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Abstract

One important issue when constructing Information Extraction systems
is how to obtain the knowledge needed for identifying relevant information
in a document� In most approaches to this issue� the human expert in�
tervention is necessary in many steps of the acquisition process� In this
paper we describe Essence� a new methodology that reduces signi�cantly
the need for human intervention� It is based on ELA� a new algorithm for
acquiring information extraction patterns�

The distinctive features of Essence and ELA are that �� allow to auto�
matically acquire IE patterns from unrestricted text corpus representative
of the domain� due to �� the ability of identifying surrounding context reg�
ularities for semantically relevant concept�words for the IE task by using
non domain speci�c lexical knowledge tools and semantic relations from
WordNet� and 	� restricting the human intervention to only the de�nition
of the task and the validation and typi�cation of the set of IE patterns
obtained�

The use of a general purpose ontology and syntactic tools of general
application allows the easy portability of the methodology and reduces the
expert e
ort� Results of the application of this methodology for acquiring
extraction patterns in a MUC�like task are also shown�
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� INTRODUCTION

Information Extraction �IE� is a Natural Language Processing �NLP� task whose
goal is to extract a prespeci�ed kind of information from a document� In the
tradition of the Message Understanding Conferences �MUC� ��� 	� 
� ���� an IE
system
 �� identi�es and �� extracts speci�c information located in non�structured
textual data� and �� generates the output as has been requested� IE systems are
domain speci�c because they extract particular entities or events from a particu�
lar domain skipping over the irrelevant ones� The kind of information to extract
consists in a prespeci�ed set of entities and their attributes� as well as relation�
ships and events relating those entities� For instance� in the aircraft crashes
domain that we show in section �� an IE system must extract information about
the location and the date of the crash� the number of victims and the aircraft
involved in� This information is usually represented in the form of templates
which slots must be �lled� Our work shares this notion of IE�

IE is usually compared with the more widely known area of Information Re�
trieval �IR�� Whereas Information Retrieval systems� given a keyword list� return
a set of relevant documents that contain them� IE systems return the required
information in a predetermined format ��� ����

A common way to extract the desired information is by using IE patterns �also
known as extraction rules or conceptual patterns� that consist in a set of lexical�
syntactic and semantic constraints that a piece of text must satisfy in order to
extract information from it� along with an indication of which information must
be extracted�

� IE PATTERNS ACQUISITION

When building an IE system� the task of acquiring information extraction pat�
terns has to be faced� The procedures proposed for this task must reduce as much
as possible the time cost of manual e�ort� In the last years� di�erent approaches
have been proposed in order to semi�automatize this task� Some IE systems have
tried to include Machine Learning �ML� components intended to easy the move
of the system to a new domain or to a new task de�nition�

AutoSlog ���� generates concept node de�nitions from the information in the
answer keys �manually �lled output templates�� of training texts� A concept
node is activated by a keyword when it appears in a certain linguistic context�
and it is able to infer the role played by the targeted information in this context�
CRYSTAL ���� system inductivelly generates a dictionary of conceptual patterns
�another name for IE patterns� that covers all the examples of the preprocessed�

�Or from an annotated corpus in which the targeted information is marked and tagged with
domain speci�c semantic tags�

�Texts annotated with domain speci�c tags�
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training texts� In addition of the preprocesed training texts� it also makes use of
a semantic hierarchy and associated lexicon created by the expert for the task�
Bagga et al� ��� system generalizes from sentences selected by an expert by using
also an annotated corpora �in order to discover the best generalizations made from
these sentences�� LIEP ��� does not need annotated training texts� but rather
has an interface that allows a user to identify over the text relevant entities and
relationships between them� LIEP patterns are induced from positive training
instances and the generalization step allows to expand the patterns by including
a disjunctive list of terms expressing the same semantics� Finally� PALKA ���
builds inductively IE patterns but requires answer keys for the training texts� a
prede�ned semantic hierarchy� and an associated lexicon�

All these systems acquire IE patterns without the hard work of hand writing
them� However� they need an annotated training corpus� This is also a tedious
work that must be done by a human expert�

The only exceptions we know are AutoSlog�TS ����� that acquires conceptual
patterns for IE using only a preclassi�ed training corpus without text annota�
tions� and Rilo� et al� ���� that present a new method to learn simultaneously a
dictionary of extraction patterns and a domain speci�c �semantic� lexicon�

In addition� all the mentioned systems �centered in IE on free texts�� need
semantical knowledge in order to generalize in the right way �unlike IE systems
for structured texts� where syntactic information is usually enough to build IE
patterns�� This semantical knowledge needed is usually represented as a domain
speci�c ontology that �with the exception of Bagga et al� ���� must be created by
an expert�

Our goal is to minimize the e�ort of the expert to only de�ning the task and
supervising the �nal results� This implies to acquire patterns without annotated
corpora and with general domain ontologies �WordNet ��� in our case�� This is
achieved with the Essence methodology that lies in the ELA algorithm�

� Essence

TheEssencemethodology is intended to reduce human expert intervention when
acquiring IE patterns� This goal is achieved by means of a pattern generalization
�learning� algorithm� named ELA� which delays as much as possible the expert
involvement simplifying the amount of information he�she has to deal with� Nev�
ertheless� a human expert is still required in order to validate the results and
specify the kind of information to extract�

In order to makeEssence a portable methodology� needed knowledge sources
and NLP tools also require this property� For that reason� a general�purpose
lexicon such as WordNet� has been selected� WordNet o�ers lexical� syntactic and
semantic information which is decisive in the generalization process� However�
the lack of coverage for some domain speci�c words such as entity names� has been
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overcome by using gazettes and speci�c word lists� Portability of NLP tools� such
as the syntactic parser� is assured by our system because they are also domain
independent�
The distinctive features of Essence can be synthesized as


� The training corpus has no annotations� neither syntactic tags nor semantic
tags� but must include positive examples of information to be extracted�

� Human intervention is restricted to the task de�nition and typi�cation and
validation of patterns�

� For the generalization �learning� process a semantic hierarchy is needed�
Essence makes use of WordNet� able to cover multi�domain vocabulary
instead of a hand built semantic hierarchy tailored for each new domain�

The overall performance of the Essence methodology� depicted in Figure ��
is summarized here by giving a short description of its component modules�

Since IE is domain speci�c by nature and also oriented to an speci�c task� the
�rst step of the methodology is to de�ne the speci�c kind of target information�
Therefore� a supplementarymodule� named Task Definitionmodule� have been
designed to assist the expert in this work� Basically� for each slot of the output
template he�she de�nes a set of keywords �words that commonly appear together
with the kind of information that the slot de�nes� and a set of synset numbers
�WordNet tags that typify semantically the values that the slot can take�� The
set of keywords is not so di�cult to �nd as it could seem� The expert can explore
the training set in order to �nd an initial set of words that is automatically
completed by �nding in WordNet synonyms and hyponyms of these words� The
set of synsets is also easy to �nd� When an IE task is de�ned� the client must
de�ne which kind of information wants to obtain� The type of this information
is simply expressed in synsets of WordNet� In case the expert was not familiar
with WordNet� he�she is aided with an easy�to�use interface�

The Selection of Relevant Textsmodule� selects from the training corpus
a set of texts based on either expert criteria or useful known keywords relative
to the given domain�

Major syntactic constituents such as noun phrases� verb phrases or preposition
phrases� are identi�ed by the Partial Parsing module� These high�level con�
stituents will be the syntactic components of patterns and become their syntactic
constraints when generalizing�

The multi�module Pattern Acquisition represents the core of the method�
ology and produces the generalized patterns starting from a set of analyzed sen�
tences� It comprises �ve sub�modules �not depicted in the �gure�


�� Filter for Relevant Sentencesmodule
 relevant sentences will be those
that contain one or more keywords� This �ltering allows the system to focus
on the speci�c kind of target information�
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Figure �
 Overview of the Essence methodology
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�� Windowingmodule
 from relevant sentences we collect parameter�sized con�
text windows� A window is the context surrounding an occurrence of a
keyword� and the size �width� of a window is the maximum number of syn�
tactic groups it includes� For each syntactic group we have the list of words
it contains along with its corresponding part�of�speech�

�� Semantic Tagging module
 links to each group�s headword� semantic la�
bels which are represented by senses or word meanings corresponding to
WordNet�s synsets� This module provides a collection of speci�c patterns
that will feed the learning algorithm�

�� Learning Algorithmmodule
 from the set of speci�c patterns it generates
a set of general patterns� This module is explained in ��� to a greater detail�

�� Filtering module
 patterns obtained with all non�keyword components
not generalized will be discarded� This process allows to discard too speci�c
patterns retained by its high frequency when in fact correspond to literally
repeated pieces of text�

The Typificationmodule� �give names� to di�erent pattern components �that�
in fact� are the roles they play�� indicative of the kind of information they will
extract� It determines which component of a pattern will �ll which slot of the
�nal output template�

Finally� the set of extraction patterns obtained must be validated applying
them to a test corpus� Results in this stage will serve as feed�back for a new
execution of the generalization process� For example� the expert can change the
window size parameter or enlarge the keyword list� This process is done in the
Validation module�

��� The Essence Learning Algorithm� ELA

The learning algorithm is the core of the Essence methodology� Inspired in ML
techniques� the algorithm explores the set of speci�c patterns provided by the
Semantic Tagging module �see third submodule of the Pattern Acquisition

module�� �nding regularities in them that will be used to build a set of general
patterns useful for the IE task�

In our approach� an IE pattern can be composed of Noun groups� Verb
groups and Preposition groups� Each group is tagged with a set of WordNet�s
semantic tags �called synsets� that is determined by the generalization procedure
described bellow� This set of groups de�nes which kind of groups must contain a
sentence in order to satisfy the IE pattern�

�At this moment� semantic labels are reserved to nouns and verbs because they are the only
that present the hyponymy�hyperonymy hierarchical relations needed for the generalization
process�
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Groups in an IE pattern are either contextual or informative� The �rst kind of
groups indicates that a sentence must contain groups matching these contextual
groups in order to be covered by the IE pattern� We say that a group of a
sentencematches a group of the IE pattern when the head of the sentence�s group
has a semantic tag that is a hyponym in WordNet of the synset of the pattern�s
group�� The second kind of groups not only indicates which groups must contain
the sentence but also that those groups carry relevant information for �lling one
slot of the IE task� Informative groups are automatically identi�ed because they
carry as semantic information a synset that is the same or a hyponym of one
extracting synset de�ned for one slot in the de�nition of the IE task �see Task

Definition module in Section ���

Information from a sentence is extracted using an IE pattern when the sen�
tence contains� for each group of the pattern� a group that matches with it� In
this way� the information extracted is the contained in the groups of the sentence
that match with the informative groups of the IE pattern� As it may seems not
only informative groups are important in a IE pattern� Context groups are useful
in order to increase precision of the pattern�

In our approach� IE patterns are build from speci�c patterns� As it is de�
scribed in the Essence methodology� an speci�c pattern is a windowed sentence
tokenized in syntactic groups and with the headword of each syntactic group
tagged semantically with the corresponding set of WordNet synsets� This struc�
ture� considered as an IE pattern� is too speci�c because describes a set of con�
straints that only can be satis�ed by the windowed sentence that originated it�
We need more general patterns�

A general pattern is an IE pattern describing a set of constraints that are
ful�lled by several speci�c patterns �that is� for each group of the general pattern�
there exists a group in these speci�c patterns that matches with it�� In this case
we say that all these speci�c patterns are covered by the general pattern�

The way to obtain general IE patterns that we propose starts by initially
setting it to a randomly selected speci�c pattern and then� repeatedly generalizing
it in order to cover at each repetition a new speci�c pattern� Generalization is
done by relaxing the semantic tag associated to groups of the pattern and�or by
removing groups of the pattern when the former is not possible�

Relaxation of the semantic tag is made in order to allow the match between
two groups� For instance� assume that the general pattern has a group with
the semantic tag AVALANCHE and the speci�c pattern has a group tagged
semantically as CRASH� If the semantic ontology shows that both cases are
hyponyms of ACCIDENT� then the two groups can match if the semantic tag of
the general pattern is relaxed �generalized� to ACCIDENT�

�Additional constraints can be added in order to consider the matching of two groups� In our
experiments we also ask for the same preposition in preposition groups� In other experiments
we could also ask for the same voice in verb groups or the same number in noun groups�
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Function cycle �maximum relaxation� set of speci�c patterns�
returns general pattern

Set current pattern to a speci�c pattern randomly selected
Set pattern list as the list with only current pattern

Set l pats to the empty list
While not empty pattern list do

Remove the �rst pattern from the pattern list

Add the current pattern to l pats

Create� for each speci�c pattern spi �not covered by current pattern�
and current pattern� all generalizations that contain at least one
informative group in spi not extractable by patterns previously
learned� They are stored in pattern list�

Sort the pattern list with the relaxation measure
If not empty pattern list Then

Set current pattern to the �rst pattern of the pattern list

EndIf

EndWhile

Evaluation of the list of patterns l pats and selection of the best pattern
If positive evaluation of l pats
Then Return the best pattern
Else Return NIL

EndIf

EndFunction

Figure �
 Function cycle� See explanation on text�

The selection of the new pattern to cover at each time is made by searching
in the set of all speci�c patterns the closest to the general pattern on hands� The
metric that measures this similarity �that we call relaxation measure� takes into
account �rst the number of groups that match and later the generalization that
has to be made in the semantic ontology in order to allow the match between
groups� Speci�cally� the generalization in the ontology is measured by counting
the number of concepts in the ontology that must be climbed in order to �nd a
concept that covers the groups of both patterns�

Figure � shows the implementation of this idea in a function called cycle

that� from a randomly selected pattern� tries to obtain a general IE pattern� The
function takes into account the information covered by other general IE patterns
learned previously in order to obtain a general IE pattern that does not cover
redundantly the same information�

Figures � and � illustrate how generalization is performed� The �rst �gure
shows two sentences extracted from the corpus used in our experiments which

	



are selected because they present keywords� in this case crashed and slammed�
The �gure also shows the corresponding speci�c patterns from these sentences
obtained by tokenizing them syntactically and limiting themwith the window�size
parameter set to six� The headword of each syntactic group is tagged with the
corresponding synset tags obtained from WordNet� The NIL label indicates that
a word is not de�ned in WordNet as noun or verb� Some words are surrounded
by ���� This indicates that the word has been recognized by auxiliary linguistic
modules as a relevant semantic information that is not described in WordNet �in
our experiments dates� companies and speci�c airplane models��

From these two speci�c patterns� the generalization procedure returns the set
of all possible generalizations that is shown in Figure �� They are not still sorted
by the relaxation measure� Note that all patterns have a relaxation value below
�� because this has been selected as the maximum relaxation allowed� Note also
that they present � matching �elds� because we set the number of matches to this
value�

From this set of general patterns� the cycle procedure will select the third one
because it shows the minimum relaxation value� The obtained IE pattern covers
sentences that describe a crash and that also cite the date and present a noun
group with a word described in WordNet as an hyponym of the airplane concept�
The cycle function will repeat the process again by searching for another speci�c
pattern to cover� generalizing the IE pattern in order to cover this new speci�c
pattern� and so on until no generalization that covers new speci�c patterns is
possible�

The cycle function must be wisely called in order to generate a complete
set of general IE patterns for the current IE task� The point is to call the cycle
function with di�erent initial speci�c patterns until no speci�c patterns remain to
be used as the seed for obtaining a general pattern or until all informative �elds
of each speci�c pattern are covered by the set of generated IE general patterns��
The resulting algorithm is called ELA and is shown in �gure ��

� EXPERIMENTS

The set of experiments presented here are extracted from the results obtained
on training ELA on MUC� dry�run texts� These texts are separated in two
sets composed of ��� texts from the New York Times News Service �one set for
training and the other for testing�� Not all the news describe the crash of a �ight
but all of themmention at least one crash� The task for the scenario template was
to �nd out information about aircraft crashes or accidents� such as the location
and the date of the accident� the number of victims or the aircraft involved in�

�Thus� the selection procedure in the cycle function used to choose randomly the initial
speci�c pattern will also consider that the speci�c pattern selected has to be not previously
used as the initial pattern in a previous cycle






Sentences


�� The �ier whose Navy F���A �ghter plunged into a Nashville suburb on Mon�
day� killing himself and four other people� crashed another jet into the sea
last April�

��� Commerce Secretary Ron Brown and �� others on a Balkan trade mission
were presumed killed when their plane slammed into a Croatian hillside
during heavy storms Wednesday�

�� ��PP ��PREP ON NIL� �DATE ���MONDAY��� NIL���

�PP ��PREP KILLING NIL� �NPST HIMSELF NIL� �CONJ AND

NIL� �NOUN FOUR ���������� �ADV OTHER NIL��NOUN

PEOPLE �	�	
��� ������� ����
�� 	�
��
�����

�VP ��VERB CRASHED ����
��
 ����
�� ��
����

��
���� ��
�
�� ����
�� ��
���� ��
���
 ���	���

������ �
�������

�NP ��NPST ANOTHER NIL�

�NOUN JET �
�
	��� 		����� ��
���

 

�
��	����

�PP ��PREP INTO NIL� �NPST THE NIL�

�NOUN SEA ��
���
	 ��

�	
 
��	
������

�PP ��DATE ���LAST�APRIL��� NIL�����

�	� ��PP ��CONN WHEN NIL���

�NP ��NPST THEIR NIL� �NOUN PLANE �
�
���� ���	���

�������� ���

�� ����

	����

�VP ��VERB SLAMMED ���
��� ���

� �
�	

� ��
�
�����

�PP ��PREP INTO NIL� �NPST A NIL� �NOUN CROATIAN

�
�	
	�	�� �NOUN HILLSIDE ��

��������

�PP ��PREP DURING NIL� �NOUN HEAVY �
���	�� �		�����

� �NOUN STORMS �
����
� �������� �

�������

�PP ��DATE ���WEDNESDAY��� NIL�����

Figure �
 Example of speci�c patterns� Note that sentence number �� is divided
in two by the syntactic analyzer� being the second one �with the keyword� relative
to the main one�

Although Essence does not need a corpus with answer keys about the infor�
mation to extract� MUC style competitions deliver them� We will use the answer
keys not for learning but only to automatically validate the patterns generated�
releasing the expert from this task and obtaining in this way results directly com�
parable with other systems� Validation will be done with the known measures of
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Structure

��number of matches� measure of relaxation��
list of general �elds that compose this general pattern�

Results


��� ��

��VP ��VERB �CRASHED SLAMMED� NUCLI���

�PP ��PREP INTO NIL� �NOUN �SEA HILLSIDE� ���	
����

�PP ��PREP NIL NIL� �DATE ����LAST�APRIL���

���WEDNESDAY���� NIL�����

��� 
�

��VP ��VERB �CRASHED SLAMMED� NUCLI���

�PP ��PREP INTO NIL� �NOUN �SEA HILLSIDE� ���	
����

�NP ��NOUN �JET PLANE� �
�
����������

��� ��

��VP ��VERB �CRASHED SLAMMED� NUCLI���

�PP ��PREP NIL NIL� �DATE ����LAST�APRIL���

���WEDNESDAY���� NIL���

�NP ��NOUN �JET PLANE� �
�
����������

��� ���

��VP ��VERB �CRASHED SLAMMED� NUCLI���

�PP ��PREP NIL NIL� �DATE ����LAST�APRIL���

���WEDNESDAY���� NIL���

�NP ��NOUN �JET PLANE� �
�	��

������

��� �
�

��VP ��VERB �CRASHED SLAMMED� NUCLI���

�PP ��PREP NIL NIL� �DATE ����LAST�APRIL���

���WEDNESDAY���� NIL���

�NP ��NOUN �JET PLANE� ���	
������

Figure �
 General patterns with � matches obtained from speci�c patterns shown
in Figure �� Note that the three last pattern match the same groups but with
di�erent synset numbers� This means that di�erent semantical senses of the
words match producing di�ent general patterns�

Recall� Precision and the mixture of them R�P �also known as F with � value
set to one� ���� In short� Recall measures the coverage of the set of IE pattern
and Precision measures the quality of the IE patterns obtained� Both values are
expressed as percentages� A ���� of Recall indicates that all information that
had to be extracted were actually extracted� A ���� of Precision indicates that
all information extracted was right�

Speci�cally� the Essence methodology was used to extract the site and date

��



Algorithm ELA �speci�c patterns�
Initialize covered groups to NIL
Set general patterns set to the null set
While not remaining information from speci�c patterns to be covered or

not remaining speci�c patterns to be used as seed in cycle do

gen pat
� cycle�num� matches� max� relaxation� set of spec� patterns�
If gen pat was accepted by the expert in the cycle function
Then

Add gen pat to general patterns set

Mark the groups of speci�c patterns covered by gen pat

EndIf

EndWhile

EndAlgorithm

Figure �
 ELA algorithm�

of a �ight crash jointly with the departure site� the destination site and the airline
of the �ight� and the manufacturer and the kind of aircraft that crashed�

In the experiments� we used a modi�ed version of MARMOT as the syntactic
analyzer with a general module for date detection and gazettes for identifying
companies and aircrafts�

The user de�ned two types of keywords� one for crash info �that includes
the slots crash�site and crash�date� and another for �ight info �aircraft�
airline� manufacturer� departure and destination��

Keywords used for the slots of crash information �place and date� were selected
from � set of words that usually describes a �ight crash� The words selected
were CRASH for expressing the crash of a �ight� FALL describing the fall of an
aircraft� DISAPPEAR for expressing the disappearing of a �ight from radar screens�
EXPLODE for describing a �ight accident by explosion� PLUNGE for expressing a
crash into water� and KILL expressing an accident were people died�

This set of words was expanded with their synonyms and hyponyms from
WordNet� giving the following complete set of keywords


BUMP� CLASH� COLLIDE� CRASH� HIT� JAR� KNOCK� RAM� SHOCK� SLAM�

STRIKE� DESCEND� DOWN� FALL� LAND� DISAPPEAR� LOSE� BLEW� BOMB�

EXPLODE� FIRE� HIT� STRIKE� DIE� KILL� PERISH� DIVE� NOSEDIVE�

PLUMMET� PLUNGE�

In the same way� keywords for the destination and departure slots in�
cluded words making reference to LEAVE� GO� RETURN� TRAVEL� LAND� FLY and
APPROACH� This set of words was completed with synonyms and hyponyms as
in the previous case� Airline and manufacturer slots had de�ned the keywords
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Training set Test set
Concept R P R�P R P R�P

Crash info

Crash Site ���� �	�� ���� �
�� ���� ����

Crash Date �	�� ���� �	�
 ���� 	��� ����

Flight Info

Aircraft �
�� ����� ���� ���� ����� ����

Airline ���� ���
 ���� ���� ���� �	�	

Manufacturer ���� ���� ���	 �
�� ���� ����

Departure ���� 	��� ���
 ���� ���� ����

Destination ���� 
��	 �	�� ���� ���
 ���


Table �
 Results for the Aircraft Crash domain�

used for crash information plus new ones that makes reference to seller�buyer
relations� as BUY� ORDER� OWN� RENT� BORROW and DELIVER� also completed
with the help of WordNet� Finally� keywords for the aircraft slot included all
the previous keywords�

From this set of keywords and the set of acceptable synsets de�ning the kind
of information for each slot� the Essence methodology was applied over ���
texts that compose the training set�

The set of patterns obtained was automatically tested in both the training
set and the test set in order to validate it� Results in recall� precision and R�P
for each slot to be �lled in the IE task are shown in table ��

Results presented show an average level of P�R of ����� in training and
����� in testing� that is reasonable high compared with the performance of other
systems in similar tasks�

Nevertheless� some of these results can be improved� In particular� the Airline
and Manufacturer values can be greatly improved by allowing the extraction of
information from modi�ers of the headwords� Preliminary results show that in
this case� the values for these slots can be raised to near 	���

� CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new methodology� named Essence� for acquir�
ing IE patterns to build IE systems� The main advantage of this methodology
is that it reduces the e�ort of the expert in the process of developing an IE sys�
tem� therefore decreasing the cost of production� This is achieved by centering
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the e�ort of the expert on the de�nition of the task and on the validation and
typi�cation of patterns� while tedious tasks have been automatized by the use of
Machine Learning techniques� and linguistic resources and tools�

The linguistic components are domain independent� is the case of WordNet
and the syntactic analyzer� The independence of the linguistic tools from the
IE task also ensures the easy portability of the methodology to build new IE
systems�

Moreover� the use of general tools allow the methodology to be applied to other
languages� For instance� Catalan and Spanish languages have been participants
in the EuroWordNet project that elaborates a multilingual version of the initial
English WordNet� This lexical resource along with available NLP tools developed
in our research group for these languages� will allow us porting the Essence
methodology to them�
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