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Abstract. We consider verification of safety properties for concurrent real-timed sys-
tems modelled as timed Petri nets, by performing symbolic forward reachability analysis.
We introduce a formalism, called region generators for representing sets of markings of
timed Petri nets. Region generators characterize downward closed sets of regions, and
provide exact abstractions of sets of reachable states with respect to safety properties. We
show that the standard operations needed for performing symbolic reachability analysis
are computable for region generators. Since forward reachability analysis is necessarily
incomplete, we introduce an acceleration technique to make the procedure terminate more
often on practical examples. We have implemented a prototype for analyzing timed Petri
nets and used it to verify a parameterized version of Fischer’s protocol, Lynch and Shavit’s
mutual exclusion protocol and a producer-consumer protocol. We also used the tool to
extract finite-state abstractions of these protocols.
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1. Introduction

Petri nets are one of the most widely used graphical models for analysis and
verification of concurrent systems. A number of timed extensions of Petri
nets [Razouk and Phelps 1985],[Merlin and Farber 1976],[Ramamoorthy and Ho
1980],[Holliday and Vernon 1987],[Coolahan and Roussopoulos 1983],[Ghezzi et
al. 1991],[Abdulla and Nylén 2001] have been proposed in order to capture the
timing aspects of the concurrent systems (see [Bowden 1996] for a survey). We
consider the timed Petri net (TPNs) model of [Abdulla and Nylén 2001], in which
each token has an “age” which is represented by a real valued clock.
As opposed to timed automata [Alur and Dill 1990], TPNs operate on a potentially
unbounded number of clocks. This implies that TPNs can, among other things,
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model parameterized timed systems (systems consisting of an unbounded number
of timed processes) [Abdulla and Nylén 2001].
A fundamental problem for TPNs (and also for standard Petri nets) is that of cover-
ability: check whether an upward closed set of final markings is reachable from a
set of initial markings. Using standard techniques [Vardi and Wolper 1986], several
classes of safety properties for TPNs can be reduced to the coverability problem
where final markings represent violations of the safety property. To solve cover-
ability, one may either compute the set of forward reachable markings, i.e., all
the markings reachable from the initial markings; or compute backward reachable
markings, i.e., all the markings from which a final marking is reachable.
While backward and forward analysis seem to be symmetric, they exhibit surpris-
ingly different behaviours in many applications. For TPNs, even though the set
of backward reachable states is computable [Abdulla and Nylén 2001], the set of
forward reachable states is in general not computable. Therefore any procedure
for performing forward reachability analysis on TPNs is necessarily incomplete.
However, forward analysis is practically very attractive. The set of forward reach-
able states contains much more information about system behaviour than backward
reachable states. This is due to the fact that forward closure characterizes the set of
states which arises during the execution of the system, in contrast to backward clo-
sure which only describes the states from which the system may fail. This implies
for instance that forward analysis can often be used for constructing a symbolic
graph which is a finite-state abstraction of the system, and which is a simulation or
a bisimulation of the original system (see e.g. [Bensalem et al. 1998],[Lakhnech et
al. 2001]).
Contribution: We consider performing forward reachability analysis for TPNs.
We provide an abstraction of the set of reachable markings by taking its downward
closure. The abstraction is exact with respect to coverability (consequently with
respect to safety properties), i.e, a given TPN satisfies any safety property exactly
when the downward closure of the set of reachable states satisfies the same prop-
erty. Moreover, the downward closure has usually a simpler structure than the exact
set of reachable states.
The set of reachable markings (and its downward closure) is in general infinite. So,
we introduce a symbolic representation for downward closed sets, which we call
region generators. Each region generator denotes the union of an infinite number
of regions [Alur and Dill 1990]. Regions are designed for timed automata (which
operate on a finite number of clocks), and are therefore not sufficiently powerful
to capture the behaviour of TPNs. We define region generators hierarchically as
languages where each word in the language is a sequence of multisets over an
alphabet. The idea is that elements belonging to the same multiset correspond to
clocks with equal fractional parts while the ordering among multisets in a word
corresponds to increasing fractional parts of the clock values.
We show that region generators allow the basic operations in forward analysis, i.e,
checking membership, entailment, and computing the post-images with respect to
a single transition. Since forward analysis is incomplete, we also give an accelera-
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tion scheme to make the analysis terminate more often. The scheme computes, in
one step, the effect of an arbitrary number of firings of a single discrete transition
interleaved with timed transitions.
We have implemented the forward reachability procedure and used the tool to com-
pute the reachability set for a parameterized version of Fischer’s protocol, Lynch
and Shavit’s protocol and also for a simple producer/consumer protocol. Also, we
used the tool for generating finite state abstractions of these protocols.
Related Work: [Abdulla et al. 1998] considers simple regular expressions (SRE)
as representations for downward closed languages over a finite alphabet. SREs are
used for performing forward reachability analysis of lossy channel systems. SREs
are not sufficiently powerful in the context of TPNs, since they are defined on a
finite alphabet, while in the case of region generators the underlying alphabet is
infinite (the set of multisets over a finite alphabet).
Both [Delzanno and Raskin 2000] and [Finkel et al. 2002] consider (untimed)
Petri nets and give symbolic representations for upward closed sets and downward
closed sets of markings, respectively. The works in [Finkel et al. 2000],[Boigelot
and Godefroid 1996],[Bouajjani and Habermehl 1997] give symbolic representa-
tion for FIFO automata. These representations are designed for weaker models
(Petri nets and FIFO automata) and cannot model the behaviour of TPNs.
[Abdulla and Nylén 2001] considers timed Petri nets. The symbolic representation
in this paper characterizes upward closed sets of markings, and can be used for
backward analysis, but not for forward analysis.
Outline: In the next section, we introduce timed Petri nets and define the cover-
ability problem for TPNS. In Section 3, we introduce region generators. Section 4
gives the forward reachability algorithm. Section 5 and Section 6 give algorithms
for computing post-images and acceleration respectively. In Section 7 we report
on some experiments with our implementation. Finally, we give conclusions and
directions for future research in Section 8.

2. Definitions

We consider Timed Petri Nets (TPNs) where each token is equipped with a real-
valued clock representing the “age” of the token. The firing conditions of a transi-
tion include the usual ones for Petri nets. Additionally, each arc between a place
and a transition is labelled with an interval of natural numbers. When firing a tran-
sition, tokens which are removed (added) from (to) places should have ages in the
intervals of corresponding arcs.
We use N and R≥0 to denote the sets of natural numbers and nonnegative reals
respectively. We use a set Intrv of intervals. An open interval is written as (w, z)
where w ∈ N and z ∈ N∪{∞}. Intervals can also be closed in one or both directions,
e.g. [w, z) is closed to the left and open to the right.
For a set A, we use A~ to denote the set of finite multisets over A. We view a
multiset over A as a mapping from A to N. Sometimes, we write multisets as lists,
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so [2.4 , 5.1 , 5.1 , 2.4 , 2.4] represents a multiset b over R≥0 where b(2.4) = 3,
b(5.1) = 2 and b(x) = 0 for x , 2.4, 5.1. We may also write b as

[

2.43 , 5.12
]

.
For multisets b1 and b2 over N, we say that b1 ≤

m b2 if b1(a) ≤ b2(a) for each
a ∈ A. We define addition b1 + b2 of multisets b1, b2 to be the multiset b where
b(a) = b1(a) + b2(a), and (assuming b1 ≤

m b2) we define the subtraction b2 − b1 to
be the multiset b where b(a) = b2(a) − b1(a), for each a ∈ A. We use ε to denote
an empty multiset.
For a set A with ordering �, we use A∗ to denote the set of finite words over A. For a
word w ∈ A∗, we use |w| to denote the length of w, and w(i) to denote the ith element
of w where 1 ≤ i ≤ |w|. We use w1 •w2 to denote the concatenation of the words w1
and w2. We define the ordering ≤w on the set of words over A such that w1 ≤

w w2
if there is a strictly increasing injection h : {1, . . . , |w1|} → {1, . . . , |w2|} where
w1(i) � w2(h(i)) for i : 1 ≤ i ≤ |w1|. Later we will use ≤m for � in Section 3. We
use ε to denote an empty word as well.
Timed Petri Nets A Timed Petri Net (TPN) is a tuple N = (P,T, In,Out) where P is
a finite set of places, T is a finite set of transitions and In,Out are partial functions
from T × P to Intrv.
We let max be the maximum natural number which appears (in the intervals) on
the arcs of the TPN.
If In(t, p) (Out(t, p)) is defined, we say that p is an input (output) place of t. A
marking M of N is a multiset over P × R≥0. We abuse notations and write1 p(x)
instead of (p, x). The marking M defines the numbers and ages of tokens in each
place in the net. That is, M(p(x)) defines the number of tokens with age x in
place p. For example, if M = [p1(2.5) , p1(1.3) , p2(4.7) , p2(4.7)

]

, then, in the
marking M, there are two tokens with ages 2.5 and 1.3 in p1, and two tokens each
with age 4.7 in p2. Abusing notation again, we define, for each place p, a multiset
M(p) over R≥0, where M(p)(x) = M(p(x)).
For a marking M of the form

[p1(x1) , . . . , pn(xn)
]

and x ∈ R≥0, we use M+x to
denote the marking [p1(x1 + x) , . . . , pn(xn + x)].
Transitions: There are two types of transitions : timed and discrete transitions. A
timed transition increases the age of each token by the same real number. Formally,
for x ∈ R≥0, M1 −→x M2 if M2 = M+x

1 . We use M1 −→Time M2 to denote that
M1 −→x M2 for some x ∈ R≥0.
We define the set of discrete transitions −→Disc as

⋃

t∈T −→t, where −→t represents
the effect of firing the transition t. More precisely, M1 −→t M2 if the set of input
arcs {p(I) | In(t, p) = I} is of the form {p1(I1), . . . , pk(Ik)}, the set of output arcs
{p(I) | Out(t, p) = I} is of the form {q1(J1), . . . , q`(J`)}, and there are multisets
b1 =

[p1(x1) , . . . , pk(xk)
]

and b2 =
[q1(y1) , . . . , q`(y`)

]

such that the following
holds:
- b1 ≤

m M1
- xi ∈ Ii, for i : 1 ≤ i ≤ k.
1 Later, we shall use a similar notation. For instance, we write p(n) instead of (p, n) where n ∈ N,
and write p(I) instead of (p,I) where I ∈ Intrv.
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Fig. 2.1: A small timed Petri net.

- yi ∈ Ji, for i : 1 ≤ i ≤ `.
- M2 = (M1 − b1) + b2.
Intuitively, a transition t may be fired only if for each incoming arc to the transition,
there is a token with the “right” age in the corresponding input place. These tokens
will be removed when the transition is fired. The newly produced tokens have ages
belonging to the relevant intervals.

We define −→=−→Time ∪ −→Disc and use ∗
−→ to denote the reflexive transitive

closure of −→. We say that M2 is reachable from M1 if M1
∗
−→ M2. We define

Reach(M) to be the set
{

M′ | M ∗
−→ M′

}

.

E 1. Figure 2.1 shows an example of a TPN where P = {Q,R, S } and T =
{t1, t2, t3}. For instance, In(t2,Q) = (3, 5) and Out(t2,R) = (0, 1) and Out(t2, S) =
(1, 2). A marking of the given net is M0 = [Q(2.0), R(4.3), R(3.5)]. A timed tran-
sition from M0 is given by M0 −→1.5 M1 where M1 = [Q(3.5), R(5.8), R(5.0)].
An example of a discrete transition is given by M1 −→t2 M2 where M2 =
[R(0.2), S (1.6), R(5.8), R(5.0)].

Notice that untimed Petri nets are a special case in our model where all intervals
are of the form [0,∞).
Remark: Notice that we assume a lazy (non-urgent) behaviour of TPNS. This
means that we may choose to “let time pass” instead of firing enabled transitions,
even if that disables a transition by making some of the needed tokens “too old”.
In fact TPNs are infinite in two directions: they have unbounded number of tokens,
and each token has a real-valued clock. The infiniteness due to real-valued clocks
are handled by regions, introduced next.
Regions Regions were first designed for timed automata [Alur and Dill 1990] (au-
tomata operating on a finite number of clocks) and hence they are not powerful
enough to capture the behaviour of TPNs. A region defines the integral parts of
clock values up to max (the exact age of a token is not useful if it is greater than
max), and also the ordering of the fractional parts among clock values. For TPNs,
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we need to use a variant which also defines the place in which each token (clock)
resides. We define an ordering on markings of TPNs which extends the equiva-
lence relation on markings induced by the classical region graph construction of
[Alur and Dill 1990].
Following Godskesen [Godskesen 1994] we represent a region for TPN by a triple
(b0,w, bmax) where

◦ b0 ∈ (P × {0, . . . ,max})~ is a multiset of pairs. A pair of the form p(n) repre-
sents a token with age exactly n in place p.
◦ w ∈

(

(P × {0, . . . ,max − 1})~
)∗

is a word over the set (P × {0, . . . ,max − 1})~,
i.e., w is a word where each element in the word is a multiset over P ×
{0, . . . ,max − 1}. The pair p(n) represents a token in place p with age x such
that x ∈ (n, n + 1). Pairs in the same multiset represent tokens whose ages
have equal fractional parts. The order of the multisets in w corresponds to the
order of the fractional parts.
◦ bmax ∈ P~ is a multiset over P representing tokens with ages strictly greater

than max. Since the actual ages of these tokens are irrelevant, the information
about their ages is omitted in the representation.

Assume a marking M =
[p1(x1), . . . , pn(xn)]. We define a unique region RM =

(b0, b1b2 · · · bm, bm+1) such that M satisfies RM (written as M |= R) as follows:
Each b j is of the form

[

q j1(y j1), . . . , q j` j (y j` j )
]

for j : 0 ≤ j ≤ m and bm+1 is of
the form

[qm+1 1, . . . , qm+1 lm+1

]

. We also define a bijection h from the set {1, . . . , n}
to the set of pairs

{

( j, k) | (0 ≤ j ≤ m + 1) ∧ (1 ≤ k ≤ ` j)
}

such that the following
conditions are satisfied:

◦ pi = qh(i). Each token should have the same place as that required by the
corresponding element in R.
◦ h(i) = ( j, k) and j = m + 1 if xi > max. Tokens older than max should

correspond to elements in multiset bm+1. The actual ages of these tokens are
not relevant.
◦ h(i) = ( j, k) and j ≤ m if xi ≤ max and bxic = y j k. The integral part

of the age of tokens should agree with the natural number specified by the
corresponding elements in w.
◦ h(i) = (0, k) for some k if fract(xi) = 0 and xi ≤ max. Tokens with zero

fractional parts correspond to elements in multiset b0.
◦ h(i1) = ( j1, k1) and h(i2) = ( j2, k2) for j1 ≤ j2 ≤ m if xi1 , xi2 < max and

fract(xi1 ) ≤ fract(xi2 ). Tokens with equal fractional parts correspond to ele-
ments in the same multiset (unless they belong to bm+1). The ordering among
multisets inside R reflects the ordering among fractional parts in clock values.

From the above definitions, it is straightforward that each region characterizes an
infinite set of markings. We let [[R]] = {M | RM = R} = {M | M |= R}.
The region construction defines an equivalence relation ≡ on the set of markings
such that M1 ≡ M2 iff RM1 = RM2 . Following [Alur and Dill 1990], it can be
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Fig. 2.2: Marking M in (a) satisfies region R in (b).

easily shown that ≡ is a congruence on the set of markings, i.e, if M1 −→ M2 and
M1 ≡ M3 then there is an M4 such that M2 ≡ M4 and M3 −→ M4.

E 2. Consider the TPN N in Figure 2.1 with max = 7. Figure 2.2(a) shows
a marking M = [R(2.0) , S (5.5), R(1.7), S (6.7), Q(8.9)]. Figure 2.2(b) shows the
unique region RM = ([R(2)] , [S (5)] • [R(1), S (6)] , [Q]). such that M |= RM .
In Figure 2.2(b), each circle corresponds to a multiset of tokens of N with same
fractional parts. Dotted lines show how the tokens of M in TPN corresponds to
elements in the region RM .

Orderings First we define an ordering � on the set of markings such that M1 � M2
if there is an M′2 with M1 ≡ M′2 and M′2 ≤

m M2. In other words, M1 � M2 if we
can delete a number of tokens from M2 and as a result obtain a new marking which
is equivalent to M1. We let M1 ≺ M2 denote that M1 � M2 and M1 . M2.
A set M of markings is said to be upward closed if M1 ∈ M and M1 � M2 implies
M2 ∈ M. We define the upward closure M ↑ to be the set {M | ∃M ′ ∈ M : M′ � M}.
Downward closed sets and downward closure M ↓ of a set M are defined in a similar
manner.
Next, we consider the following lemma which states that −→ is monotonic with
respect to the ordering �.
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L 1. If M1 −→ M2 and M1 � M3 then there is an M4 such that M2 � M4 and
M3 −→ M4.

P. Suppose that M1 � M3. By definition of � there is an M′3 with M1 ≡ M′3
and M′3 ≤

m M3. From the definition of ≤m we know that there is an M′′3 such that
M3 = M′3 + M′′3 . Since ≡ is a congruence, there is M′4 such that M2 ≡ M′4 and
M′3 −→ M′4. We define M4 = M′4 + M′′4 where M′′4 = M′′3 if M′3 −→t M′4 for some
discrete transition t, and M′′4 =

(

M′′3
)+x

if M′3 −→x M′4 for some x ∈ R≥0. �

E 3. Consider the TPN N in Figure 2.1 where max = 7. Here is
an example of a region R = ([R(2)] , [S (5)] [R(1), S (5), S (2)] , [Q]).
Markings M1 = [R(2.0) , S (5.5), R(1.7), S (5.7), S (2.7), Q(8.9)] and M2 =
[R(2.0) , S (5.7), R(1.8), S (5.8), S (2.8), Q(9.9)] of N satisfy the above region.
Notice that M1 ≡ M2. Let M3 = M2 + [R(1.2), Q(14.2)]. Since M2 ≤

m M3
and M1 ≡ M2, we have M1 � M3.

Next we define an ordering ≤r on regions such that if R1 =
(

b1
0,w

1, b1
max
)

and
R2 =

(

b2
0,w

2, b2
max
)

then R1 ≤
r R2 iff b1

0 ≤
m b2

0, w1 ≤w w2, and b1
max ≤

m b2
max. We

use R1 ≤
r R2 to mean that for each M1 ∈ [[R1]] and M2 ∈ [[R2]], M1 � M2.

Upward (downward) closed sets of regions and upward (downward) closure of a
set of regions with respect to ≤r can be defined in a similar manner to that for
markings.
C P  TPN
Instance: A set of initial markings Minit and a finite set Mfin of final markings.
Question: Reach(Minit) ∩

(

Mfin ↑
)

= ∅ ?
The coverability problem is interesting from the verification point of view, since
checking safety properties can often be reduced to coverability[Vardi and Wolper
1986]. We use the set Mfin ↑ to represent a set of “bad markings” which we do
not want to occur during the execution of the system. Safety is then equivalent to
non-reachability of Mfin ↑. (Notice that Mfin ↑ is upward closed with respect to the
ordering �.)
From Lemma 1 it follows immediately that analyzing coverability will not be af-
fected by taking the downward closure of the set of reachable markings.

L 2. For a set of markings Minit and an upward closed set M of markings, we
have Reach(Minit) ∩ M = ∅ iff (Reach(Minit)) ↓ ∩ M = ∅.

P. It is obvious that Reach(Minit) ∩ M = ∅ if (Reach(Minit)) ↓ ∩ M = ∅.
We show the other direction. Suppose that there is a marking M ∈ (Reach(Minit)) ↓
∩ M. This means that there is a marking M′ ∈ (Reach(Minit)) such that M � M′ and
M ∈ M, i.e., M′ ∈ M, since M is upward closed. This implies (Reach(Minit)) ∩ M ,
∅. Contradiction. �
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Fig. 2.3: A timed Petri net for which Karp-Miller algorithm cannot be applied.

Since Mfin ↑ (in the definition of the coverability problem) is upward closed by
definition, it follows from Lemma 2 that taking downward closure of Reach(M init)
gives an exact abstraction with respect to coverability.
Infeasibility of the Karp-Miller Algorithm The Karp-Miller algorithm [Karp and
Miller 1969] is the classical method used for checking coverability in untimed Petri
nets. However, it is not obvious how to extend the algorithm to TPNs. [Karp
and Miller 1969] constructs a reachability tree starting from an initial marking.
It detects paths in the reachability tree which lead from a marking M1 to a larger
marking M2. In such a case, it makes an over-approximation of the set of reachable
markings by putting ω (interpreted as “unboundedly many tokens”) in each place
p with M1(p) < M2(p). This over-approximation preserves safety properties.
In the case of TPNs, if M1 ≺ M2 (in fact even if M1 ≤

m M2 and M1 , M2) this
conclusion cannot be drawn. For instance, consider the Petri net in Figure 2.3.
If we start from marking M0 =

[p(0)], we can let time pass by one unit, reach
M1 =

[p(1)
]

, then fire transition t and reach a marking M2 =
[p(0), q(0)

]

. However,
it is not the case that unboundedly many tokens with age q(0) are generated, even
though M0 ≤

m M2 and M0 , M2. In fact, in this case only conclusion we can
draw is that we will generate unboundedly many tokens with ages greater than
max. Even if all such tokens are abstracted by ω, an unbounded number of tokens
with ages less than max may still appear in the analysis. Termination is therefore
not guaranteed.

3. Region Generators

TPNs are infinite in two directions: they have unbounded number of tokens, and
each token has a real-valued clock. The infiniteness due to real-valued clocks are
handled by regions (Section 2). However, to handle the infiniteness due to un-
bounded number of tokens, we introduce region generators which we define in a
hierarchical manner. First, we introduce multiset and word language generators
and then describe how a region generator characterizes a potentially infinite set
(language) of regions.
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3.1 Multiset Language Generators (mlgs)

We define multiset language generators (mlgs), each of which characterizes a lan-
guage which consists of multisets over a finite alphabet.
Let A be a finite alphabet. A multiset language (over A) is a subset of A~. We
will consider multiset languages which are downward closed with respect to the
ordering ≤m on multisets (Section 2).
We define (downward-closed) multiset language generators (or mlgs for short) over
the finite alphabet A. Each mlg φ over A defines a multiset language over A, de-
noted L(φ), which is downward closed. The set of mlgs over A and their languages
are defined as follows :
◦ An expression over A is of one of the following two forms:

– an atomic expression a where a ∈ A. L(a) = {[a] , ε}.
– a star expression of the form S ~ where S ⊆ A. L(S ~) =

{[a1 , . . . , am] | m ≥ 0 ∧ a1, . . . , am ∈ S }.
◦ An mlg φ is a (possibly empty) sequence e1 + · · · + e` of expressions. L(φ) =
{b1 + · · · + b` | b1 ∈ L(e1), · · · , b` ∈ L(e`)}. We denote an empty mlg by ε and
define that L(ε) = {ε} (which is a special case of L(e1 + · · · + e`) with ` = 0).

We also consider sets of mlgs which we interpret as unions. If Φ = {φ1, · · · , φm} is
a set of mlgs, then L(Φ) = L(φ1) ∪ · · · ∪ L(φm). We let L(∅) = ∅.

T 1. For each downward closed multiset language L over an alphabet A
there is a set Φ of mlgs over A such that L = L(Φ).

P. See Appendix. �

Sometimes we identify mlgs with the languages they represent, so given two mlgs
φ1, φ2, we write φ1 ⊆ φ2 (rather than L(φ1) ⊆ L(φ2)), and given a multiset b and an
mlg φ, we write b ∈ φ (rather than b ∈ L(φ)), etc.
Normal Form An mlg φ is said to be in normal form if it is of the form e + e1 +
· · · + ek where e is a star expression and e1, . . . , ek are atomic expressions and for
each i : 1 ≤ i ≤ k, ei * e.
For each mlg φ, there is a unique (up to commutativity of the operators) normal mlg
φ′ such that L(φ′) = L(φ). We can derive φ′ from φ by performing the following
operations.

◦ Delete each atomic expression a from φ in case there is a star expression of
the form S ~ in φ such that a ∈ S . The language of the mlg is preserved since
L(a + S ~) = L(S ~).
◦ Merge all star expressions using the property that L(S 1

~ + S 2
~) =

L((S 1 ∪ S 2)~).
A set of mlgs Φ = {φ1, · · · , φm} is said to be normal if each mlg φi is normal and
φi * φ j for 1 ≤ i , j ≤ m. We can transform each set of mlgs into normal
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form by transforming each member of Φ into normal form as described above, and
by eliminating redundant members of Φ using the entailment algorithm described
below.
From now on, (sets of) mlgs will always be assumed to be in a normal form.
Entailment In the following, we give an algorithm for computing entailment ⊆ for
(sets of) mlgs.
The relation ⊆ is the least partial order on expressions satisfying

a ⊆ S ~  a ∈ S
S 1
~ ⊆ S 2

~
 S 1 ⊆ S 2

Given the algorithm for entailment of expressions, we can compute the entailment
of mlgs as follows:
Consider the base cases. ε ⊆ φ2 and φ1 * ε if φ1 , ε. Given two non-empty mlgs
φ1 = e1 + φ

′
1 and φ2 = e2 + φ

′
2, we have φ1 ⊆ φ2 iff one of the following holds.

(1) e1 = a, e1 * e2 and φ1 ⊆ φ
′
2.

(2) e1 = e2 = a and φ′1 ⊆ φ′2.
(3) e2 = S ~, e1 ⊆ e2 and φ′1 ⊆ φ2.

In a normal mlg, we assume that the atomic expressions in an mlg are sorted. This
means that the entailment algorithm will have linear complexity.
Next, we consider entailment for sets of mlgs. We use the following lemma.

L 3. For mlgs φ, φ1, . . . , φm, if φ ⊆ {φ1, · · · , φm}, then φ ⊆ φi for some i ∈
{1, . . . ,m}.

P. See Appendix. �

From Lemma 3 and the algorithm for entailment of mlgs, it follows that

T 2. Entailment among mlgs can be checked in linear time and entailment
of sets of mlgs can be checked in quadratic time.

E 4. Consider a finite alphabet A = {a, b, c} and the set of multisets A~
over A. Given mlg φ1 = {a, b}~ + c (i.e., the multiset language over A containing
at most one c and an arbitrary number of a’s and b’s), examples of multisets in
L(φ1) are

[

a2, b
]

, [b, c] ,
[

a3, b2, c
]

. Consider φ2 = b + c, i.e., the multiset language
containing at most one b and one c. L(φ2) = {ε, [c] , [b] , [b, c]}. Notice that φ1, φ2
are in normal form and φ2 ⊆ φ1. Furthermore L(φ1) and L(φ2) are both downward
closed. Figure 3.4 graphically describes φ1 and φ2. Sets are drawn as ellipses and
mlgs are shown as circles.
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a
b c

(a)

b c

(b)

*

Fig. 3.4: mlgs (a) φ1. (b) φ2.

3.2 Word Language Generators (wlgs)

We consider languages where each word is a sequence of multisets over a finite
alphabet A, i.e., each word is a member of

(A~)∗ (recall that for a set A, we use A∗
to denote the set of finite words over A). The language is then a subset of (A~)∗.
Notice that the underlying alphabet, namely A~ is infinite.
From Section 2, recall that |w| defines the size of the word and • is used for the
concatenation of words. For a word w ∈ L, observe that w(i) is a multiset over A.
From the definition of ≤w in Section 2, also observe that now the ordering ≤w

on the set of words over A is defined such that w1 ≤
w w2 if there is a strictly

monotonic injection h : {1, . . . , |w1|} → {1, . . . , |w2|} where w1(i) ≤m w2(h(i))
for i : 1 ≤ i ≤ |w1|.
We shall consider languages which are downward closed with respect to ≤w. In
a similar manner to mlgs, we define downward closed word language generators
(wlgs) and word languages as follows.

◦ A word expression over A is of one of the following two forms:
– a word atomic expression is an mlg φ over A.
– a word star expression of the form {φ1, · · · , φk}

∗, where φ1, . . . , φk are
mlgs over A.
L({φ1, · · · , φk}

∗) =
{b1 • · · · • bm | (m ≥ 0) and b1, . . . , bm ∈ L(φ1) ∪ · · ·L(φk)}.

◦ A word language generator (wlg) ψ over A is a (possibly empty) con-
catenation e1 • · · · • e` of word expressions e1, . . . , e`. L(ψ) =
{w1 • · · · • w` | w1 ∈ L(e1) ∧ · · · ∧ w` ∈ L(e`)}.

Notice that the concatenation operator is associative, but not commutative (as is
the operator + for multisets). Again, we denote the empty wlg by ε and define that
L(ε) = {ε} (a special case of . L(e1 • · · · • e`) with ` = 0) and L(∅) = ∅.
For a set Ψ = {ψ1, · · · , ψm} of wlgs, we define L(Ψ) = L(ψ1) ∪ · · · ∪ L(ψm). We
also identify wlgs with word languages, as we did in case of mlgs and multiset
languages.
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T 3. For each downward closed word language L, there is a set Ψ of wlgs
such that L = L(Ψ).

P. See Appendix. �

Normal Form
A word atomic expression e of the form φ is said to be in normal form if φ is a
normal mlg. A word star expression {φ1, . . . , φk}

∗ is said be in normal form if the
set of mlgs {φ1, . . . , φk} is in normal form.
A wlg ψ = e1 • · · · • e` is said to be normal if

◦ e1, . . . , e` are normal,
◦ ei • ei+1 * ei for each i : 1 ≤ i < `, and
◦ ei • ei+1 * ei+1, for each i : 1 ≤ i < `.

A set of wlgs {ψ1, · · · , ψm} is said to be normal if ψ1, . . . , ψm are normal and ψi * ψ j
for each i, j : 1 ≤ i , j ≤ m.
For each wlg ψ, there is a unique normal wlg ψ′ such that L(ψ) = L(ψ′). We
can derive ψ′ from ψ using normalisation, checking entailment for mlgs and the
entailment algorithm for wlgs described below. Normal form for sets of wlgs can
be defined in a similar manner to mlgs. We can transform a set of wlgs Ψ =
{ψ1, · · · , ψm} into normal form using the normalization procedure above, and by
eliminating redundant wlgs using the entailment algorithm below.
From now on, (sets of) wlgs will always be reduced to a normal form.
Entailment Now, we extend the algorithm for checking entailment of mlgs to
check entailment of wlgs of the form ψ ⊆ ψ′.
First, we extend ⊆ such that

◦ φ ⊆ {φ1, . . . , φk}
∗ if φ ⊆ {φ1, · · · , φk}.

◦ {φ1, · · · , φk}
∗ ⊆
{

φ′1, · · · , φ
′
k′
}∗

if {φ1, · · · , φk} ⊆
{

φ′1, · · · , φ
′
k′
}

.

The above entailment of word expressions can be computed using the entailment
algorithm for multisets.
Entailment of wlgs is very similar to the entailment of mlgs. But, concatenation
is not commutative. Therefore, given two non-empty wlgs ψ1 = e1 • ψ′1 and
ψ2 = e2 • ψ

′
2, we have ψ1 ⊆ ψ2 iff one of the following holds.

◦ e1 * e2 and ψ1 ⊆ ψ
′
2.

◦ e1 ⊆ e2, e2 is an atomic expression and ψ′1 ⊆ ψ
′
2

◦ e1 ⊆ e2, e2 is a star expression, ψ′1 ⊆ ψ2.

For sets of wlgs, we use a lemma similar to Lemma 3.

L 4. For wlgs ψ, ψ1, . . . , ψm, if ψ ⊆ {ψ1, · · · , ψm}, then ψ ⊆ ψi for some i ∈
{1, . . . ,m}.
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P. See Appendix. �

From Theorem 2, Lemma 4 and the above algorithm for computing entailment of
wlgs, we conclude that

T 4. Entailment of wlgs can be computed in quadratic time and entailment
of a set of wlgs can be computed in cubic time.

E 5. Consider the same alphabet A and mlgs φ1 = {a, b}~+c and φ2 = b+c.
Consider a wlg ψ1 = {φ2}

∗ • φ1. Example of a word in L(ψ1) is [b, c] • [b] •
[

a3
]

.
Consider a wlg ψ2 = {φ1}

∗ • φ2. Example of a word in L(ψ2) is
[

a2, b3, c
]

•
[

a3, c
]

• [b, c]. Notice that ψ1 ⊆ ψ2, and ψ2 * ψ1. Figure 3.5 graphically describes
ψ1 and ψ2.

(b)

a
b c

(a)

b ccb

* *
a
b c

*
*

Fig. 3.5: wlgs (a) ψ1. (b) ψ2.

3.3 Region Generators

A region generator θ is a triple (φ0, ψ, φmax) where φ0 is an mlg over P ×
{0, . . . ,max}, ψ is a wlg over P × {0, . . . ,max − 1}, and φmax is an mlg over P.
The language L(θ) contains exactly each region of the form (b0,w, bmax) where
b0 ∈ L(φ0), w ∈ L(ψ), and bmax ∈ L(φmax).
For a region generator θ, we define [[θ]]↓ to be ∪R∈L(θ)[[R]]. In other words, a region
generator θ:

◦ defines a language L(θ) of regions; and
◦ denotes a set of markings, namely all markings which belong to the denota-

tion [[R]] for some region R ∈ L(θ).

A finite set Θ = {θ1, . . . , θm} of region generators is interpreted as the union of its
elements, i.e, [[Θ]]↓ = ⋃1≤i≤m[[θi]]↓.
Given a marking M and a region generator θ, it is straightforward to check whether
M ∈ [[θ]]↓ from the definition of [[R]] and [[θ]]↓.
Here, we recall that in Section 2, we showed how to decide the entailment ≤r on
regions.
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By Theorem 1 and Theorem 3 it follows that for each set R of regions which is
downward closed with respect to ≤r, there is a finite set of region generators Θ
such that L(Θ) = R. Recall that R1 ≤

r R2 implies that for each M1 ∈ [[R1]] and
M2 ∈ [[R2]], M1 � M2.
From this we get the following.

T 5. For each set M of markings which is downward closed with respect to
� there is a finite set of region generators Θ such that M = [[Θ]]↓.

Entailment: We observe that if θ1 =
(

φ1
0, ψ

1, φ1
max
)

and θ2 =
(

φ2
0, ψ

2, φ2
max
)

then
θ1 ⊆ θ2 iff φ1

0 ⊆ φ
2
0, ψ1 ⊆ ψ2, and φ1

max ⊆ φ
2
max. In other words entailment between

region generators can be computed by checking entailment between the individual
elements. Notice that θ1 ⊆ θ2 means for each M1 ∈ [[θ1]]↓ and M2 ∈ [[θ2]]↓,
M1 � M2.

E 6. Consider again the TPN in Figure 2.1 with max = 7. Examples
of mlgs over {Q,R, S } × {0, . . . , 7} are R(2), S (2), {S (6),R(1)}~ + S (5), etc.
S (2) •

{

{S (6),R(1)}~ + S (5)
}∗

is an example of a wlg over {Q,R, S } × {0, . . . , 7}
and {Q}~ is an mlg over {Q,R, S }. Finally, an example of region generator is given
by θ =

(

R(2), S (2) •
{

{S (6),R(1)}~ + S (5)
}∗
, {Q}~

)

. Figure 3.6(a) shows the
region generator graphically and Figure 3.6(b) shows an example of a region in the
language of the region generator in Figure 3.6(a). Notice that the markings in [[θ]]↓
can have arbitrarily many tokens in places R (with age x : 1 < x < 2) and S (with
age y : 5 < y < 7).

S(2)
,

S(6)
R(1)

*

,
QS(5)

,
S(2)

R(1)
S(6)

S(6) R(1) ,
Q
Q

Q

(a)

(b)
S(5)

R(1)

S(6)
R(1)

R(2)

R(2)

* *

Fig. 3.6: (a) Region Generator θ. (b) A region R ∈ L(θ).

4. Forward Analysis

We present a version of the standard symbolic forward reachability algorithm
which uses region generators as a symbolic representation. The algorithm inputs
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a set of region generators Θinit characterizing the set Minit of initial markings, and
a set Mfin of final markings and tries to answer whether [[Θinit]]↓ ∩ Mfin ↑= ∅. The
algorithm computes the sequence Θ0,Θ1, . . . of sets of region generators such that
Θi+1 = Θi ∪ succ(Θi) with Θ0 = Θinit . If [[Θi]]↓ ∩ Mfin ↑, ∅ (amounts to checking
membership of elements of Mfin in [[Θ]]↓), or if Θi+1 = Θi, then the procedure is
terminated. We define succ(Θ) to be PostTime(Θ) ∪

⋃

t∈T (Postt(Θ) ∪ Stept(Θ)).
PostTime and Postt , defined in Section 5, compute the effect of timed and discrete
transitions respectively. Stept , defined in Section 6, implements acceleration. Also,
whenever there are two region generators θ1, θ2 in a set of region generators such
that θ1 ⊆ θ2, we remove θ1 from the set.
Even if we know by Theorem 5 that there is a finite set Θ of region generators
such that Reach([[Θinit]]↓) = [[Θ]]↓, the following holds due to undecidability of
structural termination for TPNs (shown in Mahata [2005]).

T 6. Given a region generator θinit we cannot in general compute a set Θ
of region generators such that Reach([[Θinit]]↓) = [[Θ]]↓.

The aim of acceleration is to make the forward analysis procedure terminate more
often.

5. Post-Image of a Region Generator

In this section, we consider the post-image of a region generator θ with respect to
timed and discrete transitions respectively.

5.1 Timed Post-image

To give the intuition about computing the post-image of a region generator with
respect to timed transitions, first we show how to compute post-images of regions
with respect to timed transitions.

5.1.1 PostTime for regions

We define PostTime such that it corresponds to letting time pass.

We compute the post-image of a region R with respect to time as a finite set of
regions such that [[PostTime(R)]] = {M′ | ∃M ∈ [[R]]. M −→Time M′}. For a set R of
regions PostTime(R) = ⋃R∈R PostTime(R).
First, we define a function Rotate such that given an input region R, Rotate(R) re-
turns a region as described in the following. Later we use Rotate to define PostTime.
Consider a marking M and a region R = (b0,w, bmax) such that M |= R. Three
cases are possible :

(1) If b0 = ε, i.e., there are no tokens in M with ages whose fractional parts are
equal to zero. Let w be of the form w1 • b1. The behaviour of the TPN from
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M due to passage of time is decided by a certain subinterval of R≥0 which
we denote by stable(M). This interval is defined by [0 : 1 − x) where x is
the highest fractional part among the tokens whose ages are less than max.
Those tokens correspond to b1 in the definition of R. We call stable(M) the
stable period of M.
Suppose that time passes by an amount δ ∈ stable(M). If M −→T=δ M1 then
M1 |= R, i.e., M1 ≡ M. In other words, if the elapsed time is in the stable
period of M then all markings reached through performing timed transitions
are equivalent to M. The reason is that, although the fractional parts have
increased (by the same amount), the relative ordering of the fractional parts,
and the integral parts of the ages are not affected. This case does not yield a
new marking by letting time pass.
Next consider δ = 1 − x. As soon as we leave the stable period, the tokens
which originally had the highest fractional parts (those corresponding to b1)
will now change: their integral parts will increase by one while fractional
parts will become equal to zero. Therefore, we reach a new marking M2,
where M2 |= Rotate(R) and Rotate(R) is of the form

(

b+1
1 ,w1, bmax

)

. Here,
b+1

1 is the result of replacing each pair p(n) in b1 by p(n + 1).
(2) If b0 , ε, i.e., there are some tokens whose ages do not exceed max and

whose fractional parts are equal to zero. We divide the tokens in b0 into two
multisets: young tokens whose ages are strictly less than max, and old tokens
whose ages are equal to max. The stable period stable(M) here is the point
interval [0 : 0]. Suppose that we let time pass by an amount δ : 0 < δ <
1 − x, where x is the highest fractional part of the tokens whose ages are
less than max. Then the fractional parts for the tokens in b0 will become
positive. The young tokens will still have values not exceeding max, while
the old tokens will now have values strictly greater than max. This means
that if M −→T=δ M1 then M1 |= Rotate(R) where Rotate(R) is of the form
(ε, young • w, bmax + old). Here, young and old are sub-multisets of b0 such
that young(p(n)) = b0(p(n)) if n < max, and old(p) = b0(p(max)), where
p(n) ∈ b0. Since the fractional parts of the tokens in young are smaller than
all other tokens, we put young first in the second component of the region.
Also, the ages of the tokens in old are now strictly greater than max, so they
are added to the third component of the region.

(3) If b0 = ε,w = ε, all tokens have age greater than max. Now, if we let time
pass by any amount δ ≥ 0 and M −→T=δ M1, then M1 |= R. When all tokens
reach age of max, aging of tokens becomes irrelevant. This case yields only
a marking which is equivalent to M with respect to ≡.

Notice that in cases 1 and 2, the stable period is the largest interval during which
the marking does not change the region it belongs to. Markings in case 3 never
change their regions and are therefore considered to be “stable forever” with re-
spect to timed transitions. Also, we observe that each of the first two cases above
correspond to “rotating” the multisets in b0 and w, sometimes also moving them to
bmax.
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We define Rotate∗ to be the reflexive transitive closure of Rotate. It computes the
set of all regions which we can generate by letting time pass by any amount.
In Rotate∗(R), we apply Rotate to each new region generated, except when a region
is of the form (ε, ε, b). It is straightforward to verify that such a region will be
eventually generated (by increasing the age of the tokens, all tokens will eventually
become old). This gives us the following lemma.

L 5. Rotate∗ is effectively constructible and PostTime = Rotate∗.

Q
, ,

S(7)
R(2)

R(2) S(5)

,

(d)

,
R(2)

Q
S

R(2) S(5)

(c)

R2 = 

R1 = 

R3 = 

R = 

(a)

S(5) Q
, ,

S(6)

R(1)

,

(b)

Q
,

S(6)
R(1)

S(5)R(2)

R(2)

Fig. 5.7: A few regions in PostTime(R)

E 7. For the TPN in Figure 2.1, max = 7, consider a re-
gion R in Figure 5.7(a). PostTime(R) computes a number of regions.
We show first three of them in Figure 5.7(b), (c) and (d). Consider
the following markings M = [R(2.0), S (5.5),R(1.7), S (6.7),Q(8.9)],
M1 = [R(2.1), S (5.6),R(1.8), S (6.8),Q(9.0)], M2 =

[R(2.3), S (5.8),R(2.0), S (7.0),Q(9.2)] and M3 =

[R(2.4), S (5.9),R(2.1), S (7.1),Q(9.3)]. Now, M −→0.1 M1 −→0.2 M2 −→0.1 M3
and M |= R, M1 |= R1, M2 |= R2 and M3 |= R3.
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5.1.2 PostTime for region generators

For an input region generator θ, we shall characterize the set of all markings which
can be reached from a marking in [[θ]]↓ through the passage of the time. We shall
compute PostTime(θ) as a finite set of region generators such that [[PostTime(θ)]]↓ =
{

M′ | ∃M ∈ [[θ]]↓. M −→Time M′
}

.

First, we introduce some notations. Let φ be an mlg of the form {a1, . . . , ak}
~ +

ak+1+· · ·+ak+`. Notice that, by the normal form defined in Section 3, we can always
write φ in this form. We define ]φ to be the pair (b, b′) where b = [a1, . . . , ak] and
b′ = [ak+1, . . . , ak+`].
Let φ be an mlg over P × {0, . . . ,max} with ]φ = (b, b′). We define young(φ)
and old(φ) to be mlgs over P × {0, . . . ,max − 1} and P respectively such that the
following holds: let ]young(φ) =

(

b1, b′1
)

and ]old(φ) =
(

b2, b′2
)

such that

◦ b(p(n)) = b1(p(n)) and b′(p(n)) = b′1(p(n)) if n < max.
◦ b(p(max)) = b2(p) and b′(p(max)) = b′2(p).

In other words, from φ, we obtain an mlg given by young(φ) which characterizes
tokens younger than max and an mlg old(φ) which characterizes tokens older than
max.
Let φ be an mlg over P × {0, . . . ,max − 1} of the form {p1(n1), . . . pk(nk)}~ +
pk+1(nk+1) + · · · + pk+`(nk+`). We use φ+1 to denote the mlg
{p1(n1 + 1), · · · , pk(nk + 1)}~ + pk+1(nk+1 + 1) + · · · + pk+`(nk+` + 1). That
is, we replace each occurrence of a pair p(n) in the representation of φ by p(n+1).
We are now ready to define the function PostTime(θin) for some input region gener-
ator θin. We start from θin and perform an iteration, maintaining two sets V and W
of region generators. Region generators in V are already analyzed and those in W
are yet to be analyzed. We pick (also remove) a region generator θ from W , add
it to V (if it is not already included in V). We update W and V with new region
generators according to the rules described below. We continue until W is empty.
At this point we take PostTime(θin) = V . Depending on the form of θ, we update W
and V according to one of the following cases.

◦ If θ is of the form (φ0, ψ, φmax), where φ0 , ε. We add a region generator
(ε, young(φ0) • ψ, φmax + old(φ0)) to W . This step corresponds to one rota-
tion according to case 2 in the computation of Rotate.
◦ If θ is of the form (ε, ψ • φ, φmax). Here the last element in the second com-

ponent of the region generator is an atomic expression (an mlg). We add the
region generator

(

φ+1, ψ, φmax
)

to W . This step corresponds to one rotation
according to case 1 for computation of Rotate.
◦ If θ is of the form (ε, ψ • {φ1, . . . , φk}

∗ , φmax). Here, the last expression
in the second component of the region generator is a star expression. This
case is similar to the previous one. However, the tokens corresponding to
{φ1, . . . , φk}

∗ now form an unbounded sequence with strictly increasing frac-
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tional parts. We add
(

φ+1
i ,
{

young(φ+1
1 ), . . . , young(φ+1

k )
}∗
• ψ • {φ1, . . . , φk}

∗ , φmax + Old~
)

to V , and
(

φ+1
i ,
{

young(φ+1
1 ), . . . , young(φ+1

k )
}∗
• ψ, φmax + Old~

)

to W , for i : 1 ≤ i ≤ k. Here, Old is the union of the sets of symbols
occurring in the set of mlgs

{

old(φ+1
1 ), . . . , old(φ+1

k )
}

. This step corresponds to
performing a sequence of rotations of the forms of case 1 and case 2 together
for Rotate.
Notice that we add one of the newly generated region generators directly to
V (and its “successor” to W). This is done in order to avoid an infinite loop
where the same region generator is generated all the time.
◦ If θ is of the form (ε, ε, φmax), i.e., all tokens have ages which are strictly

greater than max, then we do not add any element to W .
The termination of this algorithm is guaranteed due to the fact that after a finite
number of steps, we will eventually reach a point where we analyze region gener-
ators which will only characterize tokens with ages greater than max (i.e. will be
of the form (ε, ε, φmax)).

E 8. For the TPN in Figure 2.1, where max = 7. Consider an input region
generator θ = (Q(7) + R(6), {S (6) + Q(5)}∗ , ε) in Figure 5.8(a). We show a few
region generators computed by PostTime(θ) starting from θ in Figure 5.8(b) to Fig-
ure 5.8(g). Notice the rotation of first and second part of the region generators and
sometimes moving to third part of the region generator, corresponding to the ’rota-
tion’ described in PostTime for regions. Also, notice that the region generator in (c)
and (f) correspond to several ’rotations’ of regions in their languages. Furthermore,
we need to apply normalisation after computing PostTime, since the region genera-
tor in Figure 5.8(f) is not in normal form. Also, observe that the region generator
in Figure 5.8(g) is included in the region generator in Figure 5.8(f) and the former
one will be removed during the forward analysis from the working set of the region
generators.

5.2 Discrete Post-image

First we show how to compute the post-image of a region with respect to a discrete
transition.

5.2.1 Postt for regions

We define PostDisc such that it corresponds to firing discrete transitions. PostDisc is
computed as the union of Postt for all transitions t in the TPN where Postt charac-
terizes the effect of running t once.
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Fig. 5.8: Given θ in (a), (b), . . . ,(g) shows the region generators computed by PostTime(θ).

For an input region R, we shall characterize the set of all markings which
can be reached from a marking in [[R]] through execution of transition t.
We shall compute Postt(R) as a finite set of regions such that [[Postt(R)]] =
{M′ | ∃M ∈ [[R]]. M −→t M′}. For a set R of regions Postt(R) =

⋃

R∈R Postt(R).
Let R = (b0,w, bmax). To give an algorithm for Postt, we need to define an addition
and a subtraction operation for regions.
An addition (subtraction) corresponds to adding (removing) a token in a certain age
interval. Let I be an interval of the form [w, z) and let R be a region of the form
R = (b0, b1 • . . . • bm, bm+1) . We define the addition R⊕ p(I) as a set of regions
(the addition of other types of intervals can be defined in a similar manner).
We define R ⊕ p(I) to be the union of the following four sets:

(1) A set containing (b0 +
[p(n)

]

, b1 • . . . • bm, bm+1), for each n : w ≤ n < z.
This corresponds to adding tokens with zero fractional parts.

(2) A set containing regions (b0, b1 • . . . • b′i • . . . • bm, bm+1), where
1 ≤ i ≤ m and b′i = bi +

[p(n)], for each n w ≤ n < z, n < max. Elements
added according to this case corresponds to adding a token with a fractional
part equal to that of some other token.

(3) A set containing regions (b0, b1 • . . . • bi •
[p(n)] • . . . • bm, bm+1),

where n satisfies the same conditions as in 2. In this case, the fractional part
differs from all other tokens.
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(4) A singleton set containing (b0, b1 • . . . • bm, bm+1 +
[p]) if z = ∞.

Given R and I of the above forms, we define the subtraction R	 p(I) as the union
of the following sets:

(1) A singleton set containing (b0 −
[p(n)

]

, b1 • . . . • bm, bm+1), for each
n : w ≤ n < z. This corresponds to subtracting tokens with zero fractional
parts.

(2) A set containing regions (b0, b1 • . . . b′i . . . • bm, bm+1) where b′i = bi−
[p(n)

]

,
where 1 ≤ i ≤ m and w ≤ n < z, n < max. This corresponds to subtracting
tokens with non-zero fractional parts.

(3) A singleton set containing (b0, b1 • . . . • bm, bm+1 −
[p]) in case z = ∞.

This corresponds to removing tokens with age greater than max.
(4) If all the above sets are empty, then R 	 p(I) is undefined.

We extend ⊕,	 to sets of regions in the obvious manner.
We also extend ⊕,	 for a set A of pairs of the form p(I) as follows. R ⊕ A =
⋃

p(I)∈A
R ⊕ p(I).

LetAin(t) be the set of input arcs given by {p(I) | In(t, p) = I} and the set of output
arcs Aout(t) be given by {p(I) | Out(t, p) = I}.
We define

Postt(R) = (R 	Ain(t)) ⊕Aout(t)
.

E 9. For the TPN in Figure 2.1, consider a marking M = [Q(3.5)] and a
region R = (ε,Q(3), ε). M |= R. Consider the transition t2. We show the regions
computed by Postt in Figure 5.9. Since, R 	 [Q(3.5)] = (ε, ε, ε), we show the
result of (ε, ε, ε) ⊕ R((0, 1)) ⊕ S ((1, 2))) by R1, R2, and R3 which together covers
all possible markings that can be created by firing t2 from M.

We let Post = PostTime ∪ PostDisc. From the definition of PostTime,Postt, we get
the following.

L 6. Given a region R, Post(R) is effectively constructible.

5.2.2 Postt for region generators

For an input region generator θ, we compute (the downward closure of) the set
of all markings which can be reached from a marking in [[θ]]↓ by firing a dis-
crete transition t, i.e we compute Postt(θ) as a finite set of region generators s.t
[[Post(θ)]]↓ =

{

M′ | ∃M ∈ [[θ]]↓.M −→t M′
}

↓.
Notice that from a downward closed set of markings, when we execute a timed
transition, the set of markings reached is always downward-closed. But this is not
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Fig. 5.9: Regions in Postt(R)

the case for discrete transitions. Therefore, we consider the downward closure of
the set of reachable markings in the following algorithm.
To give an algorithm for Postt, we need to define an addition and a subtraction
operation for region generators . An addition (subtraction) corresponds to adding
(removing) a token in a certain age interval. These operations have hierarchical
definitions reflecting the hierarchical structure of region generators.
We start by defining addition and subtraction for mlgs, defined over a finite set
P × {0, . . . ,max}.
Given a normal mlg φ = S ~ + a1 + · · ·+ a` and a pair p(n) where p is a place and n
denotes the integral part of the age of a token in p, we define the addition φ ⊕ p(n)
to be the mlg φ + p(n).
The subtraction φ 	 p(n) is defined by the following three cases.

◦ If p(n) ∈ S , then φ 	 p(n) = φ. Intuitively, the mlg φ describes markings
with an unbounded number of tokens each with an integral part equal to n,
and each residing in place p. Therefore, after removing one such a token, we
will still be left with an unbounded number of them.
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◦ If p(n) < S and ai = p(n) for some i : 1 ≤ i ≤ ` then φ 	 p(n) =
S ~ + a1 + · · · + ai−1 + ai+1 + · · · + a`.
◦ Otherwise, the operation is undefined.

Addition and subtraction from mlgs over P is similar where instead of p(n), we
simply add (subtract) p.
Now, we extend the operations to wlgs defined over mlgs of the above form.
The addition ψ ⊕ p(n) is a wlg ψ consisting of the following three sets of wlgs.

(1) For each ψ1, ψ2, and φ with ψ = ψ1 • φ • ψ2, we have
ψ1 • (φ ⊕ p(n)) • ψ2 ∈ (ψ ⊕ p(n)).

(2) For each ψ1, ψ2 and ψ = ψ1 • {φ1, · · · , φk}
∗ • ψ2, we have for i : 1 ≤ i ≤ k,

ψ1 • {φ1, · · · , φk}
∗ • (φi ⊕ p(n)) • {φ1, · · · , φk}

∗ • ψ2 ∈ (ψ ⊕ p(n)).
(3) For each ψ1 and ψ2 with ψ = ψ1 • ψ2, we have

ψ1 • p(n) • ψ2 ∈ (ψ ⊕ p(n)).

Intuitively, elements added according to the first two cases correspond to adding a
token with a fractional part equal to that of some other token. In the third case the
fractional part differs from all other tokens.
We define the subtraction ψ 	 p(n), where ψ is a wlg, to be a set of wlgs, according
to the following two cases.

◦ If there is a star expression e = {φ1, · · · , φk}
∗ containing the token we want to

remove, i.e., if ψ is of the form ψ1 • e • ψ2, and if any of the operations
φi 	 p(n) is defined for i : 1 ≤ i ≤ k, then ψ 	 p(n) = {ψ}.
◦ Otherwise, the set ψ 	 p(n) contains wlgs of the form ψ1 • φ′ • ψ2 such

that ψ is of the form ψ1 • φ • ψ2 and φ′ ∈ (φ 	 p(n)).

Now we describe how to use the addition and subtraction operations for computing
Postt. Addition and subtraction of pairs of the form p(n) can be easily extended to
pairs of the form p(N) where N ⊆ {0, . . . ,max}, e.g ψ 	 p(N) = {ψ 	 p(n) | n ∈ N}.
We recall that, in a TPN, the effect of firing a transition is to remove tokens from
the input places and add tokens to the output places. Furthermore, the tokens which
are added or removed should have ages in the corresponding intervals. The effect
of of firing transitions from the set of markings characterized by a region generator
θ = (φ0, ψ, φmax) can therefore be defined by the following operations.
First, we assume an interval I of the form (x, y). The subtraction θ 	 p(I) is given
by the union of the following sets of region generators.

◦ (φ0 	 p(N), ψ, φmax) where each n ∈ N is a natural number in the interval I.
Intuitively, if the age of the token that is removed has a zero fractional part,
then N contains the valid choices of integral part.
◦ (φ0, ψ

′, φmax) such that ψ′ ∈ ψ 	 p(N), where N = {n | n ∈ N ∧ x ≤ n < y}
i.e., each n is a valid choice of integral part for the age of the token if it has a
non-zero fractional part.
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◦ (φ0, ψ, φmax 	 p) if I is of the form (x,∞), i.e., the age of the token may be
greater than max.

Addition is defined in a similar manner. The addition and subtraction operations
will be similar if the interval is closed to the left. But if the interval is closed to the
right, the last rule is undefined in that case.
We extend definition of subtraction and addition for subtracting a set of tuples p(I)
in the obvious manner. For a set of region generators Θ, we define Θ ⊕ p(I) =
⋃

θ∈Θ (θ ⊕ p(I)). Subtraction for a set of region generators is defined in a similar
manner.
LetAin(t) be the set of input arcs given by {p(I) | In(t, p) = I} and the set of output
arcs Aout(t) be given by {p(I) | Out(t, p) = I}.
We define,

Postt(θ) = (θ 	 Ain(t)) ⊕ Aout(t)

E 10. For the TPN in Figure 2.1, consider an input region generator θ =
(ε, {R(6)}∗ , ε) shown in Figure 5.10(a) and the transition t1 of the TPN. We show
the region generators computed by the above algorithm in Figure 5.10(b), (c) and
(d). Notice that we have {R(6)}∗	R(6) = {R(6)}∗.We show the result of θ⊕Q((5, 6))
in Figure 5.10. Notice that we normalised the resulting set of region generators
after each operation.

(a)

, ,

*
R(6)

(b)

, ,

**
R(6)

Q(5)
R(6) R(6)

Fig. 5.10: Given θ in (a), (b) shows the region generator computed by Postt(θ).

6. Acceleration

In this section, we explain how to accelerate the firing of a single transition in-
terleaved with timed transitions from a region generator. We give a criterion
which characterizes when acceleration can be applied. If the criterion is sat-
isfied by an input region generator θin with respect to a transition t, then we
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compute a finite set Accelt(θin) of region generators such that [[Accelt(θin)]]↓ =
{

M′ | ∃M ∈ [[θin]]↓. M(−→Time ∪ −→t)∗M′
}

↓. We shall not compute the set
Accelt(θin) in a single step. Instead, we will present a procedure Step t with the
following property: for each region generator θin there is an n ≥ 0 such that
Accelt(θ) =

⋃

0≤i≤n
(PostTime ◦Stept)i(θ). In other words, the set Accelt(θ) will be fully

generated through a finite number of applications of PostTime followed by Stept.
Since the reachability algorithm of Section 4 computes both PostTime and Stept dur-
ing each iteration, we are guaranteed that all region generators in Accel t(θin) will
eventually be produced.
To define Stept we need some preliminary definitions.
For a word atomic expression (mlg) φ = {a1, . . . , ak}

~ + ak+1 + · · ·+ ak+`, we define
sym(φ) as the set of symbols given by {a1, . . . , ak+`}. For a word star expression
e = {φ1, . . . , φk}

∗, sym(e) =
⋃

i sym(φi) for i : 1 ≤ i ≤ k.
Given a symbol a ∈ A and an mlg φ over A of the form S ~ + a1 + · · · + a`, we say
that a is a ~ − symbol in φ if a ∈ S . Intuitively, a is a ~ − symbol in an mlg φ if it
can occur arbitrarily many times in the multisets in φ.
Given a wlg ψ = e1 • · · · • el over A, we say that a symbol a ∈ A is a

◦ ~ − symbol in ψ if there is an i : 1 ≤ i ≤ l such that a is a ~ − symbol for
some mlg φ occurring in wlg ψ.
◦ ∗ − symbol in ψ if there is an i : 1 ≤ i ≤ l such that a ∈ sym(ei) and ei is a

word star expression.

Intuitively, a is a ∗ − symbol in ψ if it can occur an arbitrary number of times in
arbitrarily many consecutive multisets in a word given by the wlg ψ.
In this section, we show how to perform acceleration when intervals are open, i.e
of the form (x, y). It is straightforward to extend the algorithms to closed intervals
(see [Abdulla et al. 2003] for details).
To compute the effect of acceleration, we define an operation ].
Accelerated addition ] corresponds to repeatedly adding an arbitrary number of
tokens of the form p(n) (with all possible fractional parts) to a region generator θ.
First we define the operation ] for mlgs. Given a mlg φ and a pair p(n), the accel-
erated addition φ ] p(n) is given by an mlg φ + {p(n)}~.
Given a wlg ψ, ψ ] p(n) can be inductively defined as follows.

◦ If ψ = ε, then ψ ] p(n) =
{

{p(n)}~
}∗

.

◦ If ψ = φ • ψ′, then ψ ] p(n) =
{

{p(n)}~
}∗
• (φ ] p(n)) • (ψ′ ] p(n))

◦ If ψ = {φ1, · · · , φn}
∗ • ψ′, then ψ ] p(n) = {φ1 ] p(n), · · · , φn ] p(n)}∗ •

(ψ′ ] p(n))

Accelerated addition can be extended to sets of pairs of the form {p(n1), . . . , p(nk)}.
Given a wlg ψ, we define ψ ] {p(n1), . . . , p(nk)} = ψ ] p(n1) ] · · · ] p(nk).
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Given a region generator θ = (φ0, ψ, φmax) and a pair p(I) where I = (x, y), we
define
θ ] p(I) = (φ0 + S 1

~, ψ ] S 2, φmax + pmax
~
) where

◦ S 1 = {p(n) | n ∈ N ∧ x < n < y}.
◦ S 2 = {p(n) | n ∈ N ∧ x ≤ n < y}.
◦ pmax = {p} if y = ∞, pmax = ∅ otherwise.

For a set of pairs, A = {p1(I1), · · · , pk(Ik)}, we define θ ]A = θ ] p1(I1) ] · · · ]
pk(Ik).
Acceleration Criterion: For a discrete transition t, to check whether we can fire t
arbitrarily many times interleaved with timed transitions, first we categorize the in-
put places of t with respect to a region generator θ = (φ0, ψ, φmax) and the transition
t.

Type 1 place An input place p of t is said to be of Type 1 if one of the following
holds. Given In(t, p) = (x, y),
◦ there is an integer n such that x < n < y and p(n) is a ~ − symbol in φ0.
◦ there is an integer n such that x ≤ n < y and p(n) is a ~ − symbol or a
∗ − symbol in ψ.
◦ p is a ~ − symbol in φmax and y = ∞.

Intuitively, unbounded number of tokens with the “right age” are available in
an input place p of Type 1.

Type 2 place An input place p of t is of Type 2 if it is not of Type 1, but it is an
output place and both the following hold.
(1) Given In(t, p) = I, θ 	 p(I) , ∅. Intuitively, for a Type 2 place, there

is initially at least one token of the “right age” for firing t.
(2) In(t, p)∩Out(t, p) is a non-empty interval. Intuitively, a token generated

as output in any firing may be re-used as an input for the next firing.

We accelerate if each input place of t is a Type 1 place or a Type 2 place.
Acceleration: Let Ain(t),Aout(t) be the set of input and output arcs as defined in
Section 5. Now, given a region generator θ, we describe acceleration in steps.
◦ First we subtract input tokens from all input places. Then we add tokens to

Type 2 places (places which always re-use an output token as an input for
next firing). Formally we compute a set of region generators Θ = (θ 	
Ain(t)) ⊕ T2 where T2 = {p(I) | p   T 2 ∧ p(I) ∈ Aout(t)} is the set
of output arcs from Type 2 places.
◦ Next, we accelerate addition for each region generator in Θ and add tokens of

all possible ages in the output places which are not of Type 2 (Type 2 places
re-use input tokens, therefore do not accumulate tokens), i.e, we compute

Stept(θ) =
⋃

θ′∈Θ

θ′ ] (Aout(t) \ T2)
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E 11. Consider the TPN in Figure 2.1 and the region generator θ in Fig-
ure 6.11(a). Figure 6.11(b) illustrates the region generator computed by the ac-
celeration algorithm from θ with respect to transition a. Notice that all region
generators generated by Postt is entailed by the region generator in Figure 6.11(b).

(a)

, ,

*
R(6)

, Q(5) R(6) ,

*

(b)

*

Fig. 6.11: Given θ in (a), (b) shows the region generator computed by Stept(θ).

T 7. If the acceleration criterion holds from a region generator θ with
respect to a transition t in a TPN, there is an n ≥ 0 such that Accel t(θ) =
⋃

0≤i≤n
(PostTime ◦ Stept)i(θ).

P. See Appendix. �

7. Experimental Results

We have implemented a prototype based on our algorithm and used it to verify the
following protocols.

7.1 Fischer’s Protocol

First we describe a parameterized version of Fischer’s protocol. The purpose of the
protocol is to guarantee mutual exclusion in a concurrent system consisting of an
arbitrary number of processes. The example was suggested by [Schneider et al.
1992].
The protocol consists of an arbitrary number of processes, each running the code
graphically described in Figure 7.12. Each process i has a local clock x i, and a
control state, which assumes values in the set {A, B,C,CS } where A is the initial
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xi > 1
v = i

xi ≤ 1v =⊥ := 0xi

v := ⊥

v = i/

B := 0
v :=
xi

i
CA CS

Fig. 7.12: Fischer’s Protocol for Mutual Exclusion

state and CS is the critical section. The processes read from and write to a shared
variable, v, whose value is either ⊥ or the index of one of the processes.
All processes start in state A. If the value of the shared variable is ⊥, a process
wishing to enter the critical section can proceed to state B and reset its local clock.
From state B, the process can proceed to state C within one time unit or get stuck
in B forever. When making the transition from B to C, the process resets its local
clock and sets the value of the shared variable to its own index. The process now
has to wait in state C for more than one time unit, a period of time which is strictly
greater than the one used in the timeout of state B. If the value of the shared
variable is still the index of the process, the process may enter the critical section,
otherwise it may return to state A and start over again. When exiting the critical
section, the process resets the shared variable to ⊥.
[Abdulla and Nylén 2001] gives a model of the protocol in our TPN formalism.
The processes running the protocol are modeled by tokens in the places A, B, C,
CS , A!, B!, C! and CS !. The places marked with ! represent that the value of the
shared variable is the index of the process modeled by the token in that place. We
use a place udf to represent that the value of the shared variable is ⊥. A token in
place udf means that the variable v = ⊥ and an absence of a token in udf means
that some process i has its id assigned to the variable.
A straightforward translation of the description in Figure 7.12 yields the timed
Petri net model in Figure 7.13. q is used to denote an arbitrary process state. We
illustrate translation of two transitions in Figure 7.12 by the transitions in of the
TPN model in Figure 7.13 in the following. Translations of other transitions can
be explained in a similar manner.
In Figure 7.12, a process in state A changes its state to B if the variable value
is undefined. Furthermore, it resets its clock. This is translated to the transition
initiate in the TPN model. The transition initiate is fired if there is a token in place
A and a token in place ud f (denoting that the variable is undefined). Firing of the
transition removes the token from the place A, adds a token with age 0 to place
B (corresponds to resetting the clock and changing state to B in Figure 7.12) and
leaves the variable undefined by returning a token in place ud f .
Secondly, in Figure 7.12, a process in state B changes its state to C if its clock
value is less than 1 and it assigns its own process id i to the variable v and resets its
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CS q q!

B!B q q!

C!CS!
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[0,0]
exit1
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Fig. 7.13: TPN model of Fischer’s Protocol for Mutual Exclusion

clock. This transition is translated to three transitions choose1, choose2, choose3
in the TPN model. There are 3 cases.

v = ⊥. If there is a token in udf (denoting v = ⊥) and a token in B with age less
than 1 (modelling a process in state B), firing transition choose1 puts a token
of age 0 in C! denoting that a process in C modeled by the token in C! has its
id assigned to the shared variable and has reset it clock.

v = j where j , i. If there is a token in place q! (i.e, some other process has its id
j assigned to the shared variable) and there is a token in place B (modelling a
process in state B) with clock value less than 1, we fire choose2 and change
the state of the process in q! to q by removing a token from place q! and
adding a token to q. Also, the token from place B is moved to C! and the new
age of the token is 0.

v = i. If there is a token in place B! (modelling a process which already has its id
assigned to the shared variable), we fire the transition choose3, remove the
token from B! and add a token to C! with age 0.

The critical section is modelled by the places CS and CS !, so mutual exclusion is
violated when the total number of tokens in those places is at least two.
In order to prove the mutual exclusion property, we specify mark-
ings with two tokens in CS ,CS ! as the bad markings. We use
(

{A(0), A(1)}~ + ud f (0),
{

{A(0)}~
}∗
, {A}~

)

as the initial region generator θinit. θinit
characterizes arbitrarily many processes in A having any clock value (age) and one
token in ud f with age 0. Furthermore, to prove that mutual exclusion is guaran-
teed, we checked the membership of the bad markings (characterizing an upward
closed set of bad states) in the computed set of region generators.
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7.2 Lynch and Shavit’s Mutual Exclusion Protocol

[Lynch and Shavit 1992] modified Fischer’s protocol in such a way that mutual
exclusion property becomes time-independent. The code for each process in Lynch
and Shavit’s protocol is shown in Figure 7.14 and the corresponding TPN model
is shown in Figure 7.15. Each process i has a local clock xi, and a control state,
which assumes values in the set {A′, B′,C′, A, B,C,CS ,W, X} where A′ is the initial
state and CS is the critical section. This protocol uses an integer variable v1 (same
as v in Fischer) and an extra boolean variable v2, shared between processes. The
code for each process can be explained as in the case of Fischer.
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Fig. 7.14: One process running Lynch and Shavit’s mutual exclusion protocol

In Figure 7.15, the processes running this protocol are modelled by tokens in the
places A′, B′, C′, A, B, C, CS , W , X, A′!, B′!, C′! A!, B!, C!, CS !, W! and X!. The
places marked with ! represent that the value of the shared variable v1 is the index of
the process modelled by the token in that place. We use a place udf to represent that
the value of the shared variable v1 is undefined (0). We use two places f alse and
true to represent the variable v2. A token in place udf means that the variable v1 = 0
and an absence of a token in udf means that some process i has its id assigned to
the variable. A token in place f alse and no token in place true mean that the shared
variable v2 has value f alse. Shared variable v2 with value true is represented in a
similar manner. Also, we consider q ∈ {A′, B′,C′,CS , A, B,C,W, X} and f alse′ =
f alse. Notice that in this protocol, it is not compulsory to have a delay before
entering the critical section CS !.
A straightforward translation of the description in Figure 7.14 yields the
timed Petri net model in Figure 7.15. The specification of the bad
markings is the similar to the case of Fischer’s protocol. We use
(

{A′(0), A′(1)}~ + ud f (0) + f alse(0),
{

{A′(0)}~
}∗
, {A′}~

)

as the initial region gener-
ator θinit . θinit characterizes arbitrarily many processes in A′ having any clock value
(age), one token in ud f with age 0 and one token in f alse with age 0 denoting that
v2 is false initially.
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Fig. 7.15: TPN model for the parameterized version of Lynch and Shavit’s protocol

7.3 Producer/Consumer System

In a traditional producer/consumer system, the producer produces items and stores
them into a buffer, whereas the consumer consumes the items from the buffer. Fig-
ure 7.16 shows a timed Petri net model of the producer/consumer system. A token
in the place producer ready means that the producer can produce items; firing tran-
sition produce creates new items in place store. The consumer consumes items of
age 1 by firing consume if the place consumer ready has a token; firing consume
also puts back a token in place tmp. A transition get ready is used to move the
token from tmp back to the place consumer ready if there are still items of age 0
in store. To make this possible, old items (of age greater than 1) in store are re-
cycled by the producer using the transition recycle. Firing recycle removes an old
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Fig. 7.16: TPN model for Producer/Consumer System

item from the store if producer ready has a token and puts a fresh item (a token
of age 0) back to store. The transition switch moves the control from the producer
to the consumer by consuming a token from producer ready and adding a token
to consumer ready. Also, the transition done switches the control back from the
consumer to the producer by doing the reverse. These two transitions make sure
that the items are not simultaneously accessed by the producer and the consumer.
We consider the producer/consumer system mentioned in [Nielson et al. 2001]2 .
We use (producer ready(0), ε, ε) as the initial region generator θinit which charac-
terizes a single token in place “producer ready” with age 0.

7.4 Results

Our program computes the reachability set for all the protocols. The procedure
fails to terminate without the use of acceleration in all the cases. It took 1.16MB
memory and 2.12s to analyse Fischer’s protocol, 187MB memory and 34mins to
analyse Lynch and Shavit’s protocol and 1.02MB memory and 1.25s to analyse
producer/consumer system on a 1 GHz processor with 256 MB RAM.

7.5 Abstract Graph

Using forward analysis of a TPN, our tool also generates a graphGwhich is a finite-
state abstraction of the TPN. Each state in G corresponds to a region generator
in the reachability set. Edges of G are created as follows. Consider two region
generators θ1, θ2 in the reachability set. If there is a region generator θ′2 ∈ Postt(θ1)
such that θ′2 ⊆ θ2, then we add an edge θ1

t
→ θ2 to G. Similarly, if there is a region

2 [Nielson et al. 2001] considers a TPN model with local time in each place.
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generator θ′2 ∈ PostTime(θ1) such that θ′2 ⊆ θ2, then we add an edge θ1
τ
→ θ2. Notice

that each region generator in the post-image should be included in some region
generator in the computed set. It is straightforward to show that the abstract graph
simulates the corresponding TPN model.
The graph obtained by the above analysis contains 10 states and 59 edges in the
case of Fischer’s protocol; 64 states and 478 edges in the case of Lynch and
Shavit’s protocol; and 11 states and 49 edges in the case of producer/consumer sys-
tem. Furthermore, we use The Concurrency Workbench [Cleaveland et al. 1989] to
minimize the abstract graphs modulo weak bisimilarity. Figure 7.17, Figure 7.18
and Figure 7.19 show the minimized finite state labelled transition systems for the
above protocols.

q1

exit1

choose1 τ enter q4q3

choose2C,fail fail failinitiate,fail

q2

Fig. 7.17: Minimized abstract graph for Fischer’s protocol.
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Fig. 7.18: Minimized abstract graph for Lynch and Shavit’s protocol.
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Fig. 7.19: Minimized abstract graph for producer/consumer protocol.
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8. Conclusions and Future Research

We have described how to perform forward analysis augmented with accelera-
tion for timed Petri nets, using a symbolic representation called region generators.
There are a number of interesting directions for future research.

◦ Firstly, we show how to accelerate with respect to single discrete transition
interleaved with timed transitions. A remaining challenge is to extend the
technique and consider accelerations of sequences of discrete transitions. It
is not clear to us whether such accelerations are computable in the first place.
◦ Secondly, we assume a lazy behaviour of TPNS. It is well-known that check-

ing safety properties is undecidable for TPNs with urgent behaviours even if
the net is safe (bounded) [Berthomieu and Diaz 1991]. Therefore, designing
acceleration techniques is of particular interest for urgent TPNs. Notice that
downward closure is no longer an exact abstraction if the behaviour is urgent.
◦ Thirdly, we use region generators for symbolic representation. We want to

investigate designing efficient data structures (e.g . zone generators corre-
sponding to a large number of region generators). Zones are widely used in
existing tools for verification of timed automata [Larsen et al. 1997]. Intu-
itively, a zone generator will correspond to a state in each minimized automa-
ton in Figures 7.17, 7.18 and 7.19.
◦ Finally, We aim at developing generic methods for building downward closed

languages, in a similar manner to the methods we have developed for building
upward closed languages in [Abdulla et al. 2000]. This would give a general
theory for forward analysis of infinite state systems, in the same way the work
in [Abdulla et al. 2000] is for backward analysis. Simple regular expressions
of [Abdulla et al. 1998] and the region generators of this paper are examples
of data structures which might be developed in a systematic manner within
such a theory.
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Appendix A. Appendix - Proofs of Lemmas

Appendix A.1 Proof of Theorem 1

First, we show some auxiliary lemmas.
Lemma A.1 For a finite alphabet A and a multiset κ ∈ A~, there is a set of mlgs Φ such
that a multiset % ∈ L(Φ) iff κ 6≤m %.
P. Let κ be of the form

[

al1
1 , . . . , a

lm
m
]

. Let e1 be a star expression {b1, · · · , bk}
~ where

b1, . . . , bk ∈ A \ {a1, . . . , am}. Notice that A = {a1, . . . , am} implies that L(e1) = {ε}. We
define Φ as a set of mlgs φi of the form e1 + al1

1 + · · ·+ ali−1
i + · · ·+ alm

m where i : 1 ≤ i ≤ m.
First we show that % ∈ L(Φ) → κ 6≤m % by contraposition. Assume κ ≤m %. We prove that
% < L(φi) for each i : 1 ≤ i ≤ m. From the definition of ≤m, we know that % is of the form
κ + ϑ where ϑ ∈ A~. From definition of φi, ali

i < L(φi) for each i : 1 ≤ i ≤ m. Therefore,
κ + ϑ < L(φi) for each i. Therefore, % < L(Φ).
Next, we prove that κ 6≤m % → % ∈ L(φ). Let κ′ be the largest proper sub-multiset of κ
which satisfies κ′ ≤m %. This means that % is of the form κ′ + ϑ where ϑ is a multiset over
A \ {a1, . . . , am}. Thus ϑ ∈ L(e1). Since κ′ is a proper submultiset of κ, κ′ ∈ L(al1

1 + · · · +

ali−1
i + · · · + alm

m ) where i : 1 ≤ i ≤ m. Thus, % ∈ L(Φ). �

Lemma A.2 For set of mlgs Φ1,Φ2, there is a set of mlgs Φ1 ∩Φ2 such that L(Φ1 ∩Φ2) =
L(Φ1) ∩ L(Φ2). P. First we consider the intersection of mlgs φ1, φ2.
In case, φ1, φ2 are atomic expressions, we have

◦ if both are atomic expressions, then either of the following holds.
(1) if φ1 = φ2 = a, then φ1 ∩ φ2 = a.
(2) φ1 ∩ φ2 = ε, otherwise.

◦ If one of them is a star expression {a1, · · · , al}
~ and the other one is a, then φ1∩φ2 = a

if a ∈ {a1, . . . , am} for a, a1, . . . , am ∈ A. Otherwise, φ1 ∩ φ2 = ε.
◦ If both of them are star expressions, i.e, φ1 = {a1, · · · , am}

~ and φ2 = {b1, · · · , bn}
~,

then φ1 ∩ φ2 = {c1, · · · , ck}
~ where {c1, . . . , ck} = {a1, . . . , am} ∩ {b1, . . . , bn}.

If φ1 and φ2 are mlgs, then if either of them is empty, their intersection is also empty.
Suppose that we are given two non-empty mlgs φ1 = e11+ · · ·+e1k and φ2 = e21+ · · ·+e2m.
Define φ1i to be the result of deleting the expression e1i from φ1. Define φ2 j in a similar
manner. Then, φ1∩φ2 is the union of all sets of mlgs φi j, for i : 1 ≤ i ≤ k and j : 1 ≤ j ≤ m,
computed according to one of the following four cases.

(1) if e1i and e2 j are atomic expressions.
φi j = (e1i ∩ e2 j) + (φ1i ∩ φ2 j).

(2) if e1i is an atomic expression and e2 j is a star expression.
φi j = (e1i ∩ e2 j) + (φ1i ∩ φ2).

(3) if e1i is a star expression and e2 j is an atomic expression.
φi j = (e1i ∩ e2 j) + (φ1 ∩ φ2 j).

(4) if e1i and e2 j are star expressions.
φi j =

{

(e1i ∩ e2 j) + (φ1i ∩ φ2) , (e1i ∩ e2 j) + (φ1 ∩ φ2 j)
}
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Intuitively, due to commutativity of multiset addition, we intersect all pairs of expressions
in two mlgs and repeat the intersection with the rest of the two mlgs. Notice that, if one
of e1i, e2 j is a star expression, (say, e2 j), then we consider whole of φ2 as the “rest” of the
mlg. Also notice that we assume that + can be distributed over sets of mlgs.
Now, if Φ1 = {φ1, · · · , φm} and Φ2 =

{

φ′1, · · · , φ
′
n
}

, then Φ1 ∩ Φ2 =
{

φ11, · · · , φn1n2

} where
φi j = φi ∩ φ

′
j for each i : 1 ≤ i ≤ m and j : 1 ≤ j ≤ n. �

Main proof of Theorem 1:
Finally, we assume a downward closed language L. If L = ∅, then L = L(Φ) where Φ = ∅.
Otherwise, complement of L is upward closed and can be characterized by a finite set of
multisets {M1, . . . , Mn} over A by Dickson’s Lemma Dickson [1913]. Thus, a multiset
% ∈ L, if and only if Mi 6≤

m % for any i : 1 ≤ i ≤ n. Mi ∈ A~ for each i : 1 ≤ i ≤ n and
by Lemma A.1 and Lemma A.2, it follows that there are sets of mlgs, Φ1, . . . ,Φn such that
L = L(Φ1) ∩ · · · ∩ L(Φn).

Appendix A.2 Proof of Lemma 3

We prove the lemma by contraposition. Assume φ * φ′ for any φ′ ∈
{

φ′1, . . . , φ
′
n
}

.
We show that there is a multiset M ∈ L(φ), but M < L(φ′) for any φ′ such that φ′ ∈
{

φ′1, . . . , φ
′
n
}

. Thus M < L(
{

φ′1, · · · , φ
′
n
}

). Therefore, φ *
{

φ′1, · · · , φ
′
n
}

.
Let φ′ be of the form e′1 + · · · + e′k.
Induction hypothesis (IH): For a mlg φ = e1 + · · · + em with m ≥ 1, we have e1 + · · · +
em * φ′ → M1 + · · · + Mm < L(φ′) where multisets Mi ∈ L(ei) for i : 1 ≤ i ≤ m and
M = M1 + . . . + Mm.
Base case (m = 1):
First, we prove the claim where φ is an atomic expression a. In that case, we define M to
be a multiset containing a singleton element a. a < L(e′i) for any i : 1 ≤ i ≤ k. Hence,
a < L(φ′).
Second, we prove the claim where φ is a star expression {a1, . . . , al}

~. In this case, we
define M such that M(a) = k + 1 for all a ∈ {a1, · · · , al}, i.e M =

[

ak+1
1 , . . . , ak+1

l

]

and l > 0.
We use induction on k to show that M < L(φ′). The base case (k = 0) is trivial. For the
induction step, we assume k > 0. For each i : 1 ≤ i ≤ k, assuming φ′ = e′i + φ′′i , we show
the claim. There are two cases.
◦ e′i is atomic. By the induction hypothesis, we have that

[

ak
1, . . . , ak

l

]

< L(φ′′i ). Since
e′i is atomic (contains a singleton),

[

ak+1
1 , . . . , ak+1

l

]

< L(φ′).

◦ e′i is star expression. We know that {a1, . . . , al}
~ * e′i (otherwise, φ ⊆ φ′ and that is

contradiction). Since e′i is a star expression and {a1, . . . , al}
~
* e′i , there must be a

symbol a ∈ {a1, . . . , al} such that a < L(e′i ). This implies that [a1, . . . , al] < L(e′i).
By the induction hypothesis, we have that

[

ak
1, . . . , ak

l

]

< L(φ′′i ). This implies that
[

ak+1
1 , . . . , ak+1

l

]

< L(φ′).

Inductive Step (m > 1): Let φ be of the form e1 + · · · + em. We define M = M1 + · · · + Mm
where Mi is derived from ei in the same manner to derivation of M from expressions in
the special case above. We show that M satisfies the claim. We use induction on m. If
e1 * φ′, then this case reduces to the case above. Otherwise, we know that m > 1 and
e1 ⊆ φ

′′ such that φ′ = φ′′ + φ′′′ where φ′′ is a minimum mlg (i.e, a mlg consisting of the
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least number of expressions) which satisfies e1 ⊆ φ
′′. Assume that φ′′ is of the form e′i +φ′i

where i : 1 ≤ i ≤ n where n is the number of expressions in φ′′. For each i, we have two
possible cases.

◦ If e′i is atomic. Since φ′′ is a minimum mlg which satisfies e1 ⊆ φ′′, M1 < L(φ′i).
Furthermore, we know that e2 + · · · + em * φ

′′′ (otherwise, φ ⊆ φ′, contradiction).
By induction hypothesis, it follows that M2 + · · · + Mm < L(φ′′′). Since e′i is atomic,
we infer that M1 + · · · + Mm < L(φ′).
◦ If e′i is a star expression. Since φ′′ is a minimum mlg which satisfies e1 ⊆ φ′′,

M1 < L(φ′i). Furthermore, since e′i is a star expression, we know that e2 + · · · + em *
e′i + φ′′′ (otherwise, φ ⊆ φ′, contradiction). By induction hypothesis, it follows that
M2 + · · · + Mm < L(e′i + φ′′′). We infer that M1 + · · · + Mm < L(φ′).

Appendix A.3 Proof of Theorem 3

First, we show some auxiliary lemmas.
Lemma A.3 For an infinite alphabet A~ and a non-empty word µ ∈ (A~)∗, there is a wlg ψ
such that a word ν ∈ L(ψ) iff µ 6≤w ν.
P. Let µ be of the form M1 • M2 • . . . • Mm where M1, . . . , Mm are multisets
over a finite alphabet A. Let ei be a star expression Φ∗i where Φi is obtained from multiset
Mi for each i : 1 ≤ i ≤ m as shown in Lemma A.1, satisfying that a multiset M ∈ L(Φi) if
Mi �

m M for i : 1 ≤ i ≤ m.
On the other hand, for each multiset Mi, it is easy to construct a smallest mlg φi such that
Mi ∈ L(φi) for each i : 1 ≤ i ≤ m.
We define wlg ψ by e1 • φ1 • · · · • em−1 • φm−1 • em.
First we show that ν ∈ L(ψ) → µ 6≤w ν by contraposition. Assume µ ≤w ν. We prove that
ν < L(ψ). From the definition of ≤w, we know that ν is of the form ν1 • M1 • ν2 •
· · ·Mm • νm+1 where νi ∈ (A~)∗. From definition of ei, we know that Mi < L(ei) and hence,
νi • Mi < L(ei) for each i : 1 ≤ i ≤ m. This implies that ν1 • M1 • ν2 • · · · • νm • Mm <
L(e1 • φ1 • · · · • φm−1 • em) = L(ψ), i.e ν < L(ψ).
Next, we prove that µ 6≤w ν → ν ∈ L(ψ). Let l be the largest natural number such that
M1 • . . . • Ml ≤

w ν. Obviously, 0 ≤ l < m. This means that ν is of the form
ν0 • M1 • ν1 • M2 · · · • νl−1 • Ml • νl, where νi is a word over A~ \ (Mi+1 ↑)
for i : 0 ≤ i < l, where Mi+1 ↑ denotes the upward closure of multiset Mi+1. Furthermore,
we know that Ml+1 does not occur in νl (otherwise, we will have M1 • · · · • Ml+1 ≤

w ν
violating the maximality of l). This implies that νi ∈ L(ei+1) for each i : 0 ≤ i ≤ l. From
this and the fact that Mi ∈ L(φi), we have ν ∈ L(ψ). �

Lemma A.4 For wlgs ψ1, ψ2, there is a set of wlgs ψ1 ∩ ψ2 such that L(ψ1 ∩ ψ2) = L(ψ1)∩
L(ψ2).
P. In case ψ1 and ψ2 are atomic expressions (mlgs), ψ1 ∩ ψ2 is same as intersection
of two mlgs. In case, one of them is a star expression, i.e, ψ1 = {φ1, . . . , φk}

∗ and ψ2 =
φ2, then ψ1 ∩ ψ2 = {φ1 ∩ φ2, . . . , φk ∩ φ2}. If both of them are star expressions, i.e,
ψ1 = {φ1, . . . , φk}

∗ and ψ2 =
{

φ′1, . . . , φ
′
m
}∗

, then ψ1 ∩ ψ2 =
{

φ1 ∩ φ
′
1, . . . , φk ∩ φ

′
m
}∗

. Let
ψ1 = e1 • ψ

′
1 and ψ2 = e2 • ψ

′
2 be non-empty wlgs. We have four cases depending on the

form of e1 and e2.

(1) e1 and e2 are atomic expressions,
Ψ =
{

(e1 ∩ e2) • (ψ′1 ∩ ψ′2) , (ψ1 ∩ ψ
′
2) , (ψ′1 ∩ ψ2)

}
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(2) e1 is an atomic expression and e2 is a star expression.
Ψ =
{

(e1 ∩ e2) • (ψ′1 ∩ ψ2) , (ψ1 ∩ ψ
′
2)
}

(3) e1 is a star expression and e2 is an atomic expression.
Ψ =
{

(e1 ∩ e2) • (ψ1 ∩ ψ
′
2) , (ψ′1 ∩ ψ2)

}

(4) e1 and e2 are star expressions.
Ψ =
{

(e1 ∩ e2) • (ψ1 ∩ ψ
′
2) , (e1 ∩ e2) • (ψ′1 ∩ ψ2)

}

Notice that we assume the operator • can be distributed over sets of wlgs. �

Main Proof of Theorem 3:
Consider a downward closed language L of words over multisets. If L = ∅, then L = L(Ψ)
where Ψ = ∅. Otherwise, complement of L is upward closed and can be characterized by
a finite set of words over multisets given by {w1, . . . ,wn} (by Higman’s theoremHigman
[1952]). Thus, a word ν ∈ L, if and only if wi 6≤

w ν for any i : 1 ≤ i ≤ n. wi ∈ (A~)∗
for each i : 1 ≤ i ≤ n and by Lemma A.3 and Lemma A.4, it follows that there are wlgs,
ψ1, . . . , ψn such that L = L(ψ1) ∩ · · · ∩ L(ψn).

Appendix A.4 Proof of Lemma 4

Assume ψ * ψ′ for any ψ′ ∈
{

ψ′1, . . . , ψ
′
n
}

. We show that there is a word w ∈ L(ψ) such that
w < L(ψ′) for any ψ′ ∈

{

ψ′1, . . . , ψ
′
n
}

which implies that w * L(
{

ψ′1, · · · , ψ
′
n
}

). This proves
that ψ *

{

ψ′1, · · · , ψ
′
n
}

.

Let k be the number of expressions in wlg ψ′ ∈
{

ψ′1, · · · , ψ
′
n
}

, i.e, ψ′ = e′1 • . . . • e′k.
Induction hypothesis (IH): For a wlg ψ = e1 • · · · • em with m ≥ 1, we have e1 •
· · · • em * ψ

′ → w1 • · · · • wm < L(ψ′) where words wi ∈ L(ei) for i : 1 ≤ i ≤ m and
w = w1 • · · · • wm.
Base case (m = 1):
First, we prove the claim where ψ is an atomic expression, i.e a mlg φ. In that case, we
follow the proof steps in the general case of Lemma 3 and define w to be a word containing
a single multiset M derived from φ for some natural number km where km is the length of
longest mlg among all mlgs in e′1, · · · , e′k. Given, ψ * ψ′ and ψ is atomic, M < L(e′i ) for
any i : 1 ≤ i ≤ k. Hence, w < L(ψ′).
Second, we prove the claim where ψ is a star expression e = {φ1, · · · , φl}

∗ with φi is a mlg
for i : 1 ≤ i ≤ l. In this case, we define w such that w = (M1 • . . . • Ml)k+1 and Mi
is derived from φi as before. We use induction on k (length of ψ′) to show that w < L(ψ′).
The base case (k = 0) is trivial. For the induction step, we assume k > 0. There are two
cases.

◦ e′k is atomic. By the induction hypothesis, we have that (M1 • . . . • Ml)k
<

L(e′1 • · · · • e′k−1). Since e′k is atomic, (M1 • . . . • Ml)k+1
< L(ψ′).

◦ e′k is star expression. We know that e * e′k (otherwise, ψ ⊆ ψ′ and that is contradic-
tion). Since e′k is a star expression and e * e′k, there must be a mlg φi in e such that
i : 1 ≤ i ≤ l and Mi < L(e′k). This implies that M1 • . . . • Ml < L(e′k). By the
induction hypothesis, we have that (M1 • . . . • Ml)k

< L(e′1 • · · · • e′k−1). This
implies that (M1 • . . . • Ml)k+1

< L(ψ′).
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Inductive Step (m > 1): Let ψ be of the form e1 • · · · • em. We define w = w1 • · · · • wm
where wi is derived from ei in the same manner to derivation of w from expressions in the
special case above. We show that w satisfies the claim. We use induction on m. If e1 * ψ

′,
then this case reduces to the case above. Otherwise, we know that m > 1. Let k1 be the
minimum natural number such that e1 ⊆ e′1 • · · · • e′k1

. Now, we have two possible cases.
◦ If e′k1

is atomic. Since k1 is the minimum natural number satisfying e1 ⊆ e′1 • · · · •
e′k1

, w1 < L(e′1 • · · · • e′k1−1). Furthermore, we know that e2 • · · · • em *
e′k1+1 • · · · • e′k. (otherwise, ψ ⊆ ψ′, contradiction). By induction hypothesis, it
follows that w2 • · · · • wm < L(e′k1+1 • · · · • e′k). Since e′k1

is atomic, we infer that
w1 • · · · • wm < L(ψ′).
◦ If e′k1

is a star expression. Since k1 is the minimum natural number satisfying e1 ⊆
e′1 • · · · • e′k1

, w1 < L(e′1 • · · · • e′k1−1). Furthermore, since e′k1
is a star expression,

we know that e2 • · · · • em * e′k1
• · · · • e′k (otherwise, ψ ⊆ ψ′, contradiction).

By induction hypothesis, it follows that w2 • · · · • wm < L(e′k1
• · · · • e′k). We

infer that w1 • · · · • wm < L(ψ′).

Proof of Theorem 7

Given that the acceleration criterion holds at a region generator θ with respect to a transition
t, we show that for each sequence θ1, θ2, . . . of region generators in Accelt(θ) such that
θi ∈ (PostTime ◦ Stept)(θi−1) for i > 0, there is an integer n such that θn ⊆

⋃

0≤i≤n−1
(PostTime ◦

Stept)i(θ), i.e we prove that
the set of region generators computed by Accelt(θ) is finite.
First we introduce some notations. We overload || operator for mlgs, wlgs and region
generators, respectively to quantify the symbols in a region generator.
For a mlg φ = {a1, . . . , ak}

~ + ak+1 + · · · + ak+`, |φ| = k + `. Notice that |ε| = 0.
For a word star expression e = {φ1, . . . , φk}

∗, |e| = |φ1| + · · · + |φk| and for a wlg ψ =
e1 • · · · • e`, |ψ| = |e1| + · · · + |e`|.
Now, for a region generator θ = (φ0, ψ, φmax), we have |θ| = |φ0| + |ψ| + |φmax|.
Lemma A.5 There is a bound K such that for all region generator θ′ ∈ Accelt(θ), |θ′| ≤ K.
Notice that Theorem 7 directly follows from Lemma A.5.
Now, we show that there is indeed such a bound K as claimed in Lemma A.5.
First, we give a measure of the maximum number of word expressions that can be intro-
duced in a region generator during the computation of Accelt(θ). The symbols in the region
generator can belong to Type 2 places and each of them can be removed and inserted again
as a new atomic word expression anywhere in the region generator. This corresponds to
the case when the new token has totally different fractional part than all other tokens: e.g.,
given ψ = ψ1 • ψ2, we have ψ1 • p(n) • ψ2 ∈ (ψ ⊕ p(n)). Furthermore, the new
tokens in Type 2 place can have a fractional part common with some other token belonging
to some star expression. This case also increases the number of word expressions. Recall
that {φ1, · · · , φk}

∗ ⊕ p(n) = {φ1, · · · , φk}
∗ • (φi ⊕ p(n)) • {φ1, · · · , φk}

∗ for i : 1 ≤ i ≤ k.
Therefore total number of word expressions in any θ′ is governed by the size |θ|. At most,
all symbols can reappear as atomic expressions and we add star expressions in accelerated
addition before and after each such atomic expression. Since accelerated addition to a word
star expression does not increase the number of word expressions (by normalisation), the
maximum possible number of word expressions, k1 is 2 ∗ |θ| + 1.
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Secondly, we give a measure of the maximum number of symbols in each word expression
of any region generator θ′ in Accelt(θ). Each word expression of θ can contain tokens
from Type 2 places. In some firing of t, such tokens can be placed together in a single
atomic word expression. Moreover, each such atomic expression will also have tokens
added during accelerated addition and these new tokens will be placed with some of the
old tokens added. Thus maximum number of symbols in each of the word expressions of
θ′ is given by |θ| + max ∗ s, where s is given by the size of the set Aout(t) \ T2 (tokens put
during accelerated addition) and max ∗ s is the maximum number of symbols for old and
newly added tokens during accelerated addition in a word expression. This is due to the
fact that the accelerated addition to a multiset star expression is bounded by the number of
places and the value of max. Therefore, we can say that the maximum number of symbols
in each word expression of any θ′ is maximally bounded by k2 = |θ|+ |P| ∗ (max+ 1) where
P is the set of places in TPN.
Given that the maximum number of word expressions in any θ′ is k1 and the maximum
number of symbols in each word expression is k2, we have the bound

K = (k1 + 2) ∗ k2

where 2 corresponds to the first and the third part of θ′. This implies that K = O(|θ|2).


