
SVM SPEAKER VERIFICATION SYSTEM BASED ON A LOW-COST FPGA 

Rafael Ramos-Lara, Mariano López-García, 
Enrique Cantó-Navarro 

Technical University of Catalonia  
08800 Vilanova i Geltrú Spain 

  email: {lara, lopezg}@eel.upc.edu, 
canto@etse.urv.es 

Luís Puente-Rodriguez 

Universidad Carlos III de Madrid 
28911, Leganes, Spain 

  email: lpuente@it.uc3m.es 

ABSTRACT 

Biometric systems, characterized by their high confidential 
levels of security, are usually based on high-performance 
microprocessors implemented on personal computers. 
These advanced devices contain floating-point units able to 
carry out millions of operations per second at frequencies in 
the GHz range, being qualified to resolve the most complex 
algorithms in just a few hundred of milliseconds. However, 
their main drawback is the cost, and the necessary space 
required to incorporate their external associated peripherals. 
This disadvantage is especially significant in the low-cost 
consumer market, where factors such as price and size 
determine the viability of a product. The use of an FPGA is 
a suited way to implement systems that require a high 
computational capability at affordable prices. Besides, these 
devices allow the design of complex digital systems with 
outstanding performances in terms of execution times. This 
paper presents the implementation of a SVM (Support 
Vector Machines) speaker verification system on a low-cost 
FPGA. Experimental results show as our system is able to 
verify a person’s identity as fast as a high-performance 
microprocessor based on a Pentium IV personal computer. 

1. INTRODUCTION 

Recent advances in the field of microelectronics have 
contributed to developing powerful microprocessors able 
to reduce the execution time of programs with a high 
computational cost. These advances have allowed 
increasing the complexity of algorithms that might use a 
high number of transcendental functions or floating-point 
operations, making possible to work with high volumes of 
information without affecting the execution times.   
 The development of biometric algorithms has mainly 
been focused on improving the performances in terms of 
FRR (False Rejection Rate), FAR (False Acceptance Rate) 
or ERR (Equal Error Rate). Generally, designers 
concentrate their design effort in achieving robust and 
reliable systems, assuming that the hardware 
implementation is carried out in a microprocessor with 
enough computational capacity to process all the 

information in real time, relegating to a second plane other 
aspects such as cost or space. 
 Products related to the low-cost consumer market are 
normally affected by hardware limitations. Usually their 
design is based on an embedded standard medium-
performance microprocessor which sequentially executes a 
set of operations that are part of a specific algorithm. This 
simple software implementation is quite flexible, but 
however not always offers the best performances, 
particularly in applications featured (as some biometric 
algorithms) by a high-computational load [1], [2]. 
 Speaker verification is a very well-known biometric 
modality in which the samples of voice are acquired by 
using a low-cost sensor device. On the other hand, 
techniques based on Support Vector Machines (SVM) have 
shown good results with acceptable recognition rates [3]. 
There are some publications dealing with FPGA (Field 
Programmable Gate Array) implementations of generic 
SVM for classification purpose, but only a reduced group 
of them are specifically devoted to speaker verification. In 
[4], authors show the main features of an implementation of 
a SVM speaker verification system for Match-on-Card. Due 
to the smart-card memory limitations, authors used the time 
average of all speech frames as feature vector, representing 
each utterance by a single 24-dimensional vector. 
Additionally, the paper shows a FPGA implementation of 
the matching stage using a kernel based on an exponential 
function. The system is able to carry out the matching 
between the model and the feature vector 50 times faster 
than a software-based solution running on a Pentium IV 
clocked at 1.3 GHz. Other publications show only hardware 
implementations of some specific part of algorithms for 
speech recognition or speaker identification, that allow a 
significant acceleration of the processing time [5], [6].   
 This paper presents the implementation of a whole 
SVM speaker verification system based on dedicated 
hardware. The system consists of several stages dedicated 
to calculate the feature vectors, based on Mel-frequency 
Cepstral coefficients and their associated deltas, as well as 
the matching between these vectors and the user’s model 
stored in an external SRAM memory. Experimental results 
show the viability and the main performances of the 
proposed hardware implementation made on a low-cost 
Spartan 3 FPGA.   

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 582



Signal
conditioning

Feature
Extraction
(26 coeff.)

Model
Training

Model
Stored

(External 
SRAM)

Matching
Process

Off-line Enrollment

Feature
Extraction
(26 coeff.)

Laptop or PC

FPGA

Verification

Utterance for
Model training

Utterance for
speaker verification

Utterances

Output speaker
verification

Signal
conditioning

Feature
Extraction
(26 coeff.)

Model
Training

Model
Stored

(External 
SRAM)

Matching
Process

Off-line Enrollment

Feature
Extraction
(26 coeff.)

Laptop or PC

FPGA

Verification

Utterance for
Model training

Utterance for
speaker verification

Utterances

Output speaker
verification  

Fig. 1.  Block diagram for feature extraction and matching. 

Pre
processing

Hamming
window

Fast Fourier 
Transform

(FFT)

Filter
Channels Logarithm

Discrete
Cosine

Transform

Energy
Delta

coefficients

Mel -frequency coeff .Energy Delta coeff .

13 Coeff . 13 Coeff .

FRAME

Pre
processing

Hamming
window

Fast Fourier 
Transform

(FFT)

Filter
Channels Logarithm Cosine

Energy
Delta

coefficients

Mel -frequency coeff .Energy Delta coeff .

13 Coeff . 13 Coeff .

Pre
processing

Hamming
window

Fast Fourier 
Transform

(FFT)

Filter
Channels Logarithm Cosine

Energy
Delta

coefficients

Mel -frequency coeff .Energy Delta coeff .

13 Coeff . 13 Coeff .

FRAME

Pre
processing

Hamming
window

Fast Fourier 
Transform

(FFT)

Filter
Channels Logarithm

Discrete
Cosine

Transform

Energy
Delta

coefficients

Mel -frequency coeff .Energy Delta coeff .

13 Coeff . 13 Coeff .

FRAME

Pre
processing

Hamming
window

Fast Fourier 
Transform

(FFT)

Filter
Channels Logarithm Cosine

Energy
Delta

coefficients

Mel -frequency coeff .Energy Delta coeff .

13 Coeff . 13 Coeff .

Pre
processing

Hamming
window

Fast Fourier 
Transform

(FFT)

Filter
Channels Logarithm Cosine

Energy
Delta

coefficients

Mel -frequency coeff .Energy Delta coeff .

13 Coeff . 13 Coeff .

FRAME

 

Fig. 2.  Block diagram used to obtain the Mel-frequency coefficients. 

 The paper is organized as follows. Section II reviews 
briefly the basic theory about the feature extraction process 
based on Mel-frequency coefficients and the SVM 
classifier. Section III presents the internal architecture of 
the whole system, remarking the main characteristics of the 
implementation and finally section IV shows the 
experimental results. 

2. FEATURE EXTRACTION 

Fig. 1 presents the block diagram of the proposed system. 
The parameters of the model used by the SVM are 
obtained by means of a training process based on isolated 
sentences of approximately 14 seconds. The data used in 
this process consist of four repetitions of each utterance 
from 52 speakers (26 males and 26 females). The sample 
frequency for each speech was 8 kHz with a codification 
rate of 12 bits. 
 The size and cost of a FPGA depend directly on the area 
occupied by the implemented hardware, so that it is 
important to reduce the number of blocks embedded in the 
device. The training process is carried out only once, 
obtaining a model valid for a specific speaker. Afterwards, 
this model is stored in a memory and used during the 
matching stage when a claimed identity is presented to be 

verified. Thus, in order to minimize the FPGA resources 
needed to build the hardware, the training process is made 
on a desk PC that executes the algorithm that allows the 
calculation of those parameters that characterize the user’s 
voice.    

During the feature extraction stage, the speech signal is 
segmented into frames of 25 ms (200 samples), using a 
frame advance of 10 ms (80 samples) (overlapping of 15 
ms). Each frame has been represented by 12 Mel-frequency 
Cepstral coefficients (see Fig. 2), as well as the energy and 
their associated deltas (leading to a total of 26 coefficients). 
Fig. 2 shows the block diagram used to calculate the Mel-
frequency coefficients. 
 The verification process was executed on two different 
platforms as an example of high and medium performance 
microprocessors: an Intel Pentium IV at 1.5 GHz and 
Microblaze at 40 MHz, respectively. Table 1 shows the 
execution times for those blocks presented in Fig. 2, along 
with the calculation of their delta coefficients and the 
matching between the model and a generic user (these 
results are presented by frame, so that the whole execution 
time can be straightforward obtained considering the total 
number of frames analyzed in each utterance). The forth 
column of this table shows the execution time when the 
whole system is implemented on dedicated hardware 
proposed in this paper. Results shown using Microblaze 

583



Table 1.  Execution speeds for feature extraction and matching stages by frame on two different 
microprocessors and the dedicated FPGA hardware. 

Function 
Execution time on Intel 
Pentium IV at 1.5 GHz

Execution time on 
Microblaze at 40 MHz 

Execution time on 
dedicated FPGA 

hardware at 50 MHz 
Pre-processing 14.12 µs 3.13 ms 31.96 µs 

Hamming window 3.13 µs 151 µs 24 µs 
Fast-Fourier Transf. 63.36 µs 8.83 ms 30.22 µs 

Filter Channels 45.45 µs 6.75 ms 116.48 µs 
Logarithm 8.41 µs 17.30 ms 53.78 µs 

DCT 102.57 µs 216.32 ms 26.46 µs 
Delta coefficients 1.73 µs 620 µs 2.54 µs 

Frame execution time 
for feature extraction  

238.77 µs 253.1 ms 285.44 µs 

Frame matching  4370.15 µs 2304 ms 4362 µs 
Total frame execution 

time 4608.92 µs 2557.1 ms 4647.44 µs 

 

Table 2.  Selected values for M and N to carry out operations in fixed-point format for 
feature extraction and matching. 

Function M (bits integer part) N (bits fractional part) 
Pre-processing 15 8 

Hamming window 15 9 
DFT. Coeff. 23 9 

Power of 2 (Re+Im) 42 8 
 

Fast Fourier T. 
Module DFT 21 10 

Filter Channels 21 2 
Logarithm 6 14 

Inverse DCT 6 18 
Delta coefficients 6 14 

Matching 18 31 

have been obtained implementing it on a Spartan 3 FPGA. 
As it can be seen, the Intel Pentium IV takes about 4.6 ms 
to process a frame, whereas Microblaze makes the same 
processing in 2557 ms. 
 Since the system shown in Fig. 1 initiates a new frame 
each 10 ms, only the high-performance microprocessor is 
able to carry out the feature extraction and matching frame 
in real-time. A drawback of executing this processing on 
Microblaze (and probably in any embedded medium-
performance microprocessor), is that it would be necessary 
to store the utterance in a memory. Afterwards the 
microprocessor has to begin to read and to process frames 
according to its computational capability, which leads to an 
additional increasing of the execution time (storing plus 
processing). 

3. SYSTEM ARCHITECTURE AND HARDWARE 
IMPLEMENTATION 

The source code employed to perform the feature 
extraction and matching of each frame is written using 

floating-point computations, due to the presence of 
functions such as root square, logarithm, exponential and 
trigonometric. In terms of size and latency, the design of 
hardware coprocessors able to make floating-point 
operations is usually complicated. Thus, generally the 
utilization of floating-point operations in dedicated 
hardware is only justifiable in certain cases where the 
result requires a high accuracy or values have wide 
dynamic ranges.  
 All the operations involved in our hardware design have 
been done in fixed-point format, where each real variable 
consists of an integer part and a fractional part, each one 
represented by a number of M and N bits, respectively. The 
error generated in a specific operation is defined as the 
discrepancy between the exact floating-point value and the 
approximation obtained in fixed-point format, which 
depends on the values chosen for M and N. These values 
are different for each of those blocks shown in Fig. 2, as 
well as in the calculation of the exponential evaluated in the 
matching stage. Table 2 shows the selected values that, as 
experimental results will show, allow the error tends to zero 

584



EXPONENT

Exponential, product 
and accumulator

EXPONENT EXPONENT EXPONENT

60 TCLK 53 TCLK

Exponential, product 
and accumulator

Exponential, product 
and accumulator

Exponential, product 
and accumulator

EXPONENT

Exponential, product 
and accumulator

EXPONENT EXPONENT EXPONENT

60 TCLK 53 TCLK

Exponential, product 
and accumulator

Exponential, product 
and accumulator

Exponential, product 
and accumulator

 

Fig. 3.  Scheduling in the calculation of different tasks in expression (1). 

Table 3.  Device utilization summary for Spartan 3 (the number of slices for matching stage 
include the synthesis of Picoblaze which is necessary only for testing purpose). 

Function 
Number 
of Slices 

Number of 
Flip-Flops 

Number of 
4 input LUT

Number of 
Multipliers 

Feature extraction 3817 4659 6138 13 
Matching 575 692 647 8 

 

(when an operation uses more than one computation, only 
the most restrictive values for M and N are presented). 
 The trigonometric function used in the resolution of  
DCT has been tabulated in a look-up table of 312 elements 
codified with 16 bits. On the other hand, the logarithm, root 
and exponential functions have been implemented using the 
algorithm described in [7]. 
 As Table 1 shows, due to the radial basis kernel and the 
number of support vectors used in the matching process, 
this is the most critical task in terms of execution time. 
Basically, the comparison between the model and the 
feature vector is calculated evaluating the following 
expression: 

 
( )

∑
=

−γ− ∑
⋅= =

K

1j

zx

j

26

1i

2
jii

epG , (1) 

where K is the number of zji support vectors (in our case 
3634), pj are the Lagrange’s coefficients obtained in the 
training process, γ is a constant and xi is the feature vector 
that consists of 26 elements. 
 The design of this dedicated hardware is oriented in 
order to minimize its execution time following the pipeline 
scheme shown in Fig. 3. Using this planning regarding 
different operations, the time needed to achieve a proper 
classification can be approximated by the time needed to 
evaluate the exponent of function (1). The calculation of 
this exponent is done in 60 clock cycles, whereas the 
exponential, the multiplication by coefficient pj and the sum 
and accumulation is carried out in just 53 clock cycles. In 
order to achieve this target, during the evaluation of these 
four operations related to support vector j, the assessment of 
the following exponent related to support vector j+1 is 
started, leading to a total execution time of: 

 CLKCLK T 53T 60*K /frame timeExecution += , (2) 

4. EXPERIMENTAL RESULTS 

The design of the system has been described in VHDL 
language and implemented on a Xilinx FPGA Spartan 3 
XCS2000. The results of the synthesis in terms of area for 
feature extraction and matching are presented in Table 3 
(about the 24% of the total size of the FPGA).  The 
selected frequency was 50 MHz. Note as almost all the 
FPGA resources are consumed by the feature extraction 
hardware which occupies about the 88% of the CLB slices 
and the 60% of the internal multipliers. 
 In order to probe the proper operation of the hardware 
implementation the original algorithm was re-programmed, 
generating a new version in fixed-point format using the 
values for M and N indicated in Table 2. 
 Only for testing purpose an 8 bit microprocessor 
(Picoblaze) is implemented in the FPGA, which allows the 
communication via RS-232 between the dedicated 
hardware and an external laptop (see Fig. 4).  
 After analyzing several utterances of approximately 
1394 frames each one the average relative error in the 
calculation of the exponential function between the float 
and fixed-point versions was about 0.51% with a variance 
of 9%. Fig. 5 shows the histogram obtained upon the 
comparison of both results. Only the 3.3% of the feature 
vectors processed gave an error higher than 5%. The exact 
value of these vectors is closed to zero, which theoretically 
involves a relative error tends to infinite. Moreover, it is 
important to remark that for all the utterances tested, none 
of the errors produced in the calculation of the exponential 
function lead to an error in the classification process (the 

585



Picoblaze
µprocessor

RS232
Port

Laptop
(dual-core)

Feature
extraction

Matching
stage

External
SRAM
(user’s
model)

Spartan 3 FPGA

Picoblaze
µprocessor

RS232
Port

Laptop
(dual-core)

Feature
extraction

Matching
stage

External
SRAM
(user’s
model)

Spartan 3 FPGA

Fig. 4.  Block diagram to implement the communication 
between the FPGA and the laptop. 

-3 -2 -1 0 1 2 3
0

50

100

150

200

250

Absolute Relative Error

Fr
eq

ue
nc

y

Fig. 5.  Histogram representing the relative error in the 
calculation of the exponential function. 

error was produced in the magnitude of the value but not in 
the sign), due to the proper selection of values in M and N. 
 On the other hand, the execution time per frame 
obtained in dedicated hardware is lower than 10ms (the 
advance frame time).  The feature vector is processed in 
285.44 µs and the matching between this vector and the 
model stored in an external SRAM memory is carried out in 
4362 µs (each frame is processed in 4647.44 µs). These 
results are very similar to those obtained with the Intel 
Pentium IV microprocessor presented in Table 1 (238 µs 
and 4370 µs). 

5. CONCLUSIONS 

The implementation of biometric systems is generally done 
using high-performance microprocessors able to solve 
complex algorithms in several microseconds. However, 
when low-cost microprocessors are used, these algorithms 

may not be solved in real-time due to their limitation for 
processing functions with a high computational cost. This 
paper presented the implementation in a FPGA of a 
speaker recognition system based on SVM. The system 
was implemented on a low-cost Spartan 3 FPGA clocked 
at 50MHz, obtaining similar performances, in terms of 
execution time, to those achieved with a Pentium IV PC. 
The proposed system is able to carry out a feature vector 
extraction and its matching against a data base of 3634 
vectors in 285 µs and 4362 µs, respectively. The system’s 
design was done implementing all the operations in fixed-
point format, in order to reduce the area needed in the 
FPGA, and selecting the suitable number of bits for the 
fractional and integer part to minimize the relative error. 

6.  ACKNOWLEDGEMENTS 

Authors thank financial support from Ministerio de 
Educación y Ciencia de España, under grant TEC2006-
12365-C02-02. 

7. REFERENCES 

[1] Lopez, M., Cantó, E., “FPGA implementation of a Minutiae 
Extraction Fingerprint Algorithm,” IEEE International 
Symposium on Industrial Electronics, Cambridge, U.K. 
(2008). 

[2] Cantó, E., Canyellas, N.,  Fons, M., Fons, F., López, M., 
“FPGA Implementation of the Ridge Line Following 
Fingerprint Algorithm,” 14th International Conference on 
Field-Programmable Logic and Applications, Springer-
Verlag LNCS 3203, Antwerp, Belgium (2004), pp. 1087-
1089. 

[3] Burges, C.J.C., “A Tutorial on Support Vector Machines for 
Pattern Recognition,” 1998 Kluwer Academic Publishers, 
Data Mining and Knowledge Discovery, vol. 2, pp. 121-167. 

[4] Choi, W-Y., Ahn, D., Burn Pan, S., Chung, K., Chung, Y., 
Chung, S-H. “SVM-Based Speaker Verification System for 
Match-on-Card and its Hardware Implementation”, ETRI 
Journal, vol. 28, no. 3, pp. 320-328, June 2006. 

[5] Nedevschi, S., Patra, R., Brewer, E., “Hardware Speech 
Recognition for User Interfaces in Low cost, Low Power 
Devices,” 43nd Design Automation Conference, IEEE Press, 
California, June 2005, pp.684-689. 

[6] Melnikoff, S., Quigley, S.F., Rusell, M. J., “Implementing a 
Simple Continuous Speech Recogniton System on an 
FPGA,” Proceedings of the 10th Annual IEEE Symposium on 
Field-Programmable Custom Computing Machines, Napa, 
California, USA (2002). 

[7] Ercegovac, M.D., “Digital Aritmetic,” Ed. Morgan 
Kaufmann (2004). 

 

 

586




