0.5 h) 105.9 s 67,690 s (˜19 h)
LinkFeatures 0.29 s 3362 s (˜1 h) 0.68 s 88,753 s (˜25 h)

FindAppsByFeature Index-Based 0,11 s 1.06 s - -
Graph-Based 0.39 s 3.91 s 0.69 s 6.86 s

FindSimilarApps Index-Based 0.09 s 0.87 s - -
Graph-Based 0.41 s 4.08 s 1.21 s 12.24 s

Table 1: Average execution time for inductive and deductive algorithms

7 Discussion

Evaluation results show that the designed knowledge requests are effective for on-
demand knowledge retrieval, with high prediction precision at the top positions.
In the context of integrating the designed KB to support LLM-based dialogue
systems, prediction quality for top k values (i.e., k >= 5) is especially relevant
for reporting simplified snapshots from each knowledge request response [5]. The
graph-based similarity measure performs well for comparing nodes with shared



Extended knowledge generation using knowledge graphs 9

semantics (i.e., app-app in FindSimilarApps). while the term-to-document sim-
ilarity measure is better for comparing different node types (i.e., app-feature in
FindAppsByFeature). Finally, the use of reviews did not improve the quality of
the results, while it also added a great overhead in batch process execution.

Regarding validity threats, we primarily focus on construct and internal va-
lidity. Construct validity concerns the KG construction, where potential biases
may arise from the selection of representative features and app repositories.
Nevertheless, we argue that the criteria for selecting these representatives and
sources (i.e., popularity, availability of data, quality of data) minimizes the risk of
biased coverage and low completeness. Concerning knowledge generation, the ex-
tended knowledge process relies on the quality of the feature extraction process,
whose design and development was recently published as a NLP-based feature
extraction tool [6]. Finally, we considered as ground-truth for inductive tech-
niques the application categories based on the original app query data collection
method, relying on the accuracy of the app repositories search algorithms, for
which we argue that the criteria for selecting those repositories (i.e., popularity
and relevance) reduces the impact of this potential threat.

8 Conclusions

This research aims at providing a holistic perspective on the end-to-end process
of building a KB of mobile apps in the form of a KG. The technical infras-
tructure (i.e., software components), the resulting resources (i.e., data artefacts)
and the findings from this research are also intended to lay the groundwork
for the integration of additional knowledge requests, either beyond the object
of analysis (i.e., NL documents), the descriptor to which similarity is based on
(i.e., features), or the knowledge requests formalization (i.e., feature vs. app
and app vs. app similarity). Moreover, evaluation results prove that on-demand
inductive knowledge can be effectively and efficiently integrated for real-time
consumption use cases. We envisage focusing future research efforts on (1) for-
malization of the concept of feature, and (2) conducting a user-study evaluation.

Acknowledgments
With the support from the Secretariat for Universities and Research of the Ministry
of Business and Knowledge of the Government of Catalonia and the European Social
Fund. This paper has been funded by the Spanish Ministerio de Ciencia e Innovación
under project / funding scheme PID2020-117191RB-I00 / AEI/10.13039/501100011033.

References

1. 42matters AG: Google Play Store App Update Frequency Statistics (2023),
https://42matters.com/google-play-aso-with-app-update-frequency-statistics

2. Brickley, D., Guha, R.V.: (2014), https://www.w3.org/TR/2014/REC-rdf-schema-
20140225/

3. Ceci, L.: Biggest app stores in the world 2022 (Aug 2022),
https://www.statista.com/statistics/276623/, Accessed 22 November 2022



10 Quim Motger, Xavier Franch, and Jordi Marco

4. Ceci, L.: Number of monthly android app releases worldwide 2023 (Mar 2023),
https://www.statista.com/statistics/1020956/android-app-releases-worldwide/

5. Chen, N., et al.: Mobile app tagging. In: Proceedings of the 9th WSDM (2016)
6. Gallego, A., et al.: TransFeatEx: a NLP pipeline for feature extraction. In: REFSQ

2023, CEUR Workshop Proceedings (2023)
7. Grua, E.M., et al.: Self-adaptation in mobile apps: a systematic literature study.

In: 2019 IEEE/ACM 14th SEAMS (2019)
8. Hogan, A., et al.: Knowledge graphs. ACM Comput. Surv. (2021)
9. ISO/IEC: System and software quality models ISO/IEC 25010 (2011)

10. Johann, T., et al.: SAFE: A Simple Approach for Feature Extraction from App
Descriptions and App Reviews. In: 25th International RE Conference (2017)

11. Kamei, F., et al.: Grey literature in software engineering: A critical review. Infor-
mation and Software Technology (2021)

12. Khvatova, T., Dushina, S.: Scientific online communication: The strategic land-
scape of researchgate users. IJTHI (2021)

13. Kumari, S., Memon, Z.A.: Extracting feature requests from online reviews of travel
industry. Acta Scientiarum - Technology 44 (2022)

14. Kwon, J.Y., et al.: Analysis of strategies to increase user retention of fitness mobile
apps during and after the covid-19 pandemic. IJERPH (2022)

15. Lin, J., et al.: New and improved: Modeling versions to improve app recommenda-
tion. In: Proceedings of the 37th International ACM SIGIR (2014)

16. Motger, Q., Franch, X., Marco, J.: Software-Based Dialogue Systems: Survey, Tax-
onomy and Challenges. ACM Comput. Surv. (2022)

17. Motger, Q., et al.: Integrating adaptive mechanisms into mobile applications ex-
ploiting user feedback. In: Research Challenges in Information Science (2021)

18. OpenAI: Gpt-4 technical report (2023)
19. Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.M., Rothchild, D., So,

D., Texier, M., Dean, J.: Carbon emissions and large neural network training (2021)
20. Petrik, D., Schönhofen, F., Herzwurm, G.: Understanding the design of app stores

in the iiot. In: IEEE/ACM IWSiB. pp. 43–50 (2022)
21. Raatikainen, M., et al.: Improved management of issue dependencies in issue track-

ers of large collaborative projects. IEEE TSE (2022)
22. RDF Working Group: Resource Description Framework (RDF),

https://www.w3.org/RDF/, Accessed 22 November 2022
23. Reyhani, M., et al.: Effectiveness and efficiency of embedding methods in task of

similarity computation of nodes in graphs. Applied Sciences (2021)
24. Rožanec, J.M., et al.: XAI-KG: Knowledge Graph to Support XAI and Decision-

Making in Manufacturing. Lecture Notes in Business Information Processing (2021)
25. Schlichtkrull, M., et al.: Modeling relational data with graph convolutional net-

works. Lecture Notes in Computer Science (2018)
26. Shen, S., et al.: Towards release strategy optimization for apps in google play. In:

Proceedings of the 9th Asia-Pacific Symposium on Internetware (2017)
27. Stol, K.J., Fitzgerald, B.: The abc of software engineering research. ACM Trans.

Softw. Eng. Methodol. (2018)
28. Wang, L.: Heterogeneous Data and Big Data Analytics. Automatic Control and

Information Sciences 3(1), 8–15 (2017)
29. Xu, P., et al.: MEGATRON-CNTRL: Controllable story generation with external

knowledge using large-scale language models. In: EMNLP 2020 (2020)
30. Yu, W., et al.: Simrank*: Effective and scalable pairwise similarity search based

on graph topology. The VLDB Journal (2019)
31. Zhao, Y., et al.: A supervised learning community detection method based on

attachment graph model. Lecture Notes in Computer Science (2022)


