2009 11th IEEE International Conference on High Performance Computing and Communications

Cache-aware load balancing vs. cooperative caching for distributed search engines

David Dominguez-Sal
Computer Architecture Dept.
DAMA-UPC
Barcelona, Spain

ddomings@ac.upc.edu

Abstract

In this paper we study the performance of a distributed
search engine from a data caching point of view. We compare
and combine two different approaches to achieve better hit
rates: (a) send the queries to the node which currently has
the related data in its local memory (cache-aware load
balancing), and (b) send the cached contents to the node
where a query is being currently processed (cooperative
caching). Furthermore, we study the best scheduling points
in the query computation in which they can be reassigned
to another node, and how this reassignation should be per-
formed. Our analysis is guided by statistical tools on a real
question answering system for several query distributions,
which are typically found in query logs.

1. Introduction

The construction of distributed search engines is a com-
plex task where many components with high computational
cost interact. New search engines combine additional mod-
ules to refine an answer and achieve a better precision.
However, these more advanced features come with large
computational costs that must be addressed to make systems
scalable. We take Question Answering (QA) as an example
of these next generation search engines. QA systems return
short, precise answers, e.g., person and location names in
response to natural language questions [1]. For example, a
QA system that receives as input the question “In which city
is the Eiffel Tower?” will answer “Paris”.

Caching and distributed systems are two fundamental
pillars required to improve the final performance of these
systems. In this paper, we study how these two factors
interact and how they impact the performance of a fully
fledged search engine.

A search engine receives many queries with overlapping
computation: queries may share terms, they may access

The authors want to thank Generalitat de Catalunya for its support through
grant number GRE-00352 and Ministerio de Educacion y Ciencia of Spain
for its support through grant TIN2006-15536-C02-02, and the European
Union for its support through the Semedia project (FP6-045032).

978-0-7695-3738-2/09 $25.00 © 2009 IEEE
DOI 10.1109/HPCC.2009.31

Marta Perez-Casany
Applied Mathematics Il Dept.
DAMA-UPC
Barcelona, Spain
marta.perez@upc.edu

Josep Lluis Larriba-Pey
Computer Architecture Dept.
DAMA-UPC
Barcelona, Spain
larri@ac.upc.edu

similar document sets or completely different queries may be
looking for the same answer [2]. In these common scenarios,
caches are crucial because they store these partial results in
the main memory, thus saving execution time for subsequent
queries. In this paper, we implement a cooperative cache
that enables all the computers in the system to introduce
and retrieve data from the system transparently, similar to a
regular local cache. The cache is managed in accordance to
the recent accesses to data in each node of the network. The
system records the dataset that is most frequently accessed
locally and disseminates a summary of this dataset to the
rest of nodes. This information is updated dynamically and
is used by all the nodes in the network to decide which is the
best node to place a document, and to control the number
of replicas of a document in the distributed system.

Moreover, we implement a load balancing algorithm that
is cache-aware. The objective of a load balancing algorithm
is to assign the workload following a policy that optimizes
the overall system performance. The load balancing con-
siders not only the current load in each node but also the
expected real execution time of the query, given the state
of the global cache. Thus, a query may not be assigned
to the most idle node but to a node which has the query
partial results cached, which in the end yields a faster query
execution.

Load balancing and cooperative caching are two useful
techniques to improve the throughput of a system. However,
to our knowledge there is no previous work that studies the
interaction of cache aware load balancing algorithms with
cooperative cache algorithms. In this paper, we combine
these two techniques and analyze the interaction between
them. Both techniques implement different facets of a global
management scheme that improves the data locality for the
executed queries. On the one hand, cooperative caching
sends the information where the queries are being currently
processed. On the other hand, the load balancer applies an
alternative policy: it sends the queries to the nodes that
currently have the data stored. We study with statistical tools
wether any of the two approaches alone is sufficient or if
they can be successfully combined. Furthermore, we use
a similar approach to understand the system configuration

IEEE
computer
psouety

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

such as the importance of scheduling points in the system,
or if a new reassignation of queries once received in a node
is beneficial. We perform all the analysis for several query
distributions and on a fully-fledged QA system.

The paper is structured as follows. In Section 2, we
describe the distributed QA system, the cooperative cache
algorithm and the cache-aware load balancing algorithms
tested. Section 3 reports the experimental results and its
corresponding discussion. In Section 4, we review the related
work. Finally, Section 5 concludes the paper.

2. QA architecture

In this paper, we use a fully-fledged factoid QA system,
whose implementation details are presented in [3]. We depict
the system modules in Figure 1. The implementation of the
QA system follows a traditional architecture of a pipeline
with several sequential computing blocks: (i) Question Pro-
cessing (QP), which analyzes the query, understands the
question focus, and transforms the natural language question
into a traditional Information Retrieval (IR) query; (ii) Pas-
sage Retrieval (PR), which is an IR system that obtains from
disk the set of the most relevant documents for a query; and
(iii) Answer Extraction (AE), which applies natural language
processing tools to process the documents extracted in PR
and identify the most relevant answers for the query. The
system is modular and we can vary its configuration to test
its performance in different environments.

From a data processing perspective, our QA system im-
plements a two-layered architecture: first, we extract the
relevant content from documents that are lexically close to
the input question, and second, we semantically analyze this
content to extract and rank short textual answers to this
question, e.g., named entities such as person, organization,
or location names. Because both these blocks are resource
intensive, the former in disk accesses and the latter in
CPU usage, we implement a cache in main memory for
each stage. The first layer caches the documents read from
disk in PR, and the second caches the document analysis
coming from AE. This local cache configuration is analyzed
in [3]. This system obtained state-of-the-art performance in
an international evaluation [4].

Our computing architecture is a cluster of SMP nodes,
connected by a local area network. In order to build a
distributed system, we replicate the local system in each
node of the network. QA systems with text collections that
are too large to be replicated can partition the collection and
assign each partition to a group of nodes [5], in which each
group behaves similarly to our architecture.

Each query runs in its own thread, so several queries
can be simultaneously executed in a node, even if they are
executing the same computing block. The computation is
performed in several steps decided by the scheduling points
described below. In our system, the set of CPUs on a node

416

share a waiting queue for pending tasks. We allow one more
active query threads than CPUs in order to avoid having
multiple threads competing for the same resources. If a query
is going to start the execution of a computing block and
there are no resources available, the query is queued until
another query finishes its computing block. In addition to
the query computing threads, the system implements several
management threads: (a) a planning thread that monitors
the incoming queries, starts the execution of incoming and
waiting queries and decides if a query must be relocated
to a different node; (b) an Evolutive Summary Counter
thread that summarizes the local information and receives
the updates from other nodes (see the section below); (c)
a cooperative cache thread that serializes the cache victims
and decides its forwarding target. The communications are
implemented over TCP, except the ESC-summary diffusion,
which is over UDP. We choose a multithreaded architecture
because it decouples the search engine internal management
computation with query computation, it is modular and takes
advantage of the current multicore processors.

Summary of system caches: The distributed QA system
implements an algorithm to monitor the state of the caches
in each node of the network efficiently. Each node maintains
a data structure, called Evolutive Summary Counters (ESC,
described in [6]), that keeps a record of the recent documents
accessed in a node (during both PR and AE). ESC monitors
what documents are accessed in each node, and it can be
used to monitor the current state of the distributed cache. The
data structure is shared by all the cache aware algorithms.
An ESC is similar to the summary caches proposed by
Fan [7]: both report recent information about the nodes in
the network. Both structures use Count Bloom Filters (CBF),
that is a variant of Bloom Filters [8] to count the approx-
imate number of elements in a set. Like Bloom Filters,
a CBF is very compact because it keeps an approximate
count that can differ from the real value, with a fraction
of error that can be tuned as desired. In both proposals,
summary counters and ESC, each count filter is active for
a certain period of time in a round robin fashion and, at
certain intervals of time, each computing node generates a
summary of its local CBFs and sends the summary to the
rest of nodes. However, the summary caches report only
the current contents in the cache, while the ESC summaries
cover all the documents read in the recent history. This
difference is important because an ESC contains information
about the usage of non frequent documents, which may not
be cached, but it is needed to improve the load balancing of
the system. All in all, in our QA system, each node receives
an ESC summary from each node in the network: the ESC
summary received from a node ¢ contains the number of
times that document d has been read recently in that node,
ESC;(d). The target architecture for ESC is inspired by the
design of distributed search engines: a huge data collection

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

|

Question
Processing

l

-——————— —— L —— =

Passage
Retrieval
A
Cache
Manager
>
Answer
Extraction
PR AE
Cache Cache

Processing

[

|
|
|
|
|
|
|
Question |
|
|
|
|
|
|

Passage
Retrieval

>
Cache
Manager
|
Answer
Extraction
PR AE
Ccache Cache

N

(a)

Question
Processing

I

Passage
Retrieval

|
|
|
t
|
|
|
|
|
|
|
|
|
v

[affecccccccccccccccccoan

l Manager

Answer
Extraction

PR AE
Cache Cache

N

(a)

Figure 1.

Diagram of the three computing blocks of our QA system: QP, PR and AE. The figure depicts the

operations of the cooperative cache manager: (a) store a document processed in AE; (b) store a document read from
disk in PR; (c) request a document in the cooperative cache; (d) send the requested data through the cooperative
cache; (e) transfer the least recently used entry to a different node.

is divided in several partitions [9], each of these managed
by a separate group of nodes that execute queries related
to its partition (with the aid of the ESC) and share a local
area network. For other configurations with large pools of
nodes, it would be necessary to partition the nodes in teams
to avoid excessive network traffic from the ESC-summary
diffusion. Note that the ESC only use the network during
periodic updates. However, a node can check at any moment
the number of times a document has been accessed in a
certain neighbor node without any new communication.

2.1. Cooperative cache

We deploy a cooperative cache algorithm that relies on
the information disseminated by the ESC. The cooperative
caching algorithm is in charge of the placement and location
of the cached contents [6]. The placement algorithm is
triggered for each victim of the local cache policy, which
in our system is the least recently used entry. The node
checks the summaries received from the rest of nodes, and
forwards the entry to the node that has the largest number
of accesses to that document. Thus, the procedure sends the
victim to the node which is more probable to cache the entry.
We store a counter with each cached entry, which stores
the number of forwards since its last access. This counter is
incremented after each forward and is reset when an entry is

417

accessed. Entries whose counter is above a certain threshold
are not forwarded and are discarded from the cache. This
policy avoids long chains of forwards and removes the
unused entries similarly to a global LRU policy. Our search
algorithm in the cache is similar to ICP [10]: a node queries
all the rest of nodes in the network to retrieve the data
associated to a document identifier, and if any node has the
contents available in its cache, it sends the requested data to
the querying node (operations (c) and (d) in Figure 1). Once
the data is received, it is added to the cache of the requester
node. The cooperative cache is able to retrieve cached entries
for both PR and for AE blocks: the full raw text of the
document as well as its natural language analysis. Following
this procedure, any node can see the cache contents of the
rest of nodes that belong to the distributed QA system.

2.2. Load balancing

We implement a cache-aware load balancing algorithm
with several scheduling points, situated before each com-
puting block, as described in [11]. When a query reaches
the scheduling point, the node triggers the load balancing
algorithm to decide in which node the query is going
to continue its execution. If the load balancing algorithm
decides that the query should continue running locally,
then the query continues its execution immediately, or it

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

is queued if there are no resources available for that task.
If the load balancing algorithm selects a remote node, the
query is packed and transferred to the selected node. Each
time a query finishes a computing block in the system, all
the queued queries are rescheduled by the load balancing
algorithm again with the information received from the rest
of nodes since the last update. A query that is waiting in the
queue to be executed locally can thus be rescheduled and
assigned to a new node because, for example, the remote
node has new cached contents or is less loaded.

Each node ¢ measures its current load in two dimensions:
one for the I/O (Load{g) and another one for the CPU
(Loadg)P Y). Each node sends its load measure to the rest
of the nodes in the network periodically or if their current
value differs in more than fraction since its last update (25%
difference in our experiments). Summarizing, all the nodes
compute their local load, and receive recent load information
from all the computing nodes. Additionally, we use this
periodic communication to detect on the fly when a node is
not available, and when a new computing node has joined
the network, thus, tolerating hardware faults.

The cost to process a query in a node is estimated
according to the next computing block. The algorithm stores
a history record of the CPU and I/O time from previous
queries and applies this record to estimate the fraction of
CPU and I/O of the next computing block of the current
query. The cost to compute the query ¢ in node ¢ is a
weighted sum of the node load (Load(fg and Loadg)P vy,
averaged by the fraction of time that the query ¢ is going to
spend in each of the dimensions (ng U and W%P Yy [12].

(q)
We call this combined cost Load; gy = Wg)P U.LoadSPV +

(4)
I/0 1/0

W(q/) -Load(i/) .

In order to make the previously described algorithm
cache-aware, we implement two improvements [11]. The
first is a more accurate cost prediction, which reduces
the cost to process documents in the nodes that hold the
information already cached. The cache contents in a node
are inferred from the information contained in the ESC.
The system computes the probability to find document d
according to the recent accesses of d in a node, which are
stored in the ESC. The intuition behind the search algorithm
is that the more frequently a document is accessed, the
higher the probability it is to be cached in that node. So, each
node estimates a different hit probability for each different
document access frequency. This estimation is corrected
dynamically in such a way that the probability of hit is
increased for future queries when a document is found, and
the probability is reduced otherwise. The cache algorithm
uses this probability to give a more accurate computing
cost of a query according to the global cache state. The
cost to process a document is weighted by the expected
hit probability: a document with an expected hit probability
90% accounts for a lower computational cost than a doc-

418

ument not expected to be found in the cooperative cache.
The algorithm distinguishes two types of hit: cooperative
cache hits (remote hits) and local hits. Although the former
is more expensive than the later because of the network,.
cooperative caching is much faster than the recomputation
of a query. The algorithm records the computational cost
of the latest local and cooperative cache hits to dynamically
estimate the cost of new queries. A more detailed description
of the search algorithm can be found in [6]. We name this
new estimation of the cost Load_cache; 4).

The second improvement is the addition of a new term to
select preferably servers whose cache contents are similar
to the data requested by the query [11]. We compute the
similarity between a query and the cache contents in a
node with a formula frequently used in information retrieval
for this task: the ¢f - idf [13] (term frequency - inverse
document frequency). The formula scores high for the nodes
that already contain the data locally, and low otherwise.

Eventually, the node selected to continue processing a
query corresponds to the node which scores the lowest
value for the combination of the computing cost of query
q, and the similarity between ¢ and the cache contents:
Load_cache; q) - ﬁ [11]. The previous formula favors
servers which have the resources to process the next query
available, and their cache contents have a good affinity with
the current query.

3. Experimental Results

We performed several experiments to analyze the com-
bination of cooperative caching and load balancing. The
experiments are performed incrementally, i.e., every new
experiment uses the best configration from the previous
experiment. First, we compare the throughput of Question
Answering systems with and without cache-aware load
balancing and cooperative caching. Then, we set different
scheduling points in the system and measure the effect of
each of these points. And finally, we study if it is necessary
to perform multiple query forwards to improve the system
performance.

Setup: For our tests we use the fully-fledged QA system
described above, running on a cluster of 16 nodes connected
with a gigabit Ethernet network. Each node in the system
is equipped with an Intel dual core CPU at 2.4GHz and
with 2GB of RAM. We use as textual repository the TREC
document collection [14], which has approximately 4GB of
text in 1 million documents. The database in our experiments
is replicated, and in case a document is not available
in cache, each node can load it from its local disk. An
additional computer is used as a client that issues each new
query to a different computer in a round robin fashion. The
question set uses 700 different queries to create a workload
with a sequence of 5000 queries. The 700 queries in the
final workload follow Zipf,—¢.59, Zipfo—1.0 and Zipf,—1 4

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

6.5

T
DNS+Local --B--
. DNs+CC --
LB+Local
LB+CC -

o

b?x@!‘

5.5

4.5

3.5

Throughput [queries/s]

2.5

1.5

0.5 0.6 0.7 0.8 0.9 1 1.1

Distribution Zipf,,. Value of o,

(2)

DNS+Local - &--
DNS+CC -~
LB+Local

LB+CC -

0.8

0.6

Hit rate

0.4

0.2

0

0.5 0.6 0.7 0.8 0.9 1 1.1

Distribution Zipf,. Value of o,
(b)

Figure 2. (a) Throughput of a system with different
configurations of cache and load balancing. (b) Hit rate
of a system with different configurations of cache and
load balancing

distributions. We choose these distributions as a result of
several analyzes of query logs from different web engines:
the former due to a study from Saraiva et al. [15] where
they analyzed a query log which fitted a Zipf,—¢.59; and the
rest as a sample of more skewed distributions that can be
found in other studies such as [16], [17]. The questions from
the query sets were selected from questions that were part
of former TREC-QA evaluations (700 different questions).
The client issues the queries to keep the system under a high
load, with an average of eight simultaneous queries per node.

The design of all the experiments follows a similar
pattern. We performed factorial analysis' to analyze the
system throughput: we picked the set of factors (variables)
to study, and for each possible configuration of the fac-
tors and distribution we obtained three observations. The
testing script executed the configurations in random order

1. The analysis of variance (ANOVA) is an statistical technique to define
models that quantify the changes of a system’s outcome to a set of factors.
We call factor to categorical variable with a small number of levels, under
investigation in an experiment as a possible source of variation [18]. In this
paper, we apply several ANOVA techniques [19], which are commonly
drawn from factorial experiments, where the scientist defines a set of
relevant factors that may affect the system and tests the outcome for all
combinations of factors.

419

and cleared the computing nodes and its caches after each
execution. Once we obtained the performance observations,
we analyzed them with the statistical package SPSS [20]. All
our statistical conclusions are obtained with a significance
level of 0.05. The plots included in the article correspond to
the average of all the observations for that configuration.

3.1. Load balancing and Cooperative Caching

In this experiment, we enable and disable the cooperative
caching and the cache-aware load balancer to quantify if the
improvement of each technique is statistically significant and
to see if they exhibit interaction. The cooperative caching
(CC) corresponds to a system where data is transferred
to the node processing the query, and the cache-aware
load balancer (LB) corresponds to a system where queries
are sent to the node with the cached content. When the
cooperative caching is disabled we keep local caching in
each node activated (Local), and when we disable the load
balancer we assign the queries following a round robin
policy (DNS). Thus, we test the resulting twelve config-
urations of a complete factorial design compound by two
binary variables and a variable with three levels: the cache
policy (CC or Local), the load balancing algorithm (LB or
DNS) and the distribution (o = 0.59, 1.0, 1.4). For each
configuration, we repeated the experiment three times, which
adds up to 36 observations in total.

In Figure 2(a), we plot the throughput for each of the
configurations and query distributions. We observe that the
activation of either cooperative or load balancing improves
the system importantly, over the system without any of
these techniques (DNS + Local). The improvement from the
addition of a cooperative cache is up to 46%, and the cache
aware load balancing increases the system throughput up to
77%. However, the best system is when both techniques are
combined with an increase in the throughput of 90%.

We analyzed our results with a General Linear Model [19]
that is a statistical procedure to quantify the variance intro-
duced by each factor in an experiment. We tested different
models in order to fulfill the parsimony principle, and
picked as our final model the one that takes into account
all the the three variables (the distribution, the cooperative
cache, and the load balancing) plus the interaction between
the cooperative cache and the load balancing. Hence, the
resulting model is the following:

Yijkt = B+ i + B + e + (87) 5, + gt (D

where p is the overall mean of the observations; «; is
the effect of the i-th level of the query distribution; 3; is
the effect of the j-th level of the cooperative cache; 4 is
the effect of the k-th level of the load balancer; (57) k18
the effect of the interaction between the j-th level of the
cooperative cache and the k-th level of the load balancer;
€i;11 corresponds to the experimental error (or residue); and,

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

Observations
Ideal prediction

Model prediction for the throughput
S

0 1 2 3 4 5 6 7 8
Observed throughput

Figure 3. Factorial analysis for three factors: cache-
aware load balancing, cooperative caching and query
distribution. Predicted throughput by the model vs. ob-
served throughput (Equation (1)).

[Factor | Level | Description |
i Distribution Zipfa—o.59
Distribution Zipfo—1.0
Distribution Zipfo—1.4

Local cache

Cooperative Cache

DNS

Cache-aware Load Balancing

€7

—_
Il

Bj

N =[N =W N —

]
J
Vi k
k

Table 1. Description of the factors in Equation (1).

Yi;k 18 the throughput of the I-th observation for the system
configured with the levels i-th, j-th and k-th. We detail the
correspondence between the levels of a factor and the system
configuration in Table 1. The GLM procedure estimates the
value of each term by the minimum least squares method,
which minimizes the sum of the squares of the residual terms
of the model.

The statistical tests for the model indicated that all the
included terms were statistically significant, and the response
variable (i.e. the overall system performance) strongly de-
pends on the independent variables (i.e. the cache, the load
balancer and the distribution.). The estimated model is very
precise: R? > 0.98, which means that only less than 2%
of the variability is not explained by the model. Thus,
we observe in Figure 3 that the correspondence between
predictions and observations lies very close to the identity
function, which is a perfect fit.

The model indicates that the best configuration activates
both the cooperative caching and the load balancer and is
statistically better than the other configurations. Neverthe-
less, the model quantification shows that the benefit from
moving queries is four times larger than the one coming
from moving the cached contents. The reason for this result
is the data size: a query is much smaller than a document.
In other words, it is faster to transfer the queries through

420

the network than the data requested by a query. However,
cooperative caching is still valuable because it introduces
a global management of the cache contents that turns into
better hit rates. Figure 2(b) shows that both techniques
improve the hit rate significantly and in a similar amount.
But, cooperative caching and cache-aware load balancing
increase the system hit rate from two different perspectives.
Thus, when we combine them, the hit rate is better than any
of them individually as can be observed in Figure 2(b). The
model proves this with the quantification of the interaction:
although it exists and the benefits do not accumulate linearly,
the contribution of the interaction is smaller than that from
the main effects. This proves that both techniques are
complementary.

The model shows no interaction between the distribution
and the rest of factors. The model estimates the benefit
of caching and load balancing as a constant improvement
independently of the query distribution. This means that the
two techniques are effective for all the query distributions
tested, which are the commonly found in the logs of real
search engines. Indeed, the system execution time is smaller
for skewed distributions because the data set of frequent
items is smaller, and the baseline cache is more efficient
under this circumstances.

3.2. Scheduling points

According to the previous experiment, the load balancer
plays an important role to improve the system performance.
We test here which are the most advisable locations to
include scheduling points in a question answering system.
We introduced up to four scheduling points in the system
before each of the computational blocks in the system: (a)
when query is received, before QP; (b) before accessing
the indexes of the collection in PR; (c) before reading the
documents from the collection in PR; (d) before processing
the received documents in AE. We tested five configurations
with an increasing number of scheduling points. The first
configuration only enables the scheduling point for the most
expensive computing blocks, and we sequentially add more
scheduling points according to the following most expensive
computing block. We tested the following combinations:
only (c) or (d) enabled, (c+d) enabled, (b+c+d) enabled, and
finally (at+b+c+d) enabled.

The execution time for each configuration is plotted in
Figure 4. We analyzed our results with a General Linear
Model [19], which includes only the main factors, without
any interaction between the distribution and the scheduling
points. The model was statistically valid for all levels of
the tested variables with a high R? = 0.99, that means
the model predictions correlate significantly the performance
and the scheduling points.

In Figure 4(a), we observe that the number of scheduling
points influence the system throughput: the more scheduling

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

Zipf, _g59 -~ M-
Ziply 100 -~ O~ [V S— IOS X
55 ZPla- a0 X (c*d) (b¥c¥d) (a+b+c+l)
A
5
Z 45
@
2
k=4 e e
5 X 7Y -
2 L5l - (c+d) (bvord) (atbrcHn
&5 T
3 -7 (0)
=
3 8
= o
d
25 (d)
e W u
2 — (c*d). (b+c+d) (a+b+c+{)
- (c)
(d)
1.5
Scheduling points enabled
(a)
4 -
Zipfy, _g59 -~
Ziply 100 - O~
35 Zipfy - .40 -

Avg. forwards per query
N

Scheduling points enabled
(b)

Figure 4. (a) Throughput of the system with different
scheduling points enabled. (b) Number of forwards per
query with different scheduling points enabled.

points the better performance. Nevertheless, the addition of
some scheduling points (a and b) does not affect significantly
the system throughput. We confirmed this intuition by com-
puting a set of contrasts among the different configurations
of scheduling points [19]. The contrasts showed that config-
urations (a+b+c+d), (b+c+d) and (c+d) showed no statistical
difference in the system throughput, and all of them were
better than the single scheduling point configurations. We
also recorded the number of forwards for each configuration,
which are reported in Figure 4(b). The plot shows that (c+d)
requires the smallest number of forwards among all the
multiple scheduling point configurations, and consequently
takes less network traffic.

The hit rate does not depend on all scheduling points
equally (Figure 5). The PR scheduling point is the most
relevant from a hit rate perspective. Once we enable PR as
scheduling point (c), the hit rate is the same as with all
the scheduling points enabled (atb+c+d). But, considering
the final performance of the system, (c+d) is the preferable
option. If we compare system (c) with system (c+d), we
observe that most queries are forwarded when they reach
PR because they are transferred to a node with cache
contents affine to the query. Almost all queries change

421

D A L X
o
0.8
B Qe O 1)
0.6
o
©
- [W g L S, ™~
0.4 d b+c+d @+b+c+d
(d (©) (c+d) \) \
0.2
Zipfy — .50 ~— B
Zipfy _ g0 -0~
Zipfy = 149 X

Scheduling points enabled

Figure 5. Hit rate for different combinations of schedul-
ing points.

their execution node after (c). The probability to reassign a
query is smaller when they reach the AE scheduling point.
Only a few queries (about a third of the total) change their
executing node because the query is already in a good node
from the cache perspective. We note that the source of
forwards in AE come from a different source than from PR:
queries are forwarded due to load unbalances in the cluster.
Thus, it seems plausible that cache-aware algorithms may
be improved if they become flexible: first node assignments
should be more cache oriented, and then the query can be
transferred to an underloaded node if severe unbalance is
detected.

Although the distribution modifies the throughput of the
system, the model shows that the best set of scheduling
points does not depend on the distribution because there
is no significant interaction between the distribution and the
scheduling points. According to our experiments and the
statistical model generated, a load balancer for a Question
Answering system should include two scheduling points
in PR and AE (ct+d), because among the best possible
configurations it is the simplest, generates a small number
of forwards, and achieves the best or close to the best
performance.

3.3. Number of forwards

The distributed load balancer implemented in each node
has an incomplete view of the load information in the rest
of nodes because load updates are not instantaneous, and
the update messages may be lost because a non-critical
broadcast message is typically implemented over UDP. This
can create a hazard: in a short period of time, nodes may
forward queries to the same subset of nodes and overload
them. Our solution is to allow the receiving node to decide
if there is a better choice once the query is received and
forward again the query. This procedure can be extended
recursively until a good candidate is found or a maximum
number of forwards is reached.

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

Throdghput ~m-

Normalized Throughput

0.95

0.9

0.85

1 1.5 2 25 3 3.5 4
Maximum forwards per computing block and query

4.5 5

Figure 6. Analysis of the number query forwards for
question answering. System throughput vs. maximum
number of forwards per query.

We took the best system configuration from previous
experiments and varied the number of query forwards. In
Figure 6, we plot the system throughput against the maxi-
mum number of forwards per query. For example, a value
of 2 means that for each computing block we allowed up to
two forwards. In order to show a clearer plot, we averaged
the results shown in Figure 6 for the different configurations
because they show a very similar behavior.

Our results indicate that the optimal number of forwards
is two, which is roughly 5% faster than the original sys-
tem. A larger number of forwards does not improve the
load balancing, and also produce more network traffic. We
computed a one way ANOVA (analysis of variance) to
compare the different configurations. The test indicates that
the difference was significant between one and two forwards
(but not for two and three). Even though we found that
the stated overloading hazard exists in a search engine,
the performance penalty is not huge. The second forward
improves performance at the expense of more network
traffic, which in large systems may not be desirable.

4. Related Work

Search engines have become ubiquitous for many daily
tasks. These systems are formed by clusters of comput-
ers [21] that are executing many queries simultaneously.
In order to support such large scale search engines, the
data locality and the cooperation among the computers
is fundamental. Two different approaches can be used to
improve data locality: move the queries to a node with the
cached contents or use cooperative caching.

Cooperative caching appeared in the mid-90s to create
large distributed caches, which it looks like a traditional
local cache from any of the computing node [22], [23]. Since
then, many high performance applications have included
cooperative caching to improve its performance: distributed
file systems [24], [25], distributed web servers [26], [27],

422

applications on ad hoc networks [28], database engines [29]
or question answering [6].

Distributed systems include different strategies for load
balancing depending on the workload of the system [30].
In this work, we focus on workloads where caching plays
an important role in the system performance. These systems
evolved from the use of heuristics such in [31], where the
load balancer tries to send a certain query to the same set
of nodes to improve locality, to more complex algorithms
which consider also previous logs [32], the current disk
load [33] or the incoming query distribution [34].

However, these two families of techniques have been
applied individually. To our knowledge there is no analysis
of how they interact when both are implemented in a system
simultaneously. Bunt et al. [35] performed a similar study
where they performed simulations to study the improvement
of a load balancer that takes into account cache contents in
each node. However, that paper did not consider the effect of
cooperative caching. Andrade et al. also studied a distributed
system where a caching service compound by multiple
servers is available to a pool of application servers [36].
In the database community, we find the MOCHA system,
which implements a client-server query analyzer that detects
if a query contains operations that reduce or add size to
the tuples of a result set. And hence, decides if the query
is going to execute faster in the database server, or if it is
preferable to transfer the data to the client [37]. In this paper,
we have taken state-of-the-art algorithms for cooperative
caching and load balancing for question answering [6], [11],
implemented them in a fully-fledged question answering
system, and measured their combined performance with
empirical experiments backed by statistical models.

5. Conclusions

The performance of a search engine is very related to
its in-memory data management. This paper presents an
statistical analysis of the performance of a fully fledged
distributed question answering system for different query
distributions typically found in web query logs. We compare
two different approaches to improve the system perfor-
mance: (a) cooperative caching, i.e, send the cached contents
from a node to the node that is currently computing a query;
(b) cache-aware load balancing, i.e. send a query to the node
whose cached contents are related and its computing load
is small. To our knowledge, this work is the first study that
analyzes and quantifies which data management policy is
preferable.

On the one hand, cooperative caching creates the illusion
that computers share a large virtual cache pool created by
the merging of the available memory in each computing
node. In our tests, the speed up of this approach was up
to 1.46 and always over 1.32, which is significantly better
than the original system. The source of the improvement

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

is a better hit rate, which surpasses the local policy by
more than 25 percentile points. On the other hand, cache-
aware load balancing sends queries to nodes with similar
cache contents. Our results show that both policies achieve
a similar improvement of hit rates, but the throughput of
cache-aware load balancing is 1.77 times higher due to re-
duced network traffic. Queries are smaller than data contents
and only need a single connection, whereas the document
size is larger and may require contacting many nodes.
Nevertheless, each technique copes with cache management
from complementary perspectives and the throughput of the
combined system is up to 1.90. Our statistical model proves
that although the absence of caching and load balancing
penalizes severely the system throughput, both techniques do
not collide when they are simultaneously enabled and they
can be activated simultaneously for a better performance.

Moreover, we statistically study some design decisions
that influence the system performance. We noticed that
the number of scheduling points in a question answering
system is relevant, and it is not statistically significant to
include more than two: one for PR and other for AE. More
scheduling points do not deteriorate the throughput but do
not provide additional benefit. We also realized that the delay
between load updates may create small unbalances and it is
advisable to let the system forward each query twice for a
balanced computation.

References

[1] D. Roussinov, W. Fan, and J. Robles-Flores, “Beyond key-
words: automated q9uestion answering on the web,” Commun.
ACM, vol. 51, no. 9, pp. 60-65, 2008.

Y. Xie and D. R. O’Hallaron, “Locality in search engine
queries and its implications for caching,” in INFOCOM, 2002.

D. Dominguez-Sal, J. Larriba-Pey, and M. Surdeanu, “A
multi-layer collaborative cache for question answering,” in
Euro-Par, 2007, pp. 295-306.

M. Surdeanu, D. Dominguez-Sal, and P, Comas, “Design and
erformance analysis of a factoid question answering system
or spontaneous speech transcriptions,” Interspeech, 2006.

(2]
(3]

(4]

(3]
(6]

J. Callan, “Distributed information retrieval,” Advances in
Information Retrieval, pp. 127-150, 2000.

D. Dominguez-Sal, J. Aguilar-Saborit, M. Surdeanu, and
J. Larriba-Pey, “On the use of evolutive summary counters
in distributed retrieval systems,” Technical report. UPC-DAC-
RR-DAMA-2008-1, 2008.

L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache:
a scalable wide-area web cache sharing protocol,” IEEE Trans
on Networking, vol. 8, no. 3, pp. 281-293, 2000.

B. Bloom, “Space/time trade-offs in hash coding with allow-
zligleoerrors,” Comm. of the ACM, vol. 13, no. 7, pp. 422-426,
70.

D. Puppin, F. Silvestri, and D. Laforenza, “Query-driven
document Eartitioning and collection selection,” in Infoscale,
2006, p. 34.

D. Wessels and K. Clafty, “Internet cache protocol: protocol
specification, version 2,” RFC 2186, 1997.

D. Dominguez-Sal, M. Surdeanu, J. Aguilar-Saborit, and J.-
L. Larriba-Pey, “Cache-aware load balancing for question
answering,” in CIKM, 2008, pp. 1271-1280.

M. Surdeanu, D. Moldovan, and S. Harabagiu, “Performance
analysis of a distributed question/answering system,” 7PDS,
vol. 13, no. 6, pp. 579-596, 2002.

(7]

(8]

423

[13] G. Salton and C. Buckley, “Term-weighting approaches in
?gtgogatic text retrieval,” /PM, vol. 24, no. 5, pp. 513-523,

[14] NIST, “TREC question answering track,” http://trec.nist.gov/,

1999-2007.

P. Saraiva, E. de Moura, N. Ziviani, W. Meira, R. Fonseca,

and B. Riberio-Neto, “Rank-preserving two-level caching for

scalable search engines,” 4 SIGIR, pp. 51-58, 2001.

R. Baeza-Yates, “Web usage mining in search engines,” in
Web Mining: A&Jflications and Techniques, A. Scime, Ed.
Idea Group, 2005, pp. 307-321.

E. Markatos, “On caching search engine query results.” Com-
puter Communications, vol. 24, no. 2, pp. 137-143, 2001.

B. S. Everitt, The Cambridge Dictionary of Statistics, 3rd ed.
Cambridge University Press, 2006.

D. Mongomery, Design and Analysis of Experiments, 5th ed.
Wiley, 2000.

SPSS Inc., “SPSS version 17.0,” 2008.

L. Barroso, J. Dean, and U. Holzle, “Web search for a planet:
The google cluster architecture,” IEEE Micro, vol. 23, no. 2,
pp- 22-28, 2003.

M. Dahlin, R. Wang, T. Anderson, and D. Patterson, “Coop-
erative caching: Using remote client memory to improve file
system performance.” in OSDI, 1994, pp. 267-280.

M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, and
C. Thekkath, “Implementin% Sglobal memory management in
a workstation cluster,” in SOSP, 1995, pp. 201-212.

T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli,
and R. Wang, “Serverless network file systems,” ACM Trans.
Comput. Syst., vol. 14, no. 1, pp. 41-79, 1996.

S. Annapureddy, M. J. Freedman, and D. Mazi¢res, “Shark:
Scaling file servers via cooperative caching,” in NSDI.
“A cooperative

USENIX, 2005.
M. Raunak, surveg of

report, 1999. [On ine1.
http://citeseer.ist.psu.edu/raunak99survey.htm

Technical

V. Holmedahl, B. Smith, and T. Yang, “Cooperative cachin,
of dynamic content on a distributed web server,” in HPDC,
1998, p. 243.

L. Yin and G. Cao, “Supporting cooperative caching in ad
hoc networks,” IEEE Trans. Mob. Comput., vol. 5, no. 1, pp.
77-89, 2006.

K. Lillis and E. Pitoura, “Cooperative xpath caching,” in
SIGMOD, 2008, pp. 327-338.

V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu, “The
state of the art in locally distributed web-server systems,”
ACM Comp. Surveys, vol. 34, no. 2, pp. 263-311, 2002.

V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum, “Locality-aware request
distribution 1n cluster-based network servers,” ACM SIGPLAN
Notices, vol. 33, no. 11, pp. 205-216, 1998.

L. Cherkasova and M. Karlsson, “Scalable web server clus-
ter demgn with workload-aware requestdistribution strategy

[15]

[16]

[17]
[18]
[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26] caching,”

Available:
[27]
[28]

[29]

[30]

[31]

[32]

WARD,” WECWIS 2001, pp. 212-221, 2001.
[33] X. Qin, H. Jiang, Y. Zhu, and D. Swanson, “Dynamic load
balancing for I/O-intensive tasks on heterogeneous clusters,”

HiPC 2003, pp. 300-309, 2003.

Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo,
“Workload-aware load balancing for clustered web servers,”
TPDS, vol. 16, no. 3, pp. 219-233, 2005.

R. B. Bunt, D. L. Eager, G. M. Oster, and C. L. Williamson,
“Achieving load balance and effective caching in clustered
web servers,” in Int. Web Caching Workshop, 1999.

H. Andrade, T. Kurg, A. Sussman, and J. Saltz, “Optimizing
the execution of multiple data analysis queries on parallel and
distributed environments,” /EEE Trans. Parallel Distrib. Syst.,
vol. 15, no. 6, pp. 520-532, 2004.

M. Rodriguez-Martinez and N. Roussopoulos, “Mocha: A
self-extensible database middleware system for distributed
data sources,” in SIGMOD, 2000, pp. 213-224.

[34]

[35]

[36]

[37]

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on March 01,2010 at 03:28:32 EST from IEEE Xplore. Restrictions apply.

