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Abstract— It is well known that parallel interference channels
(ICs) are in general inseparable. Existing results illustrate the
benefit of joint encoding across sub-channels by exploiting the
asymmetry within the individual sub-channels. In this paper, we
show, perhaps surprisingly, that symmetric parallel ICs are also
inseparable. To this end, a class of parallel ICs is considered
in which each individual sub-channel is a symmetric linear
deterministic IC (LDIC). The capacity region of this class of
parallel ICs is characterized. As a consequence, we find the
necessary and sufficient conditions for inseparability of this
class of parallel ICs.

I. INTRODUCTION

The interference channel (IC) is a canonical model to
study the effect of interference in wireless networks. A long
standing open problem in information theory, the IC was
introduced by Shannon [1] and studied further by Ahlswede
[2]. A complete characterization of the capacity region of
the IC is still unknown today. The capacity region of the
IC is known in the strong interference regime, where the
interference at each receiver is stronger than the intended
signal. Reference [3] showed that the single-user capacity
for each user can be achieved when the interference is very
strong. Reference [4] characterized the capacity region when
the interference is strong. For the Gaussian IC, the capac-
ity region is also known in the weak interference regime.
References [5]–[7] showed that when the interference is
sufficiently weak, the sum capacity is achieved by treating
the interference as noise.

The best known achievable scheme for the IC is due to
Han and Kobayashi [8], in which each transmitter splits its
message into two parts, a common message which is decoded
by both receivers and a private message that is decodable
by only its intended receiver. A simplified version of the
Han-Kobayashi scheme was used in [9] to characterize the
capacity region of the Gaussian IC up to 1 bit. Reference
[9] also introduced the concept of generalized degrees of
freedom (g.d.o.f) and characterized the corresponding region
for the two-user Gaussian IC. Reference [10] showed that the
g.d.o.f. for the Gaussian IC has a one-to-one relationship with
the capacity region of the corresponding linear deterministic
IC (LDIC). The capacity region of the deterministic IC,
found in [11], was used to characterize the capacity region
of the two-user Gaussian IC up to a constant gap.

Besides the two-user Gaussian IC, the linear deterministic
channel model has been successfully used as an intermediate

step to approximate the capacity of other multi-terminal
Gaussian networks. It was used in [12] to model the links
in Gaussian networks with a single source-destination pair
and an arbitrary number of relay nodes. Reference [12]
showed that the capacity of the Gaussian network can be
approximated by the capacity of the deterministic network
up to a constant gap; 1 bit in special cases of single-relay and
the two-relay Gaussian diamond network. In [13], the linear
deterministic model was used to characterize the feedback
capacity of ICs up to 2 bits. In [14], linear deterministic
modeling was used to study the full-duplex bi-directional
relay channel with two nodes and one relay. The proposed
achievable scheme inspired by the deterministic model was
shown to achieve rates within 3 bits of the capacity. The
approximate sum capacity of the K-user symmetric Gaussian
channel is found using deterministic modeling in [15].

Due to the usefulness of the linear deterministic model in
approximating Gaussian channels accurately and simply, it
has also been studied independently to reveal key insights
relevant to Gaussian channels. Reference [16] studied the
LDIC with partial feedback. In [17], the two-user LDIC
is modeled as a game and the Nash equilibrium region is
characterized. In reference [18], the combinatorial structure
of the LDIC is explored to develop explicit deterministic
coding schemes that achieve the sum capacity.

A. Related Work

The question of separability in a parallel Gaussian IC
was raised by Cadambe and Jafar in [19]. They showed
that the parallel Gaussian IC is not separable in general by
presenting a specific example where joint coding outperforms
individually optimal encoding. This came as a surprise since
other well understood multi-terminal models such as the
multiple access channel (MAC) and the broadcast channel
(BC) are known to be separable, that is, the optimal trans-
mission scheme for the Gaussian MAC or BC is independent
encoding across the sub-channels with the final power al-
location done through water-filling. The parallel Gaussian
IC was studied in [20] with strong interference in every
sub-channel, and achievable schemes based on independent
encoding for each sub-channel were presented. Reference
[21] studied the one-sided parallel Gaussian IC. By noting
that the sum capacity is a concave function of power, a
numerical algorithm was developed to compute the sum



capacity. It was shown that a separation-based scheme with
power allocation via water-filling performed close to optimal,
when the interference is sufficiently weak. Reference [22]
showed that independent encoding across sub-channels and
treating the interference as noise is optimal if the interference
in each sub-channel is sufficiently weak. Reference [23]
studied an ergodic fading Gaussian IC with the channel state
information known perfectly at each user. It was shown that
in the case of uniformly strong interference (strong interfer-
ence in every fading state), joint coding across the fading
states (or sub-channels) is required for optimality. In the
case of uniformly weak interference, however, independent
coding for each fading state (or sub-channel) and treating
interference as noise is optimal. In [24], the parallel LDIC
with output feedback is studied using the combinatorial
model developed in [18]. Reference [24] determined when
the availability of output feedback can increase the sum
capacity of parallel ICs.

Separability in parallel channels has important practical
implications; it is much simpler to code for each sub-channel
separately and optimize over just the power allocation than
to perform joint encoding over all sub-channels. On the
other hand, it is also important to understand how much
can be benefitted (in terms of capacity) by joint encoding
across sub-channels. In this paper, we address this very
question of separability. As a stepping stone to understand
the parallel Gaussian IC, in this paper, we focus on the two-
user parallel LDICs with two symmetric sub-channels. We
establish the capacity region of such channels completely,
which enables us to address the question of separability
directly. Interestingly, we show that separability with respect
to the sum capacity is equivalent to separability with respect
to the full capacity region.

II. SYSTEM MODEL

A two-user parallel LDIC is considered. The parallel
channel comprises of two sub-channels, each one of which is
a symmetric LDIC. In this setting, there are two transmitter-
receiver pairs: Tx1 (respectively Tx2) wishes to send a
message W1 (respectively W2) to Rx1 (respectively Rx2)
through the two parallel sub-channels. A symmetric sub-
channel, where the number of direct signal levels at Rx1
is the same as that for Rx2, and the number of interference
levels at Rx1 is the same as that for Rx2, is fully described
by two parameters: (m,n), where n denotes the number
of direct signal levels from Txi to Rxi, for i = 1, 2 and
m denotes the number of cross or interfering signal levels
from Txi to Rxj , for i ̸= j and i, j = 1, 2. We denote
the two sub-channels by sub-channel A and sub-channel
B, with parameters (mA, nA) and (mB , nB). Thus, we
collectively refer to the overall channel by four parameters:
the (mA, nA,mB, nB)-LDIC. Fig. 1 shows the (1, 2, 2, 1)-
LDIC with mA = 1, nA = 2, mB = 2, nB = 1. In addition
to the four parameters (mA, nA,mB , nB), we find it useful
to define the following two parameters:
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nB
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Fig. 1: The (1, 2, 2, 1)-LDIC.

which measure the strength of interference relative to the
direct signals for each of the individual sub-channels.

III. MAIN RESULTS AND DISCUSSION

Theorem 1 The capacity region of the parallel LDIC de-
scribed by (mA,nA,mB ,nB) is given by:

R1 ≤ nA + nB

R2 ≤ nA + nB

R1 +R2 ≤ max(mA, 2nA −mA) + max(mB, 2nB −mB)

R1 +R2 ≤ 2[max(mA, nA −mA) + max(mB , nB −mB)]

2R1 +R2 ≤ max(mA, 2nA −mA) + max(mA, nA −mA)

+ max(mB , 2nB −mB) + max(mB , nB −mB)

R1 + 2R2 ≤ max(mA, 2nA −mA) + max(mA, nA −mA)

+ max(mB , 2nB −mB) + max(mB , nB −mB)

We next present the rate region that can be achieved by
separate encoding across the two sub-channels [10]:

R1 ≤ nA + nB

R2 ≤ nA + nB

R1 +R2 ≤ min [max(2nA −mA,mA),

2max(mA, nA −mA)] + min [max(2nB −mB,mB),

2max(mB, nB −mB)]

2R1 +R2 ≤ max(2nA −mA,mA) + max(mA, nA −mA)

+ max(2nB −mB,mB) + max(mB , nB −mB)

R1 + 2R2 ≤ max(2nA −mA,mA) + max(mA, nA −mA)

+ max(2nB −mB,mB) + max(mB , nB −mB)

In the following sub-section, we give a motivating ex-
ample, in which we compare these two regions and show
that separation is strictly sub-optimal, i.e., that the capacity
region can strictly exceed the region achievable by separately
optimal encoding over parallel channels.

A. Sub-Optimality of Separation: A Motivating Example

Let us now consider the (1, 2, 2, 1)-LDIC introduced in
the previous section and shown in Fig. 1. For this parallel
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Fig. 2: Capacity region for the (1, 2, 2, 1)-LDIC.

LDIC, the capacity region from Theorem 1 is given by

R1 ≤ 3 (2)
R2 ≤ 3 (3)

R1 +R2 ≤ 5 (4)

On the other hand, the region achieved by separate encoding
across the two sub-channels is given by

R1 ≤ 3 (5)
R2 ≤ 3 (6)

R1 +R2 ≤ 4 (7)

Fig. 2 shows that independent encoding across sub-channels
is a strictly suboptimal strategy in this case.

The optimal encoding that uses both the sub-channels
jointly is shown in Fig. 3 along with the separation based
scheme. Here, we show that with separate encoding we can
achieve the rate pair (3, 1), whereas by joint encoding across
sub-channels, we can achieve the rate pair (3, 2). The key
idea in joint encoding is the efficient utilization of signal
levels at the receivers that are left empty in the separation
based scheme. In particular, in the separation based scheme,
in sub-channel A, the top-most level of receiver 2 is unused.
By carefully designing joint encoding schemes, one can
make full use of such under-utilized signal levels, thereby
improving upon separation.

As a consequence of Theorem 1, we have the following
proposition:

Proposition 1 The (mA, nA,mB , nB)-LDIC is separable if
and only if the pair (αA, αB) falls into one of the following
three regions (see also Fig. 4):

• αA ∈
[
0, 2

3

]
, αB ∈

[
0, 2

3

]
.

• αA ∈
[
2
3 , 2

]
, αB ∈

[
2
3 , 2

]
.

• αA ≥ 2, αB ≥ 2.
For all the remaining cases, the separation based scheme is
strictly sub-optimal.

We note that the capacity region in Theorem 1 and the
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Fig. 3: Illustration of joint encoding versus separation.

separation based rate region only differ in R1 +R2 bounds.
Hence, the proposition directly follows by comparing the
sum rate bounds. As this is rather straightforward, we skip
this analysis, and instead, highlight some interesting conse-
quences and insights emerging from this result.

B. Remarks

1) It is perhaps surprising that even though the individual
sub-channels are symmetric, the parallel LDIC may
still be inseparable. In almost all examples of insepara-
bility we have previously encountered in the literature,
e.g., [19], the two sub-channels were not symmetric
individually. To the best of our knowledge, we have
presented here the first examples of inseparability even
when the individual sub-channels are symmetric.

2) It is easy to verify that separability with respect to the
sum rate is equivalent to separability with respect to
the capacity region.

3) Recall from Theorem 1 that there are two sum rate
bounds in the capacity region of a symmetric LDIC.
For a given value of the parameter α, only one of the
two bounds is active. If we examine Fig. 4, and keep
in mind the previous remark, we can infer that the
parallel LDIC is separable if and only if the same sum
rate constraint is active for both sub-channels. This
observation may be useful to generalize our results for
parallel LDICs with more than two sub-channels.
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IV. PROOF OF THEOREM 1

A. Converse

We note here that the parallel LDIC considered in this
paper falls in the class of deterministic ICs studied by Costa
and El Gamal in [11]. In the Costa-El Gamal model, the
input output relationships are given as follows:

Y1 = f1(X1, V2), Y2 = f2(X2, V1) (8)

where X1 and X2 are the channel inputs, the interference
V1 = g1(X1) at receiver 2 is a function of X1, the
interference V2 = g2(X2) at receiver 1 is a function of X2.
In addition, the following conditions also hold:

H(Y1|X1) = H(V2), H(Y2|X2) = H(V1) (9)

For this class of deterministic ICs satisfying (9), [11] char-
acterized the capacity region, which is given by

R1 ≤ H(Y1|V2) (10)
R2 ≤ H(Y2|V1) (11)

R1 +R2 ≤ H(Y1|V1V2) +H(Y2) (12)
R1 +R2 ≤ H(Y1) +H(Y2|V1V2) (13)
R1 +R2 ≤ H(Y1|V1) +H(Y2|V2) (14)
2R1 +R2 ≤ H(Y1) +H(Y1|V1, V2) +H(Y2|V2) (15)
R1 + 2R2 ≤ H(Y2) +H(Y2|V1, V2) +H(Y1|V1) (16)

We next note that the parallel LDIC considered in this
paper falls in the class of Costa El-Gamal deterministic
IC. To note this, we denote by vectors X1A and X1B

the inputs to the channel from Tx1 in the sub-channels A
and B, respectively. We define X2A and X2B similarly.
The output at Rx1 in sub-channel A and B are denoted
by Y1A and Y1B , respectively. The interference at Rx2
due to Tx1 in sub-channels A and B are denoted by V1A

and V1B , respectively. Similarly for V2A and V2B . Let
X1 = (X1A,X1B). Similarly, define X2, Y1, Y2, V1 and V2.
Now we note that V1 and V2 are deterministic functions of
X1 and X2, respectively. Also, Y1 is determined completely

by X1 and V2. A similar statement holds for Y2. Finally,
it is straightforward to check that with these definitions the
conditions in (9) hold. The converse now can be obtained
using (10)-(16). An observation similar to [10, Lemma 4],
that the optimal input distribution is uniform, allows us to
simplify the rate region in [11] further by noting that

H(Y1|V2) ≤ H(Y1A|V2A) +H(Y1B |V2B)

≤ nA + nB

H(Y1) ≤ H(Y1A) +H(Y1B)

≤ max(mA, nA) + max(mB , nB)

H(Y1|V1, V2) ≤ H(Y1A|V1A,V2A) +H(Y1B |V1B ,V2B)

≤ max(nA −mA, 0) + max(nB −mB , 0)

H(Y1|V1) ≤ H(Y1A|V1A) +H(Y1B |V1B)

≤ max(mA, nA−mA)+max(mB , nB−mB)

Using symmetry within each of the sub-channels A and B
and the above equations to simplify the rate region in (10)-
(16) gives us the rate region specified in Theorem 1. We note
that unlike in [11], we have two rather than three sum rate
bounds; this follows due the assumed symmetry for each of
the two sub-channels in our case.

B. Achievability

We first note that the Han-Kobayashi scheme [8] achieves
the capacity of Costa-El Gamal model and hence also for
our parallel LDIC model. However, this scheme is based on
random coding arguments and moreover the vector (multi-
channel) version of it permits arbitrary ways of encoding
and decoding information across sub-channels. Thus, the
structure of how to jointly encode across sub-channels is
not transparent. Furthermore, we are ultimately interested in
taking the insights from the linear to the Gaussian model.
It is therefore desirable to seek explicit capacity achieving
schemes which clearly highlight how to jointly encode across
sub-channels for the parallel LDIC. This is one of the main
contributions of this work and the focus of this section.

We already know that the separation based scheme
achieves the capacity in three (αA, αB) regimes as stated
in Proposition 1. Hence, to prove the achievability, we only
need to consider the (αA, αB) regimes in which separation
is sub-optimal. In addition, due to symmetry, it suffices to
consider αB ≥ αA. Hence, the regimes that we need to
consider are the following:

• Regime 1: αA ∈
[
0, 2

3

]
, αB ≥ 2

3 .

• Regime 2: αA ∈
[
2
3 , 2

]
, αB ≥ 2.

Due to space limitations here, we restrict ourselves to one
sub-case of Regime 1 in which αA ∈ [0, 2/3] and αB ≤ 1,
and one sub-case of Regime 2, in which αA ≥ 1. All of the
remaining cases will be presented in a longer version of this
paper. Hence, we sub-divide the regimes to be considered in
this paper in detail as follows:

• Regime 1a: αA ∈
[
0, 1

2

]
, αB ∈

[
2
3 , 1

]
.

• Regime 1b: αA ∈
[
1
2 ,

2
3

]
, αB

[
2
3 , 1

]
.

• Regime 2a: αA ∈ [1, 2] , αB ≥ 2.
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We can think of Regime 1a as a combination of very
weak and moderate interference sub-channels. Similarly,
Regime 1b can be regarded as a combination of weak and
moderate interference sub-channels, and Regime 2a can
be regarded as a combination of strong and very strong
interference sub-channels.

C. Achievability: Regime 1a

In this regime, the region in Theorem 1 simplifies to:

R1 ≤ nA + nB (17)
R2 ≤ nA + nB (18)

R1 +R2 ≤ (2nA −mA) + (2nB −mB) (19)
R1 +R2 ≤ 2(nA −mA) + 2mB (20)
2R1 +R2 ≤ 3nA − 2mA + 2nB (21)
R1 + 2R2 ≤ 3nA − 2mA + 2nB (22)

We next note that if 3mB − 2nB ≤ mA, the constraint in
(19) is inactive whereas (20) is active. On the other hand,
for 3mB − 2nB > mA, the opposite is true. These two
sub-divisions of Regime 1a are shown in Fig. 5. For both of

these cases, the achievability of (nA+nB , nA−2mA) follows
directly by using a separation based scheme. To note this, we
observe that in sub-channel A, we can achieve the rate pair
(nA, nA − 2mA). For sub-channel B, the rate pair (nB , 0)
is achievable. Hence, the rate pair (nA + nB, nA − 2mA) is
achievable for the parallel LDIC. We therefore focus on the
non-trivial points on the capacity region.

1) 3mB − 2nB ≤ mA: Here, we focus on achieving the
following pair:

R1 = nA + 2(nB −mB) (23)
R2 = (nA − 2mA) + 2(2mB − nB) (24)

To achieve this rate pair, Tx1 transmits nA symbols in sub-
channel A, and (nB−mB) symbols from the top and (nB−
mB) symbols from the bottom in sub-channel B. If (2mB−
nB) ≤ mA, Tx2 transmits (2mB−nB) symbols from the top
and (2mB−nB) symbols from the bottom and (nA−2mA)
symbols from the middle levels. The interference at each
user is (2mB − nB), which can be resolved in sub-channel
B. If (2mB − nB) ≥ mA, Tx2 sends nA symbols in sub-
channel A, and (2mB−nB−mA) symbols from the top and
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Fig. 8: Representative examples for Regime 1b.

(2mB − nB −mA) symbols from the bottom levels in sub-
channel B. The interference of mA symbols in sub-channel
A can be resolved in sub-channel B.

2) 3mB − 2nB > mA: Here, we focus on achieving the
following pair:

R1 = nA + (mB −mA) (25)
R2 = nA + 2(nB −mB) (26)

To achieve this rate pair, Tx1 and Tx2 transmit nA symbols in
sub-channel A causing interference of mA symbols at each
receiver. In sub-channel B, Tx1 and Tx2 transmit on the top
and bottom (nB − mB) levels. Additionally, Tx1 transmits
(mB − mA) − 2(nB − mB) new symbols beneath the top
2(nB −mB) levels. The remaining levels for sub-channel B
can be used to mitigate the interference in sub-channel A.

As illustrative examples in Regime 1a, we consider two
LDICs: the (3,7,4,5)-LDIC and the (1,3,4,5)-LDIC. Both of
these LDICs belong to Regime 1a. For the (3,7,4,5)-LDIC,
3mB − 2nB = 2 ≤ mA = 3, while for the (1,3,4,5)-
LDIC, the opposite inequality is true. The non-trivial points
to achieve are (9,7) for the (3,7,4,5)-LDIC and (6,5) for the
(1,3,4,5)-LDIC. We show how these points can be achieved

in Fig. 6. Note how joint encoding over the two sub-channels
has been used to achieve these points; the interference in
sub-channel A is mitigated in sub-channel B.

D. Achievability: Regime 1b

In this regime, the region in Theorem 1 simplifies to:

R1 ≤ nA + nB (27)
R2 ≤ nA + nB (28)

R1 +R2 ≤ (2nA −mA) + (2nB −mB) (29)
R1 +R2 ≤ 2mA + 2mB (30)
2R1 +R2 ≤ 2nA + 2nB (31)
R1 + 2R2 ≤ 2nA + 2nB (32)

We note that if 2(nA+nB) ≤ 3(mA+mB), (30) is redundant
and only (29) is active. Fig. 7 shows the capacity regions in
these two cases. Let us focus on the two cases separately.

1) 2(nA + nB) ≤ 3(mA +mB): Here we must achieve
the following rate pair:

R1 = mA +mB (33)
R2 = 2(nA −mA) + 2(nB −mB) (34)
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Fig. 9: Capacity region of Regime 2a.

Achieving (3,3) on the (3,2,4,1)-LDIC
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Fig. 10: Representative examples for Regime 2a.

We identify two subcases:

Case a: mA +mB ≥ nA: Tx1 sends nA symbols in sub-
channel A and the remaining symbols in sub-channel B. Tx2

sends (nA −mA) symbols from the top and the bottom in
sub-channel A and (nB−mB) symbols from the top and the
bottom in sub-channel B. The interference in sub-channel A
is (nA −mA), which can be resolved in sub-channel B.

Case b: mA +mB < nA: Tx1 transmits (3mB − 2nB) +
(2mA−nA) symbols from the top and (nA−mA) symbols
from the bottom in sub-channel A. Tx2 transmits (nA −
mA) symbols from the top and the bottom in sub-channel
A and (nB − mB) symbols from the top and the bottom
in sub-channel B. The interference in sub-channel A at Rx1

and Rx2 is (3mB − 2nB) symbols. In sub-channel B, Tx1

transmits (nB−mB) remaining symbols from the top and the
bottom, stays silent in (nB−mB) levels to avoid interference
at Rx2 and transmits (3mB − 2nB) symbols in (3mB −
2nB) levels remaining among the top mB levels. Thus, the
interference is resolved in sub-channel B.

2) 2(nA +nB) > 3(mA +mB): In this case, we need to
achieve the following rate pair:

R1 = 2(nA −mA) + 2(nB −mB) (35)
R2 = 2(2mA − nA) + 2(2mB − nB) (36)

Tx1 and Tx2 each send (nA − mA) symbols from the top
and the bottom in sub-channel A, causing an interference of
(2nA − 3mA) symbols at each user. In sub-channel B, Tx1

transmits (nB −mB) symbols from the top and the bottom,
while Tx2 sends (2mB−nB)− (2nA−3mA) symbols from
the top and the bottom. The interference is resolved in sub-
channel B.

As illustrative examples in Regime 1b, we consider two
LDICs: the (4,7,5,6)-LDIC and the (4,7,5,7)-LDIC. For the
(4,7,5,6)-LDIC, we have 2(nA+nB) = 26 ≤ 3(mA+mB) =
27. We are interested in achieving the rate pair (9,8) on this
LDIC. For the (4,7,5,7)-LDIC, 2(nA+nB) = 28 > 3(mA+
mB) = 27. Thus, we are interested in achieving the rate pair
(10,8). Fig. 8 shows how the desired rate pairs are achieved
on the corresponding LDICs. Again, joint encoding on the
two sub-channels is exploited.

E. Achievability: Regime 2a

In this regime, the region in Theorem 1 simplifies to:

R1 ≤nA + nB (37)
R2 ≤nA + nB (38)

R1 +R2 ≤mA +mB (39)

We note that if mA+mB > 2(nA+nB), the sum rate bound
is inactive. Fig. 9 shows the capacity region in each case. Let



us now focus on the two cases:
1) mA+mB ≤ 2(nA+nB): In this case, we are interested

in achieving the rate pair:

R1 = nA + nB (40)
R2 = (mA − nA) + (mB − nB) (41)

We identify several subcases:
Case a:(mA − nA) + (mB − nB) ≥ nA: To achieve the

desired rate pair, Tx1 sends (nA + nB) symbols using sub-
channels A and B. Tx2 sends nA symbols in sub-channel A
and the remaining (mA − 2nA +mB − nB) symbols from
top levels in sub-channel B. The interference of 2nA −mA

symbols in sub-channel A can be resolved in sub-channel B.
Case b: (mA − nA) + (mB − nB) ≤ nA and mB −

nB ≥ mA−nA: In this case, Tx1 sends (nA+nB) symbols
using sub-channels A and B as usual. Tx2 sends (mB−nB)
symbols from the top and the remaining (mA−nA) symbols
right underneath the top (2nA −mA) levels in sub-channel
A. The interference at each receiver is (mB − nB) symbols
which can be resolved in sub-channel B.

Case c: (mA−nA)+ (mB −nB) ≤ nA and mB −nB ≤
mA − nA: Here, Tx1 transmits (nA + nB) symbols using
sub-channels A and B. Additionally, it transmits ((mA −
nA) − (mB − nB)) symbols intended for Rx2 underneath
the top nA levels in sub-channel A. Tx2 sends (mA − nA)
symbols from the top and the remaining (mB−nB) symbols
underneath the top (nA − (mB − nB)) levels. The effective
interference at each user is (mB − nB) symbols which can
be resolved in sub-channel B.

2) mA+mB > 2(nA+nB): In this case, we are interested
in achieving the rate pair:

R1 = R2 = nA + nB (42)

To achieve this point, both Tx1 and Tx2 transmit on the
top nA levels in sub-channel A and top nB levels in sub-
channel B. Both transmitters remain silent on the bottom
nB levels, and can transmit interference mitigation symbols
in the remaining mB − 2nB levels in sub-channel B. The
interference at both receivers in sub-channel A is 2nA−mA

bits, which can be mitigated in sub-channel B, since mB −
2nB ≥ 2nA −mA.

As illustrative examples in Regime 2a, we consider two
LDICs: the (5,4,3,1)-LDIC and the (3,2,4,1)-LDIC. Note that
for the (5,4,3,1)-LDIC, mA +mB = 8 ≤ 2(nA +nB) = 10.
The rate pair we wish to achieve is (5,3). For (3,2,4,1)-LDIC,
mA +mB = 7 > 2(nA + nB) = 6. Therefore, the desired
rate pair to achieve is (3,3). We illustrate how the desired
points are achieved in Fig. 10.

V. CONCLUSIONS

We characterized the capacity region of the two-user paral-
lel LDIC completely, and in the process we showed that even
symmetric parallel ICs are, in general, not separable. Further,
we characterized the exact regions where the symmetric
parallel LDIC is indeed separable. Interestingly, we observe
that parallel LDICs are separable in a large area of interest
within the “weak interference” regime.
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