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Abstract

The vertex set of a halved cube QY consists of a bipartition vertex
set of a cube Qg and two vertices are adjacent if they have a common
neighbour in the cube. Let d > 5. Then it is proved that Q) is the
only connected, (g)—regula.r graph on 29-1 vertices in which every
edge lies in two d-cliques and two d-cliques do not intersect in a
vertex.

1 Introduction

Let G be a bipartite graph with bipartition V(G) = X UY. A halved graph
G’ of G is defined as follows. V(G') = X and uv € E(G') whenever u and
v have a common neighbour in G. G has another halved graph with vertex
set Y. When we consider the d-cube ()4 both halved graphs are isomorphic
and we talk about the halved d-cube QY.

Partial Hamming graphs are exactly those graphs which can be iso-
metrically embedded into a Cartesian product of complete graphs, cf. [9].
We refer also to [2, 8] where these graphs are called Hamming graphs. In
case every one of the factors is the complete graph K, on two vertices one
obtains an isometric embedding into a hypercube and speaks of a partial
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binary Hamming graph. By a scale embedding of a graph G into a graph
H we mean a mapping

Y :V(G)— V(H)
for which there exists a positive integer A such that

dg(¥(u), ¥(v)) = Adg (v, )

for all u,v € V(G), where dy and dg denote the usual path distance in
G and H, respectively. If one relaxes the condition of isometry and con-
siders so-called scale embeddings into hypercubes a class larger than that
of partial Hamming graphs arises. It has been characterized by Assouad
and Deza [1] as the class of graphs isometrically embeddable into the met-
ric space £;. These graphs have in turn been characterized by Deza and
Grishukhin [3] and Shpectorov [14] as isometric subgraphs of Cartesian
products of complete graphs, cocktail party graphs and halved cubes.

It was this recent study of £;-graphs that motivated us to consider
halved cubes. As it is clear from the above, halved cubes play an important
role in the characterization of £1-graphs. In fact, without going into details,
by a result of Graham and Winkler [6] about so-called canonical isometric
embeddings of graphs into Cartesian products together with an algorithm of
Feder [5], a good algorithm for recognizing isometric subgraphs of halved
cubes would suffice for a good algorithm for recognizing f;-graphs. An
O(mn) algorithm for recognizing isometric subgraphs of halved cubes and
thus of £;-graphs was recently obtained by Deza and Shpectorov, (4]. Here n
denotes the number of vertices and m the number of edges of a given graph.
We also wish to recall that Aurenhammer, Formann, Idury, Schaffer and
Wagner [2] and Imrich and Klaviar [8] proved that it can be decided in
O(mn) time whether a given graph is a partial Hamming graph.

As usual, for a vertex u € V(G) let N(u) = {v; uv € E(G)}. A cliqueis
a maximal complete subgraph. If () is a clique we will also use () to denote
its vertex set. A clique on d vertices will be called a d-cligue. The cocktail
party graph on 2n vertices is the complete graph Kj, minus a complete
matching.

In this note we first study the structure of halved cubes and then give
a characterization of these graphs. A halved cube on 2¢~1 vertices is the
only connected, (g)~regular graph in which every edge lies in two d-cliques
and two d-cliques do not intersect in a single vertex.

2 The characterization
We will first summarize several properties of halved cubes. Then we will

prove that some of these properties already imply that a given graph is a
halved cube thus obtaining the desired characterization.
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The vertex set of the d-cube @} may be represented by all sequences of
length d over {0, 1} where two vertices are adjacent if they differ in exactly
one position. We may henceforth consider vertices of the halved d-cube QY
as sequences of length d over {0, 1}. In the sequel we will, without loss
of generality, assume that a vertex of @, is such a sequence with an even
number of I’s. In particular, (0,0,...,0) € Q4. Then two vertices of @,
are adjacent if and only if they differ in two positions.

Clearly, @/ has 291 vertices. In addition, from the coordinate repre-
sentation of () it follows immediately that @, is a (g)—regular graph. (We
also recall that halved cubes are distance-regular graphs, cf. [7].)

Note that Q% is isomorphic to the complete graph K4 on four vertices
and that @} is isomorphic to the cocktail party graph on 8 vertices. To
simplify the presentation we may henceforth assume that d > 5.

Proposition 1 (i) There are only two types of cliques of @', namely 4-
cliqgues and d-cliques.

(i) Every verlez of Q' lies in d d-cliques.

(iii) Q) has 29471 d-cliques.

Proof. (i) We include the proof of (i) for the sake of completeness although
it can be found in [7].

Let u, v and w be distinct vertices of a clique @ of @;. We may, without
loss of generality, assume that v = (0,0,0,0,...), v = (1, 1,0, 0, )y
and w = (1,0, 1,0, ...), where all three vertices agree in the remaining
coordinates.

Let z be another vertex of ). It must have exactly one 1 in its first two
coordinates for otherwise it would not be adjacent to at least one of u and
v.

If z=(0, 1, ...), it must agree with w in coordinates 3, 4, ..., d and
there is only one such vertex. Clearly the vertices u, v, w and z induce a
clique.

If 2 =(1,0,...) it must be of the form (1,0,0,...,1,...). Clearly

these d — J vertices, together with u, v and w form a d-clique.

(ii) By the argument from (i), the d-cliques of @’ are induced by the
neighborhoods of vertices of Q4 with an odd number of 1’s. Now, since
every vertex of )} is in d such neighborhoods, it is contained in precisely
d such cliques.

(iii) This follows by the same argument as (ii). o

We next give properties of halved cubes with respect to a given edge.

Proposition 2 Let uv be an edge of Q. Then
(i) IN(w) N N(v)] = 2(d - 2).
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(ii) uv belongs to precisely two d-cliques of Q, say @ and Q).

(1) QN Q" = {u,v}.
(iv) Q — {u,v} and Q' — {u, v} are joined by a maiching.

Proof. We may without loss of generality assume v = (0, 0,0, 0, ..., 0)
and v = (1,1,0,0,...,0). Let w be a vertex adjacent to both u and wv.
Then w starts out (1,0, ...) or (0, 1, ...) and it has exactly one 1 in the
remaining d—2 coordinates. Thus there are 2(d—2) vertices in N (u)NN (v).
Furthermore, the vertex sets

{u,v,(1,0,1,0,...,0), (1,0,0,1,...,0), ..., (1,0,0,0,...,1)}
and
{u,v,(0,1,1,0,...,0),(0,1,0,1,...,0), ..., (0,1,0,0,...,1)}

induce the two cliques containing uv. All the rest now easily follows. O

A connected graph G is a (0,2)-graph if any two distinct vertices in
G have exactly two common neighbors or none at all, cf. [12, 13]. Note
that in bipartite graphs this condition applies only to pairs of vertices at
distance two.

We will need the following result due to Mulder [13, page 55), cf. also
[11].

Theorem 3 Let G be a d-regular (0,2)-graph. Then |V(G)| = 2¢ if and
only if G 1s Qq.

We are ready now to characterize halved cubes.

Theorem 4 Lel d > 5. Let G be a connected, (g)-regular graph on 24-1
verlices. Then G is the halved cube QY if and only if

(i) every edge of G is contained in ezactly two d-cliques,

(i) for any d-cliqgues Q and Q', |QNQ'| # 1.

Proof. If G is a halved cube then Proposition 2 yields (i) and (ii). Con-
versely, suppose that (i) and (ii) hold. Since Gis a (g)—regular graph on 29-1
vertices, |E(G)| = d(d — 1)24-3. Thus, because of (i), there are mi((g)G—)l =
2
24-1 d-cliques of G. In addition, since G is (g)—regular and every edge is
9 d
in two d-cliques, every vertex of G belongs to 3(—2)1 = d d-cliques.

Let @ and @' be d-cliques of G with | N @’} = s for s > 1. Then by
(i1),s > 2. Let e QNQ" and let Q, @', @1, Q2, ..., Qa—2 be the d-cliques
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containing u. Note first that for any ¢, @; N (Q N Q') = {u}, for otherwise
an edge of this intersection would belong to at least three d-cliques. Thus
by (ii), @; must intersect @ \ @' for i = 1,2, ..., d — 2. Furthermore, if
for w € @\ Q' we have w € Q; N Qj, i # §, then the edge uw would not
satisfy (). If follows that d — s > d — 2, thus s = 2. Hence if QN Q' # 0
then |QNQ'| = 2.

Let n = 29-1 and denote the vertices of G by V(GQ) = {uq, us, ..., us}.
Let H be a graph which we get from G in the following way. To every
d-clique @) of G we add a new vertex and join it to every vertex of Q.
These are the newly defined edges of H. The original edges of G are all
removed. Note that H is bipartite. Since G contains n d-cliques we may
write V(H) = {uy, ug, ..., un, v1, va, ..., v, }. By construction, de(vi) =
d,forevery i=1,2, ..., n, and since every u; is in d d-cliques, we conclude
that H is d-regular.

We claim that H is a (0,2)-graph. H is connected because G is con-
nected and every edge of G lies in a d-clique. Let dgr(u;, u;) = 2 and let vy,
be a common neighbor of u; and u;. Then u;u; must be an edge of G and
since it is contained in two d-cliques, there is another common neighbor of
u; and uj, say vg. Furthermore, vy, and v, are their only common neighbors
for otherwise u;u; would lie in more that two d-cliques of G. Now, let u; be
a common neighbor of vertices v; and v; and let ; and Q); be the cliques
of G corresponding to v; and v;. Since ux € Q; NQ; we have |Q;N Qi =2.
But this means that v; and v; have precisely two common neighbors and
the claim is proved.

We have seen that H is a d-regular (0, 2)-graph on 2¢ vertices. Thus H
1s ¢ by Theorem 3. To complete the proof we are going to show that G is
the halved graph of H. More precisely, we need to show that uiu; € E(G)
if and only if dg(u;,u;) = 2. Let u;u; € E(G). Then u;u; belongs to a
d-clique @ and by construction there is a vertex of H adjacent to every
vertex of Q. In particular, dg(u;, u;) = 2. Conversely, let dp(u;, u;) = 2.
Because in H all the edges of GG are removed there is a vertex vy (not in
G) such that u;vx € E(H) and vgyu; € E(H). But this implies that u; and
u; belong to a common clique of G, hence w;ju; € E(G). O

We note that condition (ii) of Theorem 4 can be replaced by the follow-
ing equivalent condition:

(it’) for any d-cliques @ and @, |Q N Q’| < 2.

In the proof of Theorem 4 we have shown that (i) implies (ii’). Suppose
now that (ii’) holds and assume that |Q N Q'| = 1 for d-cliques @ and Q'
Let u € QN Q' Let V(Q) = {u, wi, wo, ..., wa_1}. Clearly, uw; € Q for
i=1,2...,d-1 Let @ # Q be the second d-clique containing ww;,
i=1,2,...,d~ 1. Then Q; # Q'. Furthermore, if i # j then Q; * Qj,
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for otherwise |@; N Q| > 3. It follows that u is contained in at least d + 1
d-cliques, a contradiction.
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