
Exploiting Vector Code Semantics
for Efficient Data Cache Prefetching

Francesc Martínez Palau
Barcelona Supercomputing Center

Barcelona, Spain
francesc.martinez@bsc.es

Martí Torrents
Barcelona Supercomputing Center

Barcelona, Spain
marti.torrents@bsc.es

Adrià Armejach
Barcelona Supercomputing Center

Barcelona, Spain
Universitat Politecnica de Catalunya

Barcelona, Spain
adria.armejach@bsc.es

Marc Casas
Barcelona Supercomputing Center

Barcelona, Spain
marc.casas@bsc.es

ABSTRACT
Emerging workloads from domains like high performance com-
puting, data analytics or deep learning consume large amounts of
memory bandwidth. To mitigate this problem, computing systems
include large and deep memory cache hierarchies that exploit both
spatial and temporal locality. In this context, hardware data cache
prefetching constitutes a useful method to anticipate cache misses
and boost performance. Despite their success in terms of high cover-
age rates, current data cache prefetchers incur a significant number
of late and sometimes useless prefetches. Additionally, these state-
of-the-art prefetchers are not aware of architecture trends towards
larger vector units and vector-length agnostic instruction sets.

This paper demonstrates that these trends bring new prefetch-
ing opportunities that make it possible to increase the accuracy
and timeliness of any state-of-the-art prefetcher with a negligi-
ble area cost. We propose the the Register Vector Length Agnostic
(ReVeLA) prefetcher. ReVeLA exploits program semantics present
in vectorized codes. The ReVeLA prefetcher complements existing
data cache prefetchers by providing highly accurate prefetch re-
quests that improve prefetching timeliness and accuracy without
significantly increasing memory bandwidth consumption. When
applied on top of a state-of-the-art out-of-order vector processor,
ReVeLA delivers a speed-up of 1.23× with respect to a system with-
out any prefetching approach. When combined with the 𝑁𝑒𝑥𝑡𝐿𝑖𝑛𝑒 ,
𝐵𝑂𝑃 , 𝑆𝑃𝑃 , and 𝑃𝑃𝐹 prefetchers, ReVeLA improves performance
by 6.57%, 4.46%, 11.83%, and 11.40% respectively, with respect to
a vector processor equipped with these prefetching approaches.
Additionally, our evaluation demonstrates that ReVeLA increases
memory bandwidth consumption by only 3.74% when combined
with the most performing data cache prefetcher of our experimental
campaign.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
Request permissions from owner/author(s).

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in: Francesc Martínez
Palau, Marti Torrents, Adrià Armejach, and Marc Casas. 2024. Exploiting Vector
Code Semantics for Efficient Data Cache Prefetching. In Proceedings of the 38th ACM
International Conference on Supercomputing (ICS '24). Association for Computing
Machinery, New York, NY, USA, 98–109. https://doi.org/10.1145/3650200.3656635

ACM Reference Format:
Francesc Martínez Palau, Martí Torrents, Adrià Armejach, and Marc Casas.
2024. Exploiting Vector Code Semantics for Efficient Data Cache Prefetching.
In Proceedings of the 38th ACM International Conference on Supercomputing
(ICS ’24), June 04–07, 2024, Kyoto, Japan. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3650200.3656635

1 INTRODUCTION
Workloads from domains like high performance computing, data
analytics, or deep learning consume large amounts of memory
bandwidth to feed power-hungry hardware compute units. This
issue, described as the Memory Wall [25, 44], has become worse in
recent years. To mitigate it, computing systems contain large and
deep memory cache hierarchies exploiting the spatial and tempo-
ral locality that some workloads exhibit. In this context, hardware
cache prefetching significantly contributes to tackle the Memory
Wall. State-of-the-art cache prefetchers have pushed the limits of
data prefetching by exploiting recurring spatial patterns of physical
addresses [4, 6, 16, 21, 26, 29, 32]. However, these prefetching ap-
proaches face the classical trade-off between accuracy and coverage.
The more accurate they are, the less coverage they provide, and
vice versa. Since reducing data cache misses is crucial, computer
architects and hardware vendors have designed and implemented
prefetchers with large coverage that spend a significant amount
of memory bandwidth bringing memory blocks to the cache hier-
archy. These prefetched blocks are frequently late or sometimes
not even consumed by the running workloads. Furthermore, these
state-of-the-art prefetchers do not exploit recent trends in computer
architecture, leaving performance on the table. For example, the
recent re-emergence of vector architectures [28], which includes
new vector Instruction Set Architectures (ISAs) like the Scalable
Vector Extension (SVE) [34] and the RISC-V Vector Extension [36],
and production systems equipped with long vector units [22, 35].

These emerging vector ISAs support Vector Length Agnostic
(VLA) programming models [34], allowing parallel codes to run
in a vector processor regardless of the size of its vector registers.
In contrast, previously existing SIMD ISAs, like AVX-512 [31], are
tied to a certain vector length that cannot be changed. This paper
demonstrates that VLA vector ISAs bring new prefetching opportu-
nities that make it possible to increase the accuracy and timeliness

https://doi.org/10.1145/3650200.3656635
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650200.3656635&domain=pdf&date_stamp=2024-06-03

pa
rti

cle
filte

r

bla
ck

sch
ole

s
M

xM

str
ea

mclu
ste

r
trm

m

ch
ole

sk
y

sw
ap

tio
ns

res
ne

t

ca
nn

ea
l

lul
esh fft

pa
thfi

nd
er

RTM
_is

o

so
mier

jac
ob

i
sp

mv
ax

py

HPCG

Ave
rag

e

-20

0

20

40

60

80

100

Pr
ef

et
ch

C
ov

er
ag

e
%

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
e x

tL
in

e
B

O
P

SP
P

PP
F

N
e x

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
e x

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

N
ex

tL
in

e
B

O
P

SP
P

PP
F

Useful prefetches Late prefetches Useless prefetches

Figure 1: Prefetcher coverage of the different configurations.

of any state-of-the-art prefetcher with a negligible area cost. We
propose a novel prefetchingmethod called the Register Vector Length
Agnostic prefetcher (ReVeLA). ReVeLA leverages program semantics
present in vectorized codes to identify data streams that will be
accesses with certainty. That is, VLA codes typically request access
to data streams (𝑖 .𝑒 , requested vector length), which are larger than
the implemented register vector length (𝑖 .𝑒 ., granted vector length)
of the vector processor where they run. This enables opportunities
to prefetch the data corresponding to the whole stream, which are
known in advance. For example, if a vectorized code asks for a
vector length of 2KB to load 256 64-bit elements while running
on a vector processor that only supports 8 64-bit element vector
instructions, it will be able to load only 8 elements in a single vector
load and will have to load the remaining 248 elements during sub-
sequent iterations. In this context, prefetching some of these 248
remaining elements before the corresponding vector loads request
them significantly improves performance.

The ReVeLA prefetcher complements existing cache prefetch-
ers by providing highly accurate prefetch requests that improve
prefetching timeliness and accuracy without significantly increas-
ing memory bandwidth consumption. ReVeLA only requires a small
table to keep track of the already existing access data streams, very
simple control logic to orchestrate the prefetch requests, and a small
prefetch queue to keep track of pending prefetch requests. A very
significant difference between ReVeLA and state-of-the-art data
cache prefetchers is that ReVeLA does not trigger prefetch requests
once a cache miss has taken place. Instead, ReVeLA checks its hard-
ware structures every cycle and only triggers prefetch requests as
long as the memory subsystem is not overloaded. This approach
makes it possible to issue very accurate prefetches without wasting
valuable memory bandwidth.

This paper makes the following contributions beyond the state-
of-the-art:

• It proposes ReVeLA, the first prefetching mechanism that
leverages program semantics of vectorized codes regarding
the vector length. ReVeLA complements existing prefetching
approaches by triggering highly accurate prefetch requests
when the memory subsystem is not overloaded. ReVeLA
incurs a minimal storage overhead of just 436 Bytes, and
does not require any specific codemodifications. The ReVeLA
approach is supported by relevant vector ISAs like SVE [34]
or RISC-V Vector [36].

• It proposes combining ReVeLA with already existing data
cache prefetchers to improve their accuracy without hurting
coverage, while incurring minimal hardware and memory
bandwidth cost.

• It evaluates the impact of ReVeLA on 18 workloads that
represent a variety of application domains, arithmetic inten-
sities, and memory access patterns. When applied on top
of a state-of-the-art out-of-order vector processor, ReVeLA
delivers a speed-up of 1.23× with respect to a system with-
out any prefetching approach. When combined with the
𝑁𝑒𝑥𝑡𝐿𝑖𝑛𝑒 [30], 𝐵𝑂𝑃 [26], 𝑆𝑃𝑃 [21], and 𝑃𝑃𝐹 [7] prefetch-
ers, ReVeLA improves performance by 6.57%, 4.46%, 11.83%,
and 11.40%, respectively, with respect to a vector processor
equipped with these prefetching approaches. Additionally,
our evaluation demonstrates that ReVeLA only increases
memory bandwidth consumption by 3.74% when applied on
top of the most performing data cache prefetcher that we
consider, while improving the number of useful prefetches
by 11.09%.

Section 2 introduces the background and motivates our proposal,
Section 3 introduces the ReVeLA prefetcher, Section 4 explains the
evaluation methodology, Section 5 details the obtained results, Sec-
tion 6 summarizes related work, and Section 7 describes the final
the conclusions.

2 BACKGROUND AND MOTIVATION
2.1 Limitations of Data Cache Prefetching
Hardware data cache prefetching has achieved very large cover-
age rates by exploiting spatial patterns between past data cache
misses and extrapolating these patterns to future accesses [4, 6,
16, 21, 26, 29, 32]. These prefetching techniques have also been
implemented in real products due to their relatively low area over-
head [1, 11, 13, 31]. Despite this success, data cache prefetching
approaches still suffer from a large number of late prefetches that,
if triggered before, could potentially boost the performance of the
running workloads. Also, current prefetching approaches trigger
a non negligible number of inaccurate prefetches that consume
memory bandwidth and pollute caches. To illustrate these issues,
we consider three state-of-the art spatial prefetchers for lower level

1 void axpy (double a , double ∗ x , double ∗ y , in t n) {
2 in t gv l ;
3 for (in t i = 0 ; i < n ; i += gv l) {
4 gv l = r i s c v _ v s e t v l _ e 6 4m1 (n− i) ;
5 v f l o a t 6 4m1_ t vx = r i s c v _v l e 6 4 _v_ f 6 4m1 (&x [i] , g v l) ;
6 v f l o a t 6 4m1_ t vy = r i s c v _v l e 6 4 _v_ f 6 4m1 (&y [i] , g v l) ;
7 vy = r i s c v_v fmac c_v f _ f 6 4m1 (vy , a , vx , gv l) ;
8 r i s c v_v s e 64_v_ f 6 4m1 (&y [i] , vy , gv l) ;
9 }
10 }

Figure 2: RISC-V "V" axpy vector length agnostic code exam-
ple.

caches: the Best Offset Prefetcher (BOP) [26] the Signature Path
Prefetcher (SPP) [21], and the Perceptron-based Prefetch Filtering
(PPF) prefetcher [21]. For completeness, we also take into account
the simple NextLine prefetcher [30].

Figure 1 shows our evaluation in terms of coverage considering
these three prefetchers. Section 4 describes our experimental setup
including the workloads we consider. In the x-axis we show all
considered workloads, and per each workload we show four bars,
one per considered prefetcher. In the y-axis we represent cover-
age in terms of percentage of Last Level Cache (LLC) misses that
are served by prefetching requests. Our evaluation indicates that
NextLine, BOP, SPP, and PPF reach 82.23%, 66.63%, 81.81%, and
82.38% average coverage rates, which are high numbers. However,
the prefetches that arrive on time to serve misses (useful category)
cover only 30.05%, 53.93% 40.20%, and 34.09% of the total misses
for NextLine, BOP, SPP, and PPF respectively. Additionally, these
prefetches trigger a non-negligible amount of useless prefetches,
i.e., they consume bandwidth to bring memory blocks that are
never accessed by the running workloads. This paper proposes a
prefetching solution to increase timeliness and accuracy of current
prefetching approaches by exploiting program semantics present
in codes running on processors supporting VLA ISAs.

2.2 Vector Processors and Vector Length
Agnostic ISAs

Recent years have seen a renewed interest in vector architectures,
especially those featuring long vector registers, as evidence by
production systems equipped with long vector units [22, 35]. In ad-
dition, emerging VLA ISAs such as RISC-V Vector [36] and SVE [34],
make it possible to write semantically reach vector codes that di-
rectly expose information about future data access patterns to the
hardware.

For example, Figures 2 and 3 show two VLA codes implementing
the 𝑎𝑥𝑝𝑦 kernel that use RISC-V Vector and SVE intrinsic calls,
respectively. In both examples the main loop initially calls an in-
struction to define the number elements in 𝑥 and 𝑦 arrays to be
processed in the current iteration. In the case of the RISC-V Vector
code, this definition is done via the vsetvl instruction, which sets
the vector length 𝑔𝑣𝑙 to be the minimum between the number of
elements that fit in a vector register and 𝑛 − 𝑖 (line 4 of Figure 2).
Similarly, the SVE code uses the svwhilelt instruction to generate a
predicate indicating the number of elements to process, which is
also the minimum between the number of elements that fit in one
vector register and 𝑛 − 𝑖 . After this definition, both codes proceed
in an analogous way: while the RISC-V code uses the vector length
𝑔𝑣𝑙 to indicate the number of elements of arrays 𝑥 and 𝑦 to be be

1 void axpy (double a , double ∗ x , double ∗ y , in t n) {
2 s v b o o l _ t p r e d i c a t e ;
3 for (in t i = 0 ; i < n ; i += svcn td ()) {
4 p r e d i c a t e = s vwh i l e l t _ b 6 4 (i , n) ;
5 s v f l o a t 6 4 _ t vx = s v l d 1 (p r e d i c a t e , &x [i]) ;
6 s v f l o a t 6 4 _ t vy = s v l d 1 (p r e d i c a t e , &y [i]) ;
7 vy = svmla_x (p r e d i c a t e , vy , vx , a) ;
8 s v s t 1 (p r e d i c a t e , &y [i] , vy) ;
9 }
10 }

Figure 3: SVE axpy vector length agnostic code example.

Granted Vector Length

Requested Vector Length

Prefetchable data

Figure 4: Example of the information available on a Re-
quested Vector Length Agnostic system.

loaded by instructions 𝑣𝑙𝑒64 (lines 5 and 6 of Figure 2), the SVE code
does so by applying the predicate to instructions 𝑠𝑣𝑙𝑑1. Similarly,
these two codes execute vector Fused-Multiply and Add (FMA) and
store instructions using either the vector length or the predicate.
The codes displayed in Figures 2 and 3 run independently of the
maximum vector length supported by the hardware, 𝑖 .𝑒 ., they are
VLA codes.

2.3 Motivation of ReVeLA
The ReVeLA prefetcher is motivated by the observation that infor-
mation exposed to the hardware by VLA codes can be leveraged
to accurately predict future memory accesses. ReVeLa exploits the
difference between the intended amount of data to be processed by
vector codes, and the maximum amount of data that a single vec-
tor instruction can handle. The most relevant vector ISAs, RISC-V
Vector and SVE, support this approach. In the case of RISC-V, the
ISA specification [36] makes it possible for a program to specify
the size of the data to be processed in a certain operation. We call
this size Requested Vector Length (RVL). The processor grants the
minimum value between this RVL and the maximum vector length
it supports. We call this value provided by the processor Granted
Vector Length (GVL). Figure 2 shows in line 4 how the vsetvl in-
struction returns the GVL value in the case of the RISC-V Vector
code. In this scenario, the RVL value 𝑛 − 𝑖 is an input of the vsetvl
instruction. In the case of SVE, the svwhile* instructions expose to
the hardware the intended amount of data to be processed, 𝑖 .𝑒 ., the
RVL as Figure 3 indicates. These instructions generate predicates
describing the number of elements to process. The number of ac-
tive elements in the predicate corresponds to the minimum value
between this RVL and the maximum vector length supported by
the hardware, 𝑖 .𝑒 ., the GVL. For the rest of the paper we use the
RVL and GVL concepts without lose of generality since they are
applicable to both RISC-V Vector and SVE ISAs.

ReVeLA exploits the difference between RVL and GVL to predict
future data accesses and drive data prefetching. Figure 4 displays a
RVL value corresponding to a large and contiguous memory block,
and a smaller GVL value corresponding to the maximum amount
of data that vector instructions can process. While in the current
iteration the hardware only loads the contiguous memory block cor-
responding to the first GVL elements, the larger RVL value indicates

that a larger block will be accessed in the future. Data belonging
to this large block that are beyond the first GVL elements consti-
tute good candidates for prefetching since they will be accessed
in the future. While current data prefetching approaches ignore
this information, ReVeLA uses is to generate prefetches. ReVeLA is
not conceived to be a standalone prefetcher, but to work alongside
state-of-the-art data prefetchers. ReVeLA incurs small area overhead
and provides accurate prefetch requests that improve prefetching
timeliness and accuracy without significantly increasing memory
bandwidth consumption.

3 THE REVELA PREFETCHER
The ReVeLA prefetcher exploits streams of memory accesses for
which the vector code provides the base address and total size in
advance, 𝑖 .𝑒 ., before triggering the memory accesses. The ReVeLA
hardware components keep track of these streams to predict future
memory accesses. To update the content of these components, ReV-
eLA takes into account data demand memory requests. The ReVeLA
prefetch triggering logic is not associated with events like cache
misses. Instead, ReVeLA takes into account the status of the prefetch
queues and cache MSHRs to trigger prefetches, which avoids over-
whelming the memory subsystem with prefetches when the number
of in-flight operations is close to the maximum. Section 3.1 presents
the design of the ReVeLA prefetcher, Section 3.2 discusses the up-
date of the ReVeLA hardware components, Section 3.3 describes
how ReVeLA triggers prefetches, Section 3.4 provides an example
illustrating ReVeLA operation, Section 3.5 discusses how ReVeLA
deals with memory address translation, and Section 3.6 demon-
strates that the area overhead of ReVeLA is just 436 Bytes.

3.1 ReVeLA design
The ReVeLa design keeps track of vector accesses belonging to large
memory streams. To do so, ReVeLA requires propagating the RVL
and GVL values of memory instructions to each individual load/s-
tore request. These values make it possible for ReVeLa to identify
the application memory access streams via the Stream Tracking Ta-
ble (STT). Figure 5 displays the STT design. Each entry of the STT
tracks one access stream. The STT is indexed by the stream limit
address, which is defined as the base stream address plus its cor-
responding RVL value (𝑙𝑖𝑚𝑖𝑡@ in Figure 5), as it remains constant
during the whole stream. Each STT entry stores the last accessed
memory address of its stream (𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ in Figure 5), the number
of cache lines after 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ that have already been prefetched
(𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒), a valid bit, and an 8-bit LRU counter. ReV-
eLA’s aggressiveness is throttled depending on the number of valid
STT entries using a simple hardware structure, the Aggressivity Ta-
ble. This table adapts the aggressiveness depending on the number
of valid streams, 𝑖 .𝑒 ., allowing more prefetch requests per stream
if the stream count is low. Figure 5 shows an example. ReVeLA
uses a small 16-entry Prefetch Queue to store the pending prefetch
requests, which is a common practice in cache prefetching [15].

3.2 Update of the STT table
STT is updated for each new demand memory access requested by a
vector instruction. As Figure 6 shows, ReVeLA computes the stream
limit address (requested address + RVL) of the new memory request,

Stream Tracking Table (STT)

current@ limit@ prefetched
distance

valid
bit

LRU
bits

Access information:
- access@
- RVL
- GVL

Aggressivity Table

valids limit

<2 64

<4 32

<8 16

Other 8

total valid

add prefetches

Control Logic

entry data
aggressivity

update data

Prefetch queue

Tag@

Figure 5: Architecture of ReVeLA’s Stream Tracking Table
(STT).

and uses this limit address to look up the SST table. If there is a hit
on a valid STT entry and the hitting address (𝑎𝑐𝑐𝑒𝑠𝑠@) is a forward
access, meaning the address stored in the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ field is smaller
or equal than the 𝑎𝑐𝑐𝑒𝑠𝑠@, ReVeLA updates the following fields
of the entry: the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ field, which is updated with 𝑎𝑐𝑐𝑒𝑠𝑠@
+ 𝐺𝑉𝐿, the 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , which is updated to contain the
number of cache lines after the new 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ that have already
been prefetched, and the LRU counter of the hitting entry is set
to 0. In addition, the LRU counters of all the other STT entries are
increased by 1. If there is a hit, but 𝑎𝑐𝑐𝑒𝑠𝑠@ is smaller than the
current address, it is considered an access to a past region of the
stream, and no content on the STT is updated. The reason why
hitting demand accesses with addresses smaller than 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ do
not trigger STT updates is to avoid storing outdated data due to
out-of-order execution and other microarchitecture mechanisms
that may reorder memory accesses belonging the same memory
stream. Finally, if a hit to an entry is also the final access of the
stream (𝑖 .𝑒 . 𝑒𝑛𝑡𝑟𝑦.𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ = 𝑒𝑛𝑡𝑟𝑦.𝑙𝑖𝑚𝑖𝑡@) the entry on the STT
is invalidated. If there is a miss on the STT table, ReVeLA creates
a new entry on STT overwriting either an invalid entry or, if all
entries are valid, the one with the largest LRU counter.

To avoid stale entries, ReVeLA invalidates STT entries when
their LRU counter reaches its maximum value, 𝑖 .𝑒 ., 255 in the case
of 8-bit counters. If we do not invalidate these stale entries after
an inactivity period, they will remain in the STT and impact the
prefetcher accuracy or the prefetcher aggressivity, which depends
on the number of valid STT entries. There are several scenarios
that may create stale entries. For example, if the last two accesses
to a stream are executed out of order, the last stream access will
invalidate the stream entry but when the second to last arrives, a
new entry will be created. In this scenario, if the stream is accessed
again from the beginning, the stale entrywill prevent any prefetches
to be issued again on that memory stream.

3.3 ReVeLa prefetch trigger
This section describes how ReVeLA triggers prefetch requests. The
triggering logic of ReVeLa is not driven by events like cache misses
or accesses. Instead, the prefetch triggering logic is evaluated every
cycle and, as long as the memory system can accept requests from
the prefetch queue and this prefetch queue is not full, ReVeLA
inserts prefetch requests into the prefetch queue. First, ReVeLA

No

Yes

Hit on Stream?
access@ + RVL == entry.limit@

and entry.valid

Yes HIT

check

Update STT entry:
update entry.prefetched_distance

update entry.current@
update entry.LRU bits

Allocate a new entry**:
current@ = access@ + GVL
limit@ = access@ + RVL

valid = 1
prefetched_distance = 0

LRU = 0

YesEnd of Stream?
entry.current@ == entry.limit@

Invalidate entry:
entry.valid = 0

Miss on all entries

Next entry

Try on the next entry

Forward access?
access@ >= entry.current@

**Select entry with
largest LRU value

access@, RVL, and GVL

Figure 6: ReVeLA logic when processing memory accesses.

Yes

Valid entry?
enyty.valid == True

Not finished?
entry.current@ + entry.prefetcheds_distance * CLS < entry.limit@

Lowest distance entry?
entry.prefetched_distance == min(STT.prefetched_distance)

Not above the aggressivity threshold?
entry.prefetched_distance <= Aggressivity.limit

Add prefetch to queue
Update prefetched_distance

*CLS = Cache Line Size

For each entry in the STT, check:

Figure 7: ReVeLA logic when emitting prefetches.

computes the number of STT valid entries and uses it to set a
maximum prefetch distance. ReVeLa obtains this maximum prefetch
distance from the aggressivity table by considering the number of
valid entries present in the STT. Figure 7 illustrates how ReVeLa
inserts new requests into the prefetch queue. For all valid STT
entries, ReVeLA checks whether the base address (entry.current@
in Figure 7) plus the prefetch distance (entry.prefetched_distance) is
below the limit address (entry.limit@). For all entries with values
below the limit address, ReVeLA considers the ones storing the
minimum value of the 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 field considering all
the STT valid entries. For all entries holding this minimum value,
ReVeLA adds new prefetch requests to the queue if this minimum
entry.prefetched_distance is below the maximum prefetch distance
(𝐴𝑔𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑖𝑡𝑦.𝑙𝑖𝑚𝑖𝑡 in Figure 7).

The number of new prefetch requests per entry is determined
by the 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 parameter. The 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
field of all entries triggering prefetches is updated to account for
these new prefetch requests inserted in the prefetch queue. The
cache level where ReVeLA is operating checks whether there are
pending prefetch requests in the ReVeLA prefetch queue every

Current@ Limit@ PD V LRU

Current@ Limit@ PD V LRU

0x10000800 0x10004000 0 1 1
0x20000800 0x20004000 0 1 0

STEP 1:
Access 0x10000000 RVL 16384 GVL 2048
Access 0x20000000 RVL 16384 GVL 2048

Prefetch queue

STEP 3:
Prefethes sent to LLC

Access 0x10001000 RVL 12288 GVL 2048

STEP 4:
Emit 2 prefetches

Access 0x20000800 RVL 14336 GVL 2048
Access 0x10000800 RVL 14336 GVL 2048

STEP 2:
Emit prefetches 2 cycles

Prefetch queue

0x10000800 0x20000800 0x10000840 0x20000840

Prefetch queue

Prefetch queue

0x10001800 0x10001840

Stream Tracking Table (STT)

Current@ Limit@ PD V LRU

0x10000800 0x10004000 2 1 1
0x20000800 0x20004000 2 1 0

Stream Tracking Table (STT)

Current@ Limit@ PD V LRU

0x10001800 0x10004000 0 1 0
0x20000800 0x20004000 2 1 1

Stream Tracking Table (STT)

Current@ Limit@ PD V LRU

0x10001800 0x10004000 2 1 1
0x20001000 0x20004000 0 1 0

END STEP 2 / BEGINNING STEP 3

END STEP 3 / BEGINNING STEP 4

END STEP 4

n

END STEP 1 / BEGINNING STEP 2
Stream Tracking Table (STT)

Figure 8: ReVeLA operation step-by-step.

cycle. To avoid overwhelming the cache with too many prefetch
requests, the cache does not insert prefetch requests in its Miss
Status Holding Register (MSHR) if there are less than 8 free MSHR
entries.

3.4 Example of ReVeLa Operation
To illustrate ReVeLA operation, Figure 8 shows an example to de-
scribe how ReVeLA updates STT entries once the CPU emits a
sequence of demand memory requests, and how ReVeLA triggers
prefetch requests. On Step 1, two different vector memory accesses
are triggered by the CPU. We assume the STT table to be empty,
so both vector accesses miss in the STT. Therefore, ReVeLA al-
locates two new STT entries, one for each access, with the cor-
responding 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ (address + GVL), 𝑙𝑖𝑚𝑖𝑡@ (address + RVL),
𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝐷) (zero), valid bit and LRU counter. During
Step 2, we assume that ReVeLA has two cycles without processing
memory requests, so it executes the prefetch triggering logic two
times. Since both entries have the lowest prefetched distance, both
generate prefetch requests and add them to the prefetch queue.
These requests are expressed in terms of 64 bytes cache blocks. On
Step 3, ReVeLA triggers the prefetch requests to the memory sub-
system, and processes a new demand vector memory request. This
request hits in the entry with 𝑙𝑖𝑚𝑖𝑡@ 0x10004000 and, therefore,
ReVeLA updates the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ and 𝑝𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 fields of
the corresponding STT entry. In this case, ReVeLA sets the prefetch

distance to zero indicating that nothing has been prefetched from
the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ to the 𝑙𝑖𝑚𝑖𝑡@.

On Step 4 we assume ReVeLA has two cycles to emit prefetch re-
quests. Since only the STT entry with 𝑙𝑖𝑚𝑖𝑡@ 0x10004000 contains
the smallest prefetch distance, ReVeLA emits requests just for this
entry. As Figure 8 indicates, ReVeLA emits two requests, 0x10001800
and 0x10001840, in the two cycle period. After the prefetch requests
are emitted, ReVeLA has to process two new demand vector mem-
ory requests. The first one, with base address 0x2000800, hits in
the STT entry with limit address 0x20004000. Therefore, ReVeLA
updates the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@, prefetched distance, and LRU bits fields of
the hitting entry. Then, ReVeLA processes the demand vector access
with base address 0x1000800. This access maps to the STT entry
with 𝑙𝑖𝑚𝑖𝑡@ 0x10004000. Since the base address is below 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@,
the STT entry remains unmodified as we describe in Section 3.2.

3.5 ReVeLA and Memory Address Translation
ReVeLA works with virtual addresses to ensure the address range
contiguity of the streams being tracked by the STT. The use of
physical addresses would complicate stream definitions on the STT
as addresses may not be contiguous when crossing page boundaries.
To be exposed to virtual addresses, ReVeLA hardware structures
are placed alongside the first level caches and accessed before the
address translation process is finished. ReVeLA prefetch requests
follow the same path as demand memory requests triggered by
vector instructions. Since all cache levels are physically tagged,
ReVeLA prefetch requests must go through the Translation Looka-
side Buffer (TLB) and potentially trigger TLB misses and subsequent
page walks to complete cache lookups. Therefore, ReVeLA not only
acts as a cache prefetcher, but it may also prefetch memory page
translations into the TLB.

3.6 Area Cost of ReVeLA
The area cost of ReVeLA is minimal since each STT entry requires
64 bits for the 𝑐𝑢𝑟𝑟𝑒𝑛𝑡@ field, 64 bits for 𝑙 𝑖𝑚𝑖𝑡@, 8 bits for the
𝑃𝑟𝑒 𝑓 𝑒𝑡𝑐ℎ𝑒𝑑𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 8 bits to guide LRU replacement, and one bit
to indicate whether the entry is valid or not. This adds up to 145
bits per entry. Our experimental campaign considers a 16-entry
STT, which means the total STT size is 2320 bits or 290 Bytes.
Section 5.4 shows that a 4-entry STT already achieves 91.3% of the
potential ReVeLA performance benefits, which indicates that the
area cost of STT can be reduced to just 73 Bytes and still provide
very significant performance improvements. The prefetch queue
requires 128 Bytes to store 16 entries. The cost of the aggressivity
table is also minimal, with only 8 Bytes of information. The total
storage overhead of ReVeLA is 436 Bytes when using a 16-entries
STT, a 16-entries prefetch queue, and a small aggressivity table like
the one that Figure 5 shows. ReVeLA also requires some extremely
simple control logic that incurs a negligible overhead.

4 EXPERIMENTAL ENVIRONMENT
4.1 Simulation Methodology
Our simulation methodology is based on ChampSim [2], a detailed
simulator that models a 4-wide out-of-order processor. We extend
ChampSim to simulate a Vector Unit with a vector register file
that manages register dependencies and register renaming, and

Table 1: Architectural parameters of the simulated system.

Vector unit (VU)

Issue / Commit width 4
Scheduler entries 64
Vector register length 16384 bits
VPU width (throughput) 2048 bits
Number of VPUs 4
Core frequency 2.4GHz

Memory subsystem

LLC capacity 1 MB
LLC cache line size 64 bytes
LLC load-to-use latency 50 cycles
LLC associativity 8
LLC → VU bandwidth 2048 bits/cycle
LLC MSHR entries 256
Main memory bandwidth 256 GB/s
Main memory latency 60ns

Prefetchers

Nextline Aggressivity 8 lines
Best Offset Prefetcher (BOP) Aggressivity 2 lines
Signature Path Prefetcher (SPP) LLC confidence 20%
Percepton-based Prefetch Filtering (PPF) Confidence threshold 15%
ReVeLA Aggressivity 64, 16-entry STT
ReVeLA + Nextline
ReVeLA + BOP
ReVeLA + SPP
ReVeLA + PPF

segmented vector processing units. We also consider memory ad-
dress disambiguation and store-to-load forwarding in the load-store
queue. The memory hierarchy models port contention, MSHRs, ac-
cess latency, and bandwidth. Table 1 displays the parameters of
the simulated architecture, which is based on contemporary vector
architectures like the NEC SX-Aurora TSUBASA [22, 35].

4.2 HPC workloads
The selected benchmarks come from a wide range of domains:
the PARSEC suite [8] (𝑏𝑙𝑎𝑐𝑘𝑠𝑐ℎ𝑜𝑙𝑒𝑠 , 𝑐𝑎𝑛𝑛𝑒𝑎𝑙 , 𝑠𝑡𝑟𝑒𝑎𝑚𝑐𝑙𝑢𝑠𝑡𝑒𝑟 , and
𝑠𝑤𝑎𝑝𝑡𝑖𝑜𝑛𝑠), Rodinia [9] (𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑓 𝑖𝑙𝑡𝑒𝑟 and 𝑝𝑎𝑡ℎ𝑓 𝑖𝑛𝑑𝑒𝑟), Basic Lin-
ear Algebra Subroutines (BLAS) kernel (𝑡𝑟𝑚𝑚) [37], the 𝑠𝑜𝑚𝑖𝑒𝑟

benchmark [27], 5 known scientific kernels (𝑎𝑥𝑝𝑦, 𝑐ℎ𝑜𝑙𝑒𝑠𝑘𝑦, 𝑗𝑎𝑐𝑜𝑏𝑖 ,
𝑀𝑥𝑀 , 𝑠𝑝𝑚𝑣), and five additional scientific workloads (𝑓 𝑓 𝑡 [40],
𝑙𝑢𝑙𝑒𝑠ℎ [20], 𝐻𝑃𝐶𝐺 [12], 𝑟𝑒𝑠𝑛𝑒𝑡 [14], and the 𝑅𝑇𝑀 isotropic ker-
nel [45]).

Table 2 provides the arithmetic intensity of each considered
workload and the input sets we consider. All codes have been vec-
torized using hand-tuned intrinsics based on the RISC-V "V" vector
extension [36] and compiled with the LLVM [24] clang v17.0 com-
piler. Codes are Vector-Length Agnostic (VLA), which means they
can run on architectures with different vector lengths without re-
compiling.

4.3 Evaluated Prefetchers
Our experimental campaign considers the following prefetching
methods: the Next Line Prefetcher (𝑁𝑒𝑥𝑡𝐿𝑖𝑛𝑒) [30], the Best Offset
Prefetcher (𝐵𝑂𝑃) [26], the Signature Path Prefetcher (𝑆𝑃𝑃) [21],
the Perceptron-based Prefetch Filtering Prefetcher (𝑃𝑃𝐹) [7] and

Table 2: Set of evaluated benchmarks, with their domain, inputs used and arithmetic intensity.

Benchmark Domain Computational pattern Input used Arithmetic intensity (a)

axpy Scientific kernel Dense Linear Algebra 524288 DP elems 0.099
cholesky Scientific kernel Dense Linear Algebra 1536×1536 3.689
spmv Scientific kernel Sparse Linear Algebra bmw7st_1.mtx 141347×141347 0.142
blackscholes Financial Analysis Dense Linear Algebra in_64k 5.611
canneal Engineering Unstructured Grids nsw=100 t=300 netlist=2500000.nets ns=8 1.000
jacobi-2d Engineering Dense Linear Algebra n=256 tsteps=2 0.142
particlefilter Medical Imaging Structured Grids x=4096 y=4096 z=16 np=2048 144.708
pathfinder Grid Traversal Dynamic Programming 1024×1024 0.333
streamcluster Data Mining Dense Linear Algebra k1=10 k2=20 d=128 n=chunk=16k cluster=1000 3.891
swaptions Financial Analysis MapReduce ns=2 sm=32768 2.682
fft Engineering Fast Fourier Transform 256×256 blocksize=8 0.767
HPCG HPC benchmark Sparse Linear Algebra nx=64 ny=64 nz=64 0.045
lulesh Hydrodynamics Unstructured Grids i=2 s=30 0.897
resnet Image Recognition Convolutions mb=1 ic=256 oc=1024 ih=14 oh=14 kh=1 1.565
RTM_iso Engineering Finite Difference Method nit=3 nx=1040 ny=1040 nz=16 0.301
trmm Scientific kernel Dense Linear Algebra 1024×1024 3.692
MxM Scientific kernel Dense Linear Algebra ix=iy=iz=256 5.564
somier Physics simulation Dense Linear Algebra iter=4 N=20 0.229

𝑎 Calculated as a number of floating-point operations (FLOPs) divided by the number of bytes read (FLOPs/Byte).

the Register Vector Length Agnostic (𝑅𝑒𝑉𝑒𝐿𝐴) prefetcher that we
describe in Section 3. We also consider combining ReVeLA with
the other four considered prefetchers, 𝑖 .𝑒 ., 𝑅𝑒𝑉𝑒𝐿𝐴 + 𝑁𝑒𝑥𝑡𝐿𝑖𝑛𝑒 ,
𝑅𝑒𝑉𝑒𝐿𝐴+𝐵𝑂𝑃 , 𝑅𝑒𝑉𝑒𝐿𝐴+𝑆𝑃𝑃 , and 𝑅𝑒𝑉𝑒𝐿𝐴+𝑃𝑃𝐹 . We consider the
best configuration per each prefetcher for the HPC workloads we
evaluate. Table 1 shows the parameters we use for each prefetcher.
For example, the NextLine prefetcher considers an aggressivity of 8
cache lines, i.e., if a miss to an address@ takes place, the prefetcher
brings to the cache the 8 consecutive 64-Byte cache blocks located
right after the@ that triggered the miss. The four prefetcher combi-
nations use the best parameterization per prefetcher when applied
in isolation. We focus our evaluation on state-of-the-art prefetchers
for lower level caches since vector units are typically interfaced to
these lower levels, 𝑖 .𝑒 ., memory accesses triggered by vector units
typically bypass the L1D cache to avoid overwhelming the scalar
data it may contain [22, 35]. Combining ReVeLA with the other
four considered prefetches is possible due to the small ReVeLA area
cost (436 Bytes), which is negligible compared to BOP (7.51KB), SPP
(35.02KB), and PPF (39.34KB).

4.4 Details of the Evaluation Campaign
Our experimental campaign compares the performance achieved by
all considered prefetchers with respect to a baseline system without
any prefetcher. We describe all considered prefetchers in Section 4.3
and we show them in Table 1. Section 5.1 shows this performance
evaluation. In our experiments we also show the coverage of each
considered prefetcher and break it down in: (1) 𝑢𝑠𝑒 𝑓 𝑢𝑙 - the num-
ber of prefetched blocks accessed once the prefetch operation is
completed, (2) 𝑙𝑎𝑡𝑒 - prefetched blocks accessed while the prefetch
request is still outstanding, and (3) 𝑢𝑠𝑒𝑙𝑒𝑠𝑠 - prefetch blocks evicted
without being accessed. Section 5.2 displays our evaluation in terms
of prefetch coverage. Our evaluation also displays the performance
achieved by all considered prefetchers under different memory

bandwidth and cache size scenarios in Section 5.3, and a sensitiv-
ity analysis of the ReVeLA prefetcher with respect to prefetching
aggressivity and STT table size in Section 5.4.

5 EVALUATION
5.1 Performance Results
We evaluate the performance of each considered prefetcher by
comparing its speed-up with respect to the baseline system that
Section 4 describes without using any LLC prefetcher. Figure 9
shows the obtained results. The x-axis shows the considered work-
loads and the y-axis represents the speedup of each considered
approach. In some scenarios, the speed-ups are larger than the
maximum represented value. In these cases, we use boxes to repre-
sent the speed-up values. For example, Jacobi experiences speed-
ups of 2.51×, 2.72×, 2.91×, 2.83×, and 2.71× when using ReVeLA,
ReVeLA+NextLine, ReVeLA+BOP, ReVeLA+SPP, and ReVeLA+PPF,
respectively. Our experiments show that ReVeLA, either applied
alone or combined with the other considered prefetchers, provides
significant performance speed-ups for many workloads, such as

3.03 2.38 2.41 2.85 2.51, 2.72, 2.91, 2.83, 2.71 2.25

Figure 9: Speed-up of the different prefetcher configurations
with respect to the baseline.

pathfinder and Jacobi, while it does not improve performance in
others, such as swaptions, lulesh, and canneal. The reasons for ReV-
eLA not improving the performance of some workloads are twofold.
Firstly, some workloads may fit entirely in the last-level cache (LLC)
and therefore do not suffer from a high Misses Per Kilo-instruction
(MPKI) rate, as is the case for the particlefilter workload. Secondly,
some workloads do not display meaningful memory streams due to
several reasons for this: (i) workloads may display random access
patterns, e.g., canneal; (ii) they may use external libraries for which
the compiler does not generate vector length agnostic code that
ReVeLA can exploit, as is the case for resnet which uses libdnnl.
Overall, ReVeLA achieves a geometric mean speed-up of 1.23× over
all benchmarks.

Figure 9 shows that NextLine, BOP, SPP, and PPF achieve a geo-
metric mean speed-up of 1.32×, 1.47×, 1.27×, and 1.28× respectively.
NextLine’s good performance can be attributed to the regular na-
ture of some workloads such as axpy, while BOP’s ability to select
the best scoring offset per workload leads to a larger speed-up than
NextLine. SPP provides a remarkable performance improvement
compared to a system without any prefetching mechanism, but it
is lower than that of NextLine and BOP due to the regular offsets
displayed by linear algebra workloads (𝑒.𝑔., jacobi, trmm), which
match well with BOP. PPF achieves better performance than SPP for
a couple of workloads (apxy and HPCG), although in general these
two prefetches behaves similarly. Since PPF is an improvement of
SPP that uses a neuron-based prefetch filtering approach, it provides
better performance than SPP performance in some scenarios.

Despite the excellent performance improvements achieved by
NextLine, BOP, SPP, and PPF, these prefetchers leave some perfor-
mance on the table. Since ReVeLA uses a different logic to trigger
prefetch requests than classical cache prefetchers and has a mini-
mal area overhead, it can be combined with them. Figure 9 shows
that when ReVeLA is combined with NextLine, the performance im-
proves from 1.32× to 1.42× with respect to the baseline. In the case
of BOP, the improvement goes from 1.47× to 1.53×, for SPP it goes
from 1.27× to 1.41×, and for PPF it goes from 1.28× to 1.43×. There-
fore, ReVeLA provides performance improvement of 6.57%, 4.46%,
11.83%, and 11.40% when combined with NextLine, BOP, SPP, and
PPF, respectively, while requiring minimal area overhead. Exploit-
ing the semantics of vectorized codes via a lightweight hardware
extension enables these improvements.

5.2 Coverage Results
Figure 10 shows coverage data for all considered workloads and
prefetching techniques that Section 4.3 describes. The y-axis shows
percentage of LLC misses broken down into useful, late, or useless
prefetches. Section 4.4 provides a definition of these categories.
The addition of useful and late prefetchers indicates the percent-
age of cache misses that are served by prefetched cache lines. Fig-
ure 10 indicates that the average percentage of cache misses served
by ReVeLA (45.64%) is significantly lower than NextLine (82.23%),
BOP (66.63%), SPP (81.81%), and PPF (82.38%). However, ReVeLA’s
percentage of useful prefetches (40.70%) is higher than NextLine
(30.05%) and PPF (34.09%), similar to SPP (40.20%), and smaller than
BOP (53.93%). Additionally, ReVeLA displays a lower percentage
of late prefetches (4.94%) than NextLine (52.17%), BOP (12.71%),
SPP (41.60%), and PPF (48.28%). These data indicates that while
ReVeLA does not find as many occasions to issue prefetch requests
as NextLine, BOP, SPP, and PPF, it is timely when doing so. The
main advantage of ReVeLA with respect to NextLine, BOP, SPP,
and PPF is its negligible average percentage of useless prefetches
(0.93%). In contrast, NextLine, BOP, SPP, and PPF suffer from 8.14%,
9.90%, 8.54%, and 7.38% average useless prefetches, respectively,
which are one order of magnitude larger than ReVeLA. Most of
these useless prefetches are triggered when running a set of partic-
ularly irregular workloads (i.e., canneal, HPCG and streamcluster),
but there are also non-negligible numbers of useless prefetches
on other workloads (i.e., particlefilter, RTM_iso, somier, spmv and
swaptions).

The combination of ReVeLA with NextLine, BOP, SPP, and PPF
increases coverage by converting late prefetches to useful ones for
most workloads (𝑒.𝑔., axpy, blackscholes, jacobi, MxM and parti-
clefilter). For example, the average percentage of useful prefetches
experiences an increase of 11.09% when using the combined ReV-
eLA+BOP compared to using BOP alone. In a few scenarios, combin-
ing ReVeLA with another prefetcher reduces the number of useful
prefetches (i.e., lulesh with BOP or RTM_iso with NextLine and
SPP), but this effect does not affect performance in the case of lulesh
and even improves it in the case of RTM_iso. This improvement is
due to the additional prefetches generated by ReVeLA.

By considering both performance speed-up and coverage data
together, we observe that some workloads that do not benefit from

pa
rti

cle
filte

r

bla
ck

sch
ole

s
M

xM

str
ea

mclu
ste

r
trm

m

ch
ole

sk
y

sw
ap

tio
ns

res
ne

t

ca
nn

ea
l

lul
esh fft

pa
thfi

nd
er

RTM
_is

o

so
mier

jac
ob

i
sp

mv
ax

py

HPCG

Ave
rag

e

-20

0

20

40

60

80

100

Pr
ef

et
ch

C
ov

er
ag

e
%

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
e x

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
e x

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
e x

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
e x

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
e x

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
e x

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

N
ex

tL
in

e
B

O
P

SP
P

PP
F

R
eV

eL
A

R
eV

eL
A

+N
ex

tL
in

e
R

eV
eL

A
+B

O
P

R
eV

eL
A

+S
PP

R
eV

eL
A

+P
PF

Useful prefetches Late prefetches Useless prefetches

Figure 10: Prefetcher coverage of the different configurations.

pa
rti

cle
filte

r

bla
ck

sch
ole

s
M

xM

str
ea

mclu
ste

r
trm

m

ch
ole

sk
y

sw
ap

tio
ns

res
ne

t

ca
nn

ea
l

lul
esh fft

pa
thfi

nd
er

RTM
_is

o

so
mier

jac
ob

i
sp

mv
ax

py

HPCG

Ave
rag

e
0.0

32.0
64.0
96.0

128.0
160.0
192.0
224.0
256.0

D
R

A
M

B
an

dw
id

th
[G

B
/s

]

NextLine
BOP

SPP
PPF

ReVeLA
ReVeLA+NextLine

ReVeLA+BOP
ReVeLA+SPP

ReVeLA+PPF

Figure 11: EffectiveDRAMbandwidth for different prefetcher
configurations (including baseline) with DRAM bandwidth
of 256 GB/s.

using a prefetcher with high coverage in terms of combined use-
ful+late prefetches (e.g., lulesh, particlefilter, swaptions). This is
due to the low LLC miss ratio experienced in the baseline scenario,
less than 1% for lulesh, particlefilter and swaptions. In the case of
streamcluster, its high percentage of useless prefetches (NextLine
78.16%, BOP 21.95%, SPP 57.71%, PPF 50.86%) undermines the bene-
fits of the useful (NextLine 5.95%, BOP 2.43%, SPP 4.29%, PPF 3.99%),
and late prefetches (NextLine 73.29%, BOP 44.57%, SPP 74.60%, PPF
74.20%).

5.3 Impact of DRAM Bandwidth and Cache Size
In this section, we analyze the impact of DRAM bandwidth and
cache size on the performance of the considered prefetching mech-
anisms. Figure 11 presents the bandwidth consumption of all eval-
uated prefetchers, taking into account the system described in
Table 2. The figure highlights that all workloads that benefit from
prefetching also experience an increase in bandwidth consumption
when prefetching mechanisms are applied. However, the combi-
nation of ReVeLA with NextLine, BOP, and SPP results in only a
slight increase in memory bandwidth consumption compared to
the scenario where these prefetchers are applied alone. For instance,
NextLine alone consumes an average of 43.34 GB/s, whereas the
combination of NextLine and ReVeLA leads to a minor 18.2% in-
crease, totaling 51.23 GB/s. Similarly, BOP combined with ReVeLA
spends only 3.74% more bandwidth on average than BOP alone.
The increase for SPP and PPF is 26.32% and 24.60% respectively.
These contained increases are due to the high accuracy of ReVeLA,
which only fetches data that is eventually accessed by the running
workloads, thereby avoiding unnecessary bandwidth consumption.
This characteristic enables the combination of ReVeLA with any
cache prefetching method without incurring significant costs in
terms of area or bandwidth consumption.

To demonstrate the significant performance benefits of combin-
ing ReVeLA with state-of-the-art cache prefetchers, we evaluate
their impact in a scenario with a small DRAM bandwidth of only
32 GB/s. Figures 12 and 13 illustrate the speed-up and bandwidth
consumption with 32 GB/s DRAM bandwidth while keeping all
other architecture parameters set as indicated in Table 2. Compared
to the scenario with 256 GB/s DRAM bandwidth discussed in Sec-
tion 5.1, the performance increase with prefetching mechanisms is
lower. However, ReVeLA still manages to improve the performance
when combined with NextLine, BOP, and SPP, even in this scenario

1.81, 1.82, 1.82, 1.82, 1.82 1.71 1.62

Figure 12: Speed-up of the different prefetcher configurations
w.r.t. baseline with DRAM bandwidth of 32 GB/s.

pa
rti

cle
filte

r

bla
ck

sch
ole

s
M

xM

str
ea

mclu
ste

r
trm

m

ch
ole

sk
y

sw
ap

tio
ns

res
ne

t

ca
nn

ea
l

lul
esh fft

pa
thfi

nd
er

RTM
_is

o

so
mier

jac
ob

i
sp

mv
ax

py

HPCG

Ave
rag

e
0.0
4.0
8.0

12.0
16.0
20.0
24.0
28.0
32.0

D
R

A
M

B
an

dw
id

th
[G

B
/s

]

NextLine
BOP

SPP
PPF

ReVeLA
ReVeLA+NextLine

ReVeLA+BOP
ReVeLA+SPP

ReVeLA+PPF

Figure 13: EffectiveDRAMbandwidth for different prefetcher
configurations (including baseline) with DRAM bandwidth
of 32 GB/s.

of limited DRAM bandwidth. In the case of NextLine, ReVeLA in-
creases the speed-up from 1.13× to 1.17×, which corresponds to
a 3.53% increase. Similarly, in the case of BOP, ReVeLA increases
the speed-up from 1.13× to 1.16×, which also represents a 2.65%
improvement. When combined with SPP, ReVeLA achieves a 3.68%
improvement in performance. Finally, when combined with PPF,
ReVeLA achieves a 3.85% increase in performance. These results
demonstrate the effectiveness of ReVeLA in improving performance
in scenarios with limited DRAM bandwidth.

Figure 14 illustrates the impact of combining ReVeLAwithNextLine,
BOP, and SPP in a high-bandwidth scenario (512 GB/s). These data
reveal two major differences compared to the 256 GB/s scenario.
Firstly, in the case of the axpy workload, ReVeLA achieves a larger
improvement (2.73×) than in the 256 GB/s scenario (2.25×). Since
axpy is a fundamentally memory-bound workload, ReVeLA benefits
from a higher memory bandwidth. As in the 256 GB/s scenario, the
performance of axpy is the same for ReVeLA, ReVeLA+NextLine,
ReVeLA+BOP, ReVeLA+SPP, and ReVeLA+PPF; with improvements
of 29.74% over BOP. Secondly, for the case of spmv, ReVeLA, ReV-
eLA+NextLine, ReVeLA+BOP, ReVeLA+SPP, and ReVeLA+PPF ob-
tain speed-ups of 1.42×, 1.86×, 1.71×, 1.88×, and 2.03×, respectively,
which are larger than the ones obtained for the 256 GB/s scenario:
ReVeLA 1.37×, ReVeLA+NextLine 1.81×, ReVeLA+BOP 1.69×, ReV-
eLA+SPP 1.83×, and ReVeLA+PPF 1.94×.

Figure 15 displays performance data for all considered prefetch-
ing techniques and workloads in a scenario with a 16MB LLC, while
all other configuration parameters are set as Table 2 describes. The
benefits of using a prefetcher in any configuration are much lower
than in the 1 MB scenario, as most workloads now fit in LLC. This

3.04 2.39 2.41 2.732.85 2.51, 2.72, 2.91, 2.83, 2.71

Figure 14: Speed-up of the different prefetcher configurations
w.r.t. baseline with DRAM bandwidth of 512 GB/s.

1.76, 1.78 1.9 1.99, 1.97, 2.0, 2.051.75, 1.73 1.74

Figure 15: Speed-up of the different prefetcher configurations
w.r.t. baseline with a 16 MB Cache.

is notable on blackscholes, blis, cholesky, fft and pathfinder. In some
other benchmarks like axpy, jacobi and RTM_iso, the improvements
of the different configurations are lower, but retain the same pat-
tern of ReVeLA improving the other prefetchers. Remarkably, the
speed-up on somier and spmv is even better that with the default
1 MB cache with all prefetchers. This is due to the fact that, while
these workloads suffer a considerable number of useless prefetches
with a 1 MB cache, this is no longer the case for a 16 MB cache.
A large 16 MB cache avoids evicting prefetched cache lines that
are eventually accessed by the workload, that is, useless prefetches
become useful ones. In the 16 MB cache scenario, ReVeLA produces
improvements of 3.70%, 3.14%, 6.95%, and 6.84% when combined
with NextLine, BOP, SPP, and PPF, respectively.

5.4 Sensitivity Analysis of ReVeLA
Configuration Parameters

In this section, a sensitivity analysis is performed to justify the
design choices of ReVeLA, which include a 16-entry STT table, a 64
cache lines aggressivity limit, 8-bit LRU counters, and a 16-entry
prefetch queue. Figure 16 displays the results of the analysis con-
sidering different aggressivity degrees ranging from 8 to 128 cache
lines. All other architecture parameters are set as Table 1 indicates.
Some workloads show a higher performance for higher aggressivity
degrees (i.e., axpy and jacobi), while others reach their maximum
performance with moderate aggressivity (i.e., MxM, pathfinder, and
somier). Since all workloads except axpy already reach their maxi-
mum performance with a 64-cache line aggressivity, this value was
chosen for ReVeLA.

pa
rti

cle
filte

r

bla
ck

sch
ole

s
M

xM

str
ea

mclu
ste

r
trm

m

ch
ole

sk
y

sw
ap

tio
ns

res
ne

t

ca
nn

ea
l

lul
esh fft

pa
thfi

nd
er

RTM
_is

o

so
mier

jac
ob

i
sp

mv
ax

py

HPCG
gm

ea
n

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

Sp
ee

d-
up

w
.r.

t.
ba

se
lin

e aggressivity 8
aggressivity 16
aggressivity 32

aggressivity 64
aggressivity 128

Figure 16: ReVeLA performance evaluation with different
aggressivity parameterization (16 STT table entries).

Figure 17: ReVeLA performance evaluation with different
number of STT entries (Aggressivity 128).

Figure 17 shows the impact of increasing the number of STT
entries. Our experiments consider 1-, 2, 3-, 4-, 8-, 16-, and 32-entry
tables and set all other parameters as in Table 1. Data indicate
that a 16-entry table provides the maximum performance for all
workloads except MxM and RTM_iso, where a 32-entry table pro-
vides negligible improvements with respect to the 16-entry scenario.
Therefore, we use a 16-entry entry table since it provides almost
the same performance improvement as a 32-entry scenario while
requiring half the area. Remarkably, ReVeLA produces close to max-
imum performance (91.3%) with a 4-entry STT table, which makes
it possible to implement ReVeLA with a very small area overhead.

We also perform sensitivity studies regarding the number of
bits devoted to LRU counters and the size of the prefetch queue.
Regarding the LRU counters, we do not observe any performance
benefit increasing their number of bits. Contrarily, we observe
that ReVeLA delivers worse performance when using larger bit
counts for the LRU counters since stall entries remain in STT for a
longer period. Similarly, we do not observe any significant benefit
in increasing the prefetch queue size.

6 RELATEDWORK
Data cache prefetching is a technique to hide memory access la-
tency by proactively fetching data blocks into the cache hierar-
chy in anticipation of demand requests from cores [3–7, 10, 16–
18, 21, 26, 29, 30, 32, 42, 43]. These prefetching techniques can be
divided into two categories: spatial and temporal prefetchers. Spa-
tial prefetchers [4, 6, 16, 21, 26, 29, 32] exploit the similarity of
access patterns between different memory regions, while temporal
prefetchers [3, 17, 23, 42, 43] keep track of the sequence of past

cache accesses to anticipate future misses, assuming a recurrence
of those past accesses in the future.

Spatial prefetchers incur orders of magnitude less storage over-
head than temporal prefetchers [4] since they keep track of deltas
or offsets between accessed memory blocks, while temporal ap-
proaches store complete sequences of past cache accesses. For this
reason, spatial prefetchers are widely used in industrial implemen-
tations [1, 11, 13, 31]. Spatial prefetchers also have the advantage
of serving compulsory misses, which constitute a key bottleneck in
some workloads [33], by exploiting observed deltas within already
accessed pages to prefetch data corresponding to new pages. In
contrast, temporal prefetchers are unable to predict future accesses
when the application jumps to a different memory region. Addition-
ally, previous work indicates that prefetch requests reaching DRAM
triggered by spatial prefetchers typically trigger row buffer hits, in
contrast to temporal prefetchers. These benefits in terms of row
buffer hits reduce overall system energy consumption [4, 16, 41].

This paper proposes the use of ReVeLA to complement three
state-of-the-art spatial prefetchers for lower level caches: the Best
Offset Prefetcher (𝐵𝑂𝑃) [26], the Signature Path Prefetcher (𝑆𝑃𝑃)
[21], and the Perceptron-based Prefetch Filtering Prefetcher (𝑃𝑃𝐹)
[7]. Combining ReVeLA with each one of these three prefetchers
in-creases the number of useful prefetchers, while incurring small
additional memory bandwidth and negligible area overhead. The
combination of ReVeLA with spatial prefetchers such as BOP, SPP,
or PPF improves prefetch timeliness and accuracy and leads to
performance improvements in a large variety of HPC workloads,
particularly the memory-bound ones.

BOP uses history-based predictors to determine the most effec-
tive prefetch distance, with a training period where possible strides
are evaluated. BOP triggers prefetch requests once the training
period achieves a target score. While BOP can be modified to trig-
ger prefetch requests during the training period, this modification
incurs significant area overhead and reduces BOP effectiveness
on certain workloads. Since ReVeLA does not require a specific
training period, it matches very well with the BOP design.

SPP selectively loads blocks of data into the lower-level caches.
While SPP is a flexible approach able to deliver performance gains
in a wide range of scenarios, it obtains the largest improvements
when dealing with irregular patterns. Due to its need for evaluating a
confidence for the prefetches and throttle itself, SPP may never
achieve the aggressivity needed on workloads that access a low
number of very long memory streams. Combining ReVeLA with
SPP mitigates this drawback as this combination increases the SPP
performance in scenarios where a low number of very long memory
streams are accessed.

PPF increases the coverage of SPP without negatively impacting
its accuracy. PPF enables more aggressive tuning of SPP, which in-
creases coverage by filtering out the growing numbers of inaccurate
prefetches such an aggressive tuning incurs. Still, PPF still suffers
from similar issues as SPP for workloads accessing a low number of
very long memory streams. Combining ReVeLA with PPF improves
performance since the combination makes it possible to perform
very aggressive and accurate prefetching for long memory streams.

Previous work proposes TLB prefetchers [19, 38, 39] to hide the
latency of page walks and accelerate memory address translation.
These previous approaches either prefetch page table entries located

next to the one that triggered the TLB miss [38], are table-based
prefetchers that correlate miss patterns with distances between
virtual pages that produce consecutive TLB misses [19], or exploit
page table locality to improve TLB prefetching [39]. Since ReVeLA
works with virtual addresses, it may prefetch memory page trans-
lations into the TLB and, therefore, it can be combined with these
previous approaches to improve their accuracy and timeliness in a
similar way as it does with data cache prefetchers.

7 CONCLUSIONS
This paper proposes ReVeLA, the first approach able to leverage the
program semantics of vectorized codes to guide data cache prefetch-
ing. ReVeLA is able to exploit the information contained in vector
memory instructions to issue highly-accurate and timely prefetch
requests. ReVeLA particularly shines when combined with a state-
of-the-art prefetcher, since it significantly increases the number of
useful prefetchers without incurring significant additional band-
width consumption. In addition, the storage overhead of ReVeLA
is very small (436 bytes when using a 16-entry SST table), which
makes it possible to incorporate ReVeLA in general purpose vector
processors with negligible cost.

Since vector processors require well-vectorized codes that are
able to exploit long vector lengths, ReVeLA does not require any
specific code modifications besides code vectorization. In addition,
ReVeLA does not incur any performance slowdown for those codes
that do not benefit from it, making it a low-cost hardware com-
ponent that complements very well state-of-the-art prefetchers
and boosts their performance when applied to a wide range of
workloads. The low area cost, accuracy, timeliness, and ability to
boost the performance of state-of-the-art data cache prefetchers,
make ReVeLA a well-suited design to be incorporated to vector
processors.

ACKNOWLEDGMENTS
This work has been partially supported by the Spanish Ministry
of Science and Innovation MCIN/AEI/10.13039/501100011033 (con-
tract PID2019-107255GB-C21) and ESF Investing in your future,
the Generalitat of Catalunya (contract 2021-SGR-00763), the Euro-
pean HiPEAC Network of Excellence, and the European Processor
Initiative (EPI), which is part of the European Union’s Horizon
2020 research and innovation program under grant agreement No.
826647. A. Armejach is a Serra Hunter Fellow. The authors thank
the Departament de Recerca i Universitats de la Generalitat de
Catalunya for supporting the Research Group "Performance under-
standing, analysis, and simulation/emulation of novel architectures"
(Code: 2021 SGR 00865).

REFERENCES
[1] [n. d.]. Intel Xeon Gold. https://en.wikichip.org/wiki/intel/xeon_gold/6258r.
[2] 2023. ChampSim. https://github.com/ChampSim/. Accessed: July 24, 2023.
[3] Mohammad Bakhshalipour, Pejman Lotfi-Kamran, and Hamid Sarbazi-Azad. 2018.

Domino Temporal Data Prefetcher. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 131–142.

[4] Mohammad Bakhshalipour, Mehran Shakerinava, Pejman Lotfi-Kamran, and
Hamid Sarbazi-Azad. 2019. Bingo Spatial Data Prefetcher. In 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA). 399–411.

[5] Rahul Bera, Konstantinos Kanellopoulos, Anant Nori, Taha Shahroodi, Sreeni-
vas Subramoney, and Onur Mutlu. 2021. Pythia: A Customizable Hardware
Prefetching Framework Using Online Reinforcement Learning. In MICRO-54:
54th Annual IEEE/ACM International Symposium on Microarchitecture (Virtual
Event, Greece) (MICRO ’21). Association for Computing Machinery, New York,
NY, USA, 1121–1137. https://doi.org/10.1145/3466752.3480114

[6] Rahul Bera, Anant V. Nori, Onur Mutlu, and Sreenivas Subramoney. 2019.
DSPatch. In Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture. ACM. https://doi.org/10.1145/3352460.3358325

[7] Eshan Bhatia, Gino Chacon, Seth Pugsley, Elvira Teran, Paul V. Gratz, and
Daniel A. Jiménez. 2019. Perceptron-Based Prefetch Filtering. In Proceedings of
the 46th International Symposium on Computer Architecture (Phoenix, Arizona)
(ISCA ’19). Association for Computing Machinery, New York, NY, USA, 1–13.

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (Toronto, Ontario, Canada) (PACT ’08). Association for
Computing Machinery, New York, NY, USA, 72–81.

[9] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, JeremyW. Sheaffer, Sang-
Ha Lee, and Kevin Skadron. 2009. Rodinia: A Benchmark Suite for Heteroge-
neous Computing. In IEEE International Symposium onWorkload Characterization
(IISWC). 44–54. https://doi.org/10.1109/IISWC.2009.5306797

[10] Tien-Fu Chen and Jean-Loup Baer. 1995. Effective hardware-based data prefetch-
ing for high-performance processors. IEEE Trans. Comput. 44, 5 (1995), 609–623.
https://doi.org/10.1109/12.381947

[11] Pat Conway and Bill Hughes. 2007. The AMD Opteron Northbridge Architecture.
IEEE Micro 27 (2007). https://doi.org/10.1109/MM.2007.43

[12] Jack Dongarra, Michael A Heroux, and Piotr Luszczek. 2016. High-performance
conjugate-gradient benchmark: A new metric for ranking high-performance
computing systems. The International Journal of High Performance Computing
Applications 30, 1 (2016), 3–10.

[13] B. Grayson, J. Rupley, G. Z. Zuraski, E. Quinnell, D. A. Jiménez, T. Nakra, P.
Kitchin, R. Hensley, E. Brekelbaum, V. Sinha, and A. Ghiya. 2020. Evolution of the
Samsung Exynos CPU Microarchitecture. In Proceedings of the 47th International
Symposium on Computer Architecture.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 770–778.

[15] John L. Hennessy and David A. Patterson. 2017. Computer Architecture, Sixth
Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[16] Yasuo Ishii, Mary Inaba, and Kei Hiraki. 2009. Access Map Pattern Matching for
Data Cache Prefetch. In Proceedings of the 23rd International Conference on Super-
computing (Yorktown Heights, NY, USA) (ICS ’09). Association for Computing Ma-
chinery, New York, NY, USA, 499–500. https://doi.org/10.1145/1542275.1542349

[17] Akanksha Jain and Calvin Lin. 2013. Linearizing Irregular Memory Accesses for
Improved Correlated Prefetching. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture (Davis, California) (MICRO-46).
Association for Computing Machinery, New York, NY, USA, 247–259.

[18] M. Kampe and F. Dahlgren. 2000. Exploration of the spatial locality on emerging
applications and the consequences for cache performance. In Proceedings 14th
International Parallel and Distributed Processing Symposium. IPDPS 2000. 163–170.

[19] Gokul B. Kandiraju and Anand Sivasubramaniam. 2002. Going the Distance for
TLB Prefetching: An Application-driven Study. In Proceedings of the 29th Annual
International Symposium on Computer Architecture (Anchorage, Alaska).

[20] Ian Karlin, Abhinav Bhatele, Jeff Keasler, Bradford L. Chamberlain, Jonathan
Cohen, Zachary Devito, Riyaz Haque, Dan Laney, Edward Luke, Felix Wang,
David Richards, Martin Schulz, and Charles H. Still. 2013. Exploring Traditional
and Emerging Parallel Programming Models Using a Proxy Application. In 2013
IEEE 27th International Parallel and Distributed Processing Symposium (IPDPS).
919–932. https://doi.org/10.1109/IPDPS.2013.115

[21] Jinchun Kim, Seth H. Pugsley, Paul V. Gratz, A.L. Narasimha Reddy, Chris Wilk-
erson, and Zeshan Chishti. 2016. Path confidence based lookahead prefetching.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 1–12. https://doi.org/10.1109/MICRO.2016.7783763

[22] Kazuhiko Komatsu, Shintaro Momose, Yoko Isobe, Osamu Watanabe, Akihiro
Musa, Mitsuo Yokokawa, Toshikazu Aoyama, Masayuki Sato, and Hiroaki
Kobayashi. 2018. Performance Evaluation of a Vector Supercomputer SX-Aurora

TSUBASA. In SC18: International Conference for High Performance Computing,
Networking, Storage and Analysis. 685–696. https://doi.org/10.1109/SC.2018.00057

[23] S. Kumar and C. Wilkerson. 1998. Exploiting spatial locality in data caches using
spatial footprints. In Proceedings of the 25th International Symposium on Computer
Architecture. https://doi.org/10.1109/ISCA.1998.694794

[24] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. San Jose, CA, USA, 75–88.

[25] Sally A. McKee. 2004. Reflections on the Memory Wall. In Proceedings of the
1st Conference on Computing Frontiers (Ischia, Italy) (CF ’04). Association for
Computing Machinery, New York, NY, USA, 162.

[26] Pierre Michaud. 2016. Best-offset hardware prefetching. In 2016 IEEE International
Symposium on High Performance Computer Architecture (HPCA). 469–480.

[27] Cristóbal Ramírez, César Alejandro Hernández, Oscar Palomar, Osman Unsal,
Marco Antonio Ramírez, and Adrián Cristal. 2020. A RISC-V Simulator and
Benchmark Suite for Designing and Evaluating Vector Architectures. ACM Trans.
Archit. Code Optim. 17, 4, Article 38 (nov 2020), 30 pages. https://doi.org/10.1145/
3422667

[28] Alejandro Rico, José A. Joao, Chris Adeniyi-Jones, and Eric Van Hensbergen.
2017. ARM HPC Ecosystem and the Reemergence of Vectors: Invited Paper.
In Proceedings of the Computing Frontiers Conference (CF’17). 329–334. https:
//doi.org/10.1145/3075564.3095086

[29] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris Wilkerson,
Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently prefetching complex
address patterns. In 2015 48th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 141–152. https://doi.org/10.1145/2830772.2830793

[30] A.J. Smith. 1978. Sequential Program Prefetching in Memory Hierarchies. Com-
puter 11, 12 (1978), 7–21. https://doi.org/10.1109/C-M.1978.218016

[31] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod,
Sundaram Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. 2016.
Knights Landing: Second-Generation Intel Xeon Phi Product. IEEE Micro 36
(2016). https://doi.org/10.1109/MM.2016.25

[32] S. Somogyi, T.F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos. 2006. Spatial
Memory Streaming. In 33rd International Symposium on Computer Architecture
(ISCA’06). 252–263. https://doi.org/10.1109/ISCA.2006.38

[33] Stephen Somogyi, Thomas F. Wenisch, Anastasia Ailamaki, and Babak Falsafi.
2009. Spatio-Temporal Memory Streaming. SIGARCH Comput. Archit. News 37, 3
(jun 2009), 69–80. https://doi.org/10.1145/1555815.1555766

[34] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou Eyole, Gia-
como Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro Martínez, Nathanael
Premillieu, Alastair Reid, Alejandro Rico, and Paul Walker. 2017. The ARM
Scalable Vector Extension. IEEE Micro 37 (May 2017), 26–39.

[35] Keichi Takahashi, Soya Fujimoto, Satoru Nagase, Yoko Isobe, Yoichi Shimo-
mura, Ryusuke Egawa, and Hiroyuki Takizawa. 2023. Performance Eval-
uation of a Next-Generation SX-Aurora TSUBASA Vector Supercomputer.
arXiv:2304.11921 [cs.DC]

[36] The RISC-V Foundation. 2020. The RISC-V "V" Vector Extension. https://github.
com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf.

[37] Field G. Van Zee and Robert A. van de Geijn. 2015. BLIS: A Framework for
Rapidly Instantiating BLAS Functionality. ACM Trans. Math. Softw. 41, 3, Article
14 (jun 2015), 33 pages. https://doi.org/10.1145/2764454

[38] Steven P. Vanderwiel and David J. Lilja. 2000. Data Prefetch Mechanisms. ACM
Comput. Surv. (June 2000), 26 pages. https://doi.org/10.1145/358923.358939

[39] Georgios Vavouliotis, Lluc Alvarez, Vasileios Karakostas, Konstantinos Nikas,
Nectarios Koziris, Daniel A. Jiménez, and Marc Casas. 2021. Exploiting Page Table
Locality for Agile TLB Prefetching. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). 85–98. https://doi.org/10.1109/
ISCA52012.2021.00016

[40] Pablo Vizcaino, Filippo Mantovani, and Jesus Labarta. 2021. Accelerating FFT
Using NEC SX-Aurora Vector Engine. In Euro-Par 2021: Parallel Processing Work-
shops: Euro-Par 2021 International Workshops, Lisbon, Portugal, August 30-31, 2021,
Revised Selected Papers (Lisbon, Portugal). Springer-Verlag, Berlin, Heidelberg,
179–190. https://doi.org/10.1007/978-3-031-06156-1_15

[41] Stavros Volos, Javier Picorel, Babak Falsafi, and Boris Grot. 2014. BuMP: Bulk
Memory Access Prediction and Streaming. In 2014 47th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture. 545–557.

[42] Hao Wu, Krishnendra Nathella, Joseph Pusdesris, Dam Sunwoo, Akanksha Jain,
and Calvin Lin. 2019. Temporal Prefetching Without the Off-Chip Metadata. In
Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchi-
tecture (Columbus, OH, USA) (MICRO ’52). Association for Computing Machinery,
New York, NY, USA, 996–1008. https://doi.org/10.1145/3352460.3358300

[43] Hao Wu, Krishnendra Nathella, Dam Sunwoo, Akanksha Jain, and Calvin Lin.
2019. Efficient Metadata Management for Irregular Data Prefetching. In 2019
ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[44] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications
of the Obvious. SIGARCH Comput. Archit. News 23, 1 (mar 1995), 20-24.

[45] Hua-Wei Zhou, Hao Hu, Zhihui Zou, Yukai Wo, and Oong Youn. 2018. Reverse
time migration: A prospect of seismic imaging methodology. Earth-Science
Reviews 179 (2018), 207–227.

https://en.wikichip.org/wiki/intel/xeon_gold/6258r
https://github.com/ChampSim/
https://doi.org/10.1145/3466752.3480114
https://doi.org/10.1145/3352460.3358325
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/12.381947
https://doi.org/10.1109/MM.2007.43
https://doi.org/10.1145/1542275.1542349
https://doi.org/10.1109/IPDPS.2013.115
https://doi.org/10.1109/MICRO.2016.7783763
https://doi.org/10.1109/SC.2018.00057
https://doi.org/10.1109/ISCA.1998.694794
https://doi.org/10.1145/3422667
https://doi.org/10.1145/3422667
https://doi.org/10.1145/3075564.3095086
https://doi.org/10.1145/3075564.3095086
https://doi.org/10.1145/2830772.2830793
https://doi.org/10.1109/C-M.1978.218016
https://doi.org/10.1109/MM.2016.25
https://doi.org/10.1109/ISCA.2006.38
https://doi.org/10.1145/1555815.1555766
https://arxiv.org/abs/2304.11921
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://github.com/riscv/riscv-v-spec/releases/download/v1.0/riscv-v-spec-1.0.pdf
https://doi.org/10.1145/2764454
https://doi.org/10.1145/358923.358939
https://doi.org/10.1109/ISCA52012.2021.00016
https://doi.org/10.1109/ISCA52012.2021.00016
https://doi.org/10.1007/978-3-031-06156-1_15
https://doi.org/10.1145/3352460.3358300

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Limitations of Data Cache Prefetching
	2.2 Vector Processors and Vector Length Agnostic ISAs
	2.3 Motivation of ReVeLA

	3 The ReVeLA prefetcher
	3.1 ReVeLA design
	3.2 Update of the STT table
	3.3 ReVeLa prefetch trigger
	3.4 Example of ReVeLa Operation
	3.5 ReVeLA and Memory Address Translation
	3.6 Area Cost of ReVeLA

	4 Experimental environment
	4.1 Simulation Methodology
	4.2 HPC workloads
	4.3 Evaluated Prefetchers
	4.4 Details of the Evaluation Campaign

	5 Evaluation
	5.1 Performance Results
	5.2 Coverage Results
	5.3 Impact of DRAM Bandwidth and Cache Size
	5.4 Sensitivity Analysis of ReVeLA Configuration Parameters

	6 Related work
	7 Conclusions
	Acknowledgments
	References

