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1 What is a Model? Why do We Need a Model? How

We Use a Model?
1.1 Introduction

 Proper understanding of the vibration phenomena is needed to cater 21st

century design needs.

 Broadly speaking, there are two ways to understand the dynamics of

complex structures:

AThe first is the experimental approach. A carefully conducted exper-

iment can yield high quality data which can provide crucial informa-

tion regarding the dynamics of a system. However, the experimental

process is time consuming, expensive and it may be not be possible

to dynamically test a complex structure under various loading condi-

tions which the structure might experience during its service period.

AThe alternative is to ‘replace’ the actual structure by a mathematical

model and perform numerical experiments in a computer.

 A model is a mathematical representation of the true structure. Figure

1.1 shows different types of models of dynamic systems used by today’s

engineers.
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Mathematical Models of Dynamic Systems
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Figure 1.1: Different types of mathematical models for dynamic systems
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A model can be created with various levels of sophistication. The choice of a

particular model depends on the physics of the system, accuracy required for

the problem and also on the nature of the forces the structure is expected to

withstand in practice. The quality of a model of a dynamic system depends

on the following there factors (the Good, Bad and Ugly!):

 Fidelity to (experimental) data: (The Good)

The results obtained from a numerical or mathematical model undergoing

a given excitation force should be close to the results obtained from the

vibration testing of the same structure undergoing the same excitation.

 Robustness with respect to (random) errors: (The Bad)

Errors in estimating the system parameters, boundary conditions and

dynamic loads are unavoidable in practice. The output of the model

should not be very sensitive to such errors.

 Predictive capability (The Ugly)

In general it is not possible to experimentally validate a model over the

entire domain of its scope of application. The model should predict the

response well beyond its validation domain.
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1.2 Equation of Motion of Linear Mechanical Systems

 Lord Rayleigh (1877) in his classic monograph ‘Theory of Sound’ outlined

the fundamental concepts of modeling and analysis of linear dynamic sys-

tems. Current methods for modeling and analysis of complex engineering

systems are largely based on Rayleigh’s approach.

 From a mathematical point of view, models of vibrating systems are com-

monly divided into two broad classes – discrete, or lumped-parameter

models, and continuous, or distributed-parameter models.

 Distributed-parameter modeling of vibrating systems leads to partial-

differential equations as the equation of motion. Exact solutions of such

equations are limited.

 For general complex engineering structures, such as an aircraft, normally

we need some kind of approximate methods for dynamic analysis. Such

approaches are generally based on spatial discretization of the displace-

ment field (for example, the Finite Element Method), which amounts to

approximating distributed-parameter systems by lumped-parameter sys-

tems. Equations of motion of lumped-parameter systems can be shown

to be expressed by a set of coupled ordinary-differential equations.
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Suppose that a system with N degrees of freedom is executing small oscillations

around equilibrium points. Considering the vector of generalized coordinates

q = {q1(t), q2(t), · · · , qN(t)}T ∈ RN (1.1)

the potential energy could be expanded in the form of a Taylor series in the

neighborhood of the equilibrium position as

V (q) = V (0) +
N∑

j=1

(
∂V
∂qj

)

q=0
qj +

1

2

N∑

j=1

N∑

k=1

(
∂2V

∂qj∂qk

)

q=0
qjqk +O(q3).

(1.2)

Since the potential energy is defined only to a constant, it may be assumed

that V (0) = 0, and consequently the second order approximation yields

V (q) =
1

2

N∑

j=1

N∑

k=1

Kjkqjqk (1.3)

because second term is zero at equilibrium. Here the elastic coefficients

Kjk =

(
∂2V

∂qj∂qk

)

q=0
. (1.4)

Equation (1.3) can also be put in the matrix positive definite quadratic form

as

V (q) =
1

2
qTKq (1.5)

where K ∈ RN×N , the (linear) stiffness matrix of the system, is symmetric

and non-negative definite. In a similar way, in the absence of any centripetal

and Coriolis forces, the kinetic energy of a system can be expressed as

T (q) =
1

2

N∑

j=1

N∑

k=1

Mjkq̇j q̇k =
1

2
q̇TMq̇. (1.6)
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In the above expression q̇ is the vector of the generalized velocities and M ∈
RN×N , the mass matrix of the system, is a symmetric and positive definite

matrix. The equation of motion of free vibration can now be obtained by the

application of Lagrange’s equation

d

dt

(
∂L
∂q̇k

)
− ∂L

∂qk
= Qnck

+ fk, ∀k = 1, · · · , N (1.7)

where L = T − V is the Lagrangian, Qnck
are the non-conservative forces

and fk are the applied forces acting on the system. For undamped systems

Qnck
= 0,∀k. Using the expressions of V and T from equation (1.5) and

(1.6) and substituting L, from equation (1.7), the equation of motion of an

undamped non-gyroscopic system can be obtained as

Mq̈(t) + Kq(t) = f(t) (1.8)

where f(t) ∈ RN is the forcing vector. Equation (1.8) represents a set of cou-

pled second-order ordinary-differential equations. The solution of this equation

also requires knowledge of the initial conditions in terms of the displacements

and velocities of all the coordinates.

1.3 Classical Modal Analysis

Rayleigh (1877) has shown that undamped linear systems, equation of motion

of which is given by (1.8), are capable of so-called natural motions. This

essentially implies that all the system coordinates execute harmonic oscillation

at a given frequency and form a certain displacement pattern. The oscillation

frequency and displacement pattern are called natural frequencies and normal

modes, respectively. The natural frequencies (ωj) and the mode shapes (xj)
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are intrinsic characteristic of a system and can be obtained by solving the

associated matrix eigenvalue problem

Kxj = ω2
jMxj, ∀ j = 1, · · · , N. (1.9)

Since the above eigenvalue problem is in terms of real symmetric matrices

M and K, the eigenvalues and consequently the eigenvectors are real, that is

ωj ∈ R and xj ∈ RN . The undamped eigenvectors satisfy an orthogonality

relationship over the mass and stiffness matrices

xT
l Mxj = δlj (1.10)

and xT
l Kxj = ω2

j δlj, ∀ l, j = 1, · · · , N (1.11)

where δlj is the Kroneker delta function. Construct the matrices

Ω = diag [ω1, ω2, · · · , ωN ] ∈ RN×N (1.12)

and X = [x1,x2, · · · ,xN ] ∈ RN×N (1.13)

where the eigenvalues are arranged such that ω1 < ω2, ω2 < ω3, · · · , ωk < ωk+1.

Use a coordinate transformation

q(t) = Xy(t). (1.14)

Substituting q(t) in equation (1.8), premultiplying by XT and using the or-

thogonality relationships in (1.12) and (1.13), the equation of motion in the

modal coordinates:

ÿ(t) + Ω2y(t) = f̃(t) (1.15)

where f̃(t) = XT f(t) is the forcing function in modal coordinates. Clearly, this

method significantly simplifies the dynamic analysis because complex multiple
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degrees of freedom systems can be treated as collections of single-degree-of-

freedom oscillators. This approach of analyzing linear undamped systems is

known as modal analysis, possibly the most efficient tool for vibration analysis

of complex engineering structures.
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1.4 Models of Damping

 Damping is the dissipation of energy from a vibrating structure. In this

context, the term dissipate is used to mean the transformation of energy

into the other form of energy and, therefore, a removal of energy from the

vibrating system. The type of energy into which the mechanical energy

is transformed is dependent on the system and the physical mechanism

that cause the dissipation. For most vibrating system, a significant part

of the energy is converted into heat.

 The specific ways in which energy is dissipated in vibration are depen-

dent upon the physical mechanisms active in the structure. These phys-

ical mechanisms are complicated physical process that are not totally

understood. The types of damping that are present in the structure will

depend on which mechanisms predominate in the given situation. Thus,

any mathematical representation of the physical damping mechanisms in

the equations of motion of a vibrating system will have to be a generaliza-

tion and approximation of the true physical situation. Any mathematical

damping model is really only a crutch which does not give a detailed

explanation of the underlying physics.
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1.4.1 Viscous Damping:

The most popular approach to model damping in the context of multiple

degrees-of-freedom (MDOF) systems – first introduced by Rayleigh (1877). By

analogy with the potential energy and the kinetic energy, Rayleigh assumed

the dissipation function:

F (q) =
1

2

N∑
j=1

N∑

k=1

Cjkq̇j q̇k =
1

2
q̇TCq̇. (1.16)

C ∈ Rn is a non-negative definite symmetric matrix – the viscous damping

matrix. Viscous damping matrices can be further divided into classical and

non-classical damping.
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1.4.2 Non-viscous Damping Models:

 It is important to avoid the widespread misconception that viscous damp-

ing is the only linear model of vibration damping in the context of MDOF

systems. Any causal model which makes the energy dissipation func-

tional non-negative is a possible candidate for a damping model.

 Fractional Derivative Model:

One popular approach is to model damping in terms of fractional deriva-

tives of the displacements. The damping force:

Fd =
l∑

j=1

gjD
νj [q(t)]. (1.17)

gj are complex constant matrices and the fractional derivative operator

Dνj [q(t)] =
dνjq(t)

dtνj
=

1

Γ(1− νj)

d

dt

∫ t

0

q(t)

(t− τ)νj
dτ (1.18)

where νj is a fraction and Γ(•) is the Gamma function.

AThe familiar viscous damping appears as a special case when νj = 1.

AAlthough this model might fit experimental data quite well, the phys-

ical justification for such models, however, is far from clear at the

present time.
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 Convolution Integration Model:

Here damping forces depend on the past history of motion via convolution

integrals over some kernel functions. A modified dissipation function for

such damping model can be defined as

F (q) =
1

2

N∑
j=1

N∑

k=1

q̇k

∫ t

0
Gjk(t− τ)q̇j(τ)dτ =

1

2
q̇T

∫ t

0
G(t− τ)q̇(τ)dτ.

(1.19)

Here G(t) ∈ Rn is a symmetric matrix of the damping kernel functions,

Gjk(t).

AThe familiar viscous damping appears as a special case when G(t −
τ) = C δ(t− τ), where δ(t) is the Dirac-delta function.

ABy choosing suitable kernel functions, it can also be shown that the

fractional derivative model discussed before is also a special case of

this damping model. It is therefore, possibly the most general way

to model damping.

AFor further discussions see Adhikari (2002, 2000), Woodhouse (1998)
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The damping kernel functions are commonly defined in the frequency/Laplace

domain. Several authors have proposed several damping models and they are

summarized below:

Table 1.1: Summary of damping functions in the Laplace domain

Damping functions Author, Year

G(s) =
∑n

k=1

aks

s + bk

Biot (1955, 1958)

G(s) = as
∫∞

0

γ(ρ)

s + ρ
dρ Buhariwala (1982)

γ(ρ) =





1

β − α
α ≤ γ ≤ β

0 otherwise

G(s) =
E1s

α − E0bs
β

1 + bsβ
Bagley and Torvik (1983)

0 < α < 1, 0 < β < 1

sG(s) = G∞
[
1 +

∑
k αk

s2 + 2ξkωks

s2 + 2ξkωks + ω2
k

]
Golla and Hughes (1985)

and McTavish and Hughes (1993)

G(s) = 1 +
∑n

k=1

∆ks

s + βk

Lesieutre and Mingori (1990)

G(s) = c
1− e−st0

st0
Adhikari (1998)

G(s) = c
1 + 2(st0/π)2 − e−st0

1 + 2(st0/π)2
Adhikari (1998)
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1.5 The Assumption of Proportional Damping: Classical Normal
Modes and Complex Modes

 The non-conservative forces in Lagrange’s equation

Qnck
= −∂F

∂q̇k
, k = 1, · · · , N (1.20)

The equations of motion

Mq̈(t) + Cq̇(t) + Kq(t) = f(t). (1.21)

The aim is to solve this equation (together with the initial conditions) by

modal analysis as described in Section 1.3.

 Equations of motion of a damped system in the modal coordinates

ÿ(t) + XTCXẏ(t) + Ω2y(t) = f̃(t). (1.22)

Unless XTCX is a diagonal matrix, no advantage can be gained by em-

ploying modal analysis because the equations of motion will still be cou-

pled.

 Proportional damping assumptions is required.
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With proportional damping assumption:

 The damping matrix C is simultaneously diagonalizable with M and K

i.e., the damping matrix in the modal coordinate

C′ = XTCX (1.23)

is a diagonal matrix .

 The damping ratios ζj are defined from the diagonal elements of the

modal damping matrix as

C ′
jj = 2ζjωj ∀j = 1, · · · , N. (1.24)

 It allows to analyze damped systems in very much the same manner as

undamped systems since the equations of motion in the modal coordinate

can be decoupled as

ÿj(t) + 2ζjωj ẏj(t) + ω2
jyj(t) = f̃j(t) ∀ j = 1, · · · , N. (1.25)

 The classical proportional damping model expresses the damping matrix

as a linear combination of the mass and stiffness matrices:

C = α1M + α2K (1.26)

where α1, α2 are real scalars. This damping model is also known as

‘Rayleigh damping’ or ‘classical damping’.
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The Conditions for Proportional Damping

Classical damping can exist in more general situation. Modifying the original

theorem by Caughey and O’Kelly (1965) for a non-negative definite system we

have the following theorem:

Theorem 1.1. A viscously damped linear system can possess classical nor-

mal modes if and only if at least one of the following conditions is satisfied:

(a) KM−1C = CM−1K, (b) MK−1C = CK−1M, (c) MC−1K = KC−1M.

This can be easily proved by following Caughey and O’Kelly’s approach and

interchanging M, K and C successively. If a system is (•)-singular then the

condition(s) involving (•)−1 have to be disregarded and remaining condition(s)

have to be used. Thus, for a positive definite system, along with Caughey and

O’Kelly’s result (condition (a) of the theorem), there exist two other equiva-

lent criterion to judge whether a damped system can possess classical normal

modes. It is important to note that these three conditions are equivalent and

simultaneously valid but in general not the same.
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Example 1.1.

Assume that a system’s mass, stiffness and damping matrices are given by

M =




1.0 1.0 1.0

1.0 2.0 2.0

1.0 2.0 3.0


 , K =




2 −1 0.5

−1 1.2 0.4

0.5 0.4 1.8


 andC =




15.25 −9.8 3.4

−9.8 6.48 −1.84

3.4 −1.84 2.22


 .

(1.27)

It may be verified that all the system matrices are positive definite. The

mass-normalized undamped modal matrix is obtained as

Φ =




0.4027 −0.5221 −1.2511

0.5845 −0.4888 1.1914

−0.1127 0.9036 −0.4134


 . (1.28)

Since Caughey and O’Kelly’s condition

KM−1C = CM−1K =




125.45 −80.92 28.61

−80.92 52.272 −18.176

28.61 −18.176 7.908




is satisfied, the system possess classical normal modes and that Φ given in

equation (1.28) is the modal matrix. Because the system is positive definite

the other two conditions,

MK−1C = CK−1M =




2.0 −1.0 0.5

−1.0 1.2 0.4

0.5 0.4 1.8




and

MC−1K = KC−1M =




4.1 6.2 5.6

6.2 9.73 9.2

5.6 9.2 9.6



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are also satisfied. Thus all three conditions described in Theorem 1.1 are

simultaneously valid although none of them are the same. So, if any one of

the three conditions proposed in Theorem 1.1 is satisfied, a viscously damped

positive definite system will possess classical normal modes.
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1.5.1 Generalized proportional damping

 We want to find C in terms of M and K such that the system still

possesses classical normal modes. Caughey and O’Kelly (1965) proved

that the series (‘Caughey series’) representation of damping

C = M
N−1∑
j=0

αj

[
M−1K

]j
(1.29)

is the necessary and sufficient condition for existence of classical normal

modes. This generalized Rayleigh’s proportional damping, which turns

out to be the first two terms of the series.

 A further generalized and useful form of proportional damping can be

obtained. Assuming that the system is positive definite, a further gen-

eralized and useful form of proportional damping will be derived in this

note. Consider the conditions (a) and (b) of Theorem 1.1; premultiplying

(a) by M−1 and (b) by K−1 one has
(
M−1K

) (
M−1C

)
=

(
M−1C

) (
M−1K

)
or AB = BA

(
K−1M

) (
K−1C

)
=

(
K−1C

) (
K−1M

)
or A−1D = DA−1,

(1.30)

where A = M−1K, B = M−1C and D = K−1C.

 For any two matrices A and B, if A commutes with B, β(A) also com-

mutes with B where the real function β(x) is smooth, continuous and has

a Taylor series expansion about x = 0.

 From the commutative relationships in equation (1.30), one can use many

well known functions to represent M−1C in terms of M−1K and also
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K−1C in terms of K−1M. So representations like C = M β(M−1K) and

C = K β(K−1M) are valid.

 The damping matrix can be expressed by adding these two quantities as

C = M β1
(
M−1K

)
+ K β2

(
K−1M

)
(1.31)

such that the system possesses classical normal modes. Postmultiplying

condition (a) of Theorem 1.1 by M−1 and (b) by K−1 one has
(
KM−1) (

CM−1) =
(
CM−1) (

KM−1)
(
MK−1) (

CK−1) =
(
CK−1) (

MK−1) .
(1.32)

 Following a similar procedure we can express the damping matrix in the

form

C = β3
(
KM−1)M + β4

(
MK−1)K (1.33)

such that system (1.21) possesses classical normal modes.

 Although the functions βi(•), i = 1, · · · , 4 can have very general forms,

the expressions of C in equations (1.31) and (1.33) get restricted because

of the special nature of the arguments in the functions. As a consequence,

C represented in (1.31) or (1.33) does not cover the whole RN×N , which

is well known that many damped systems do not possess classical normal

modes.

 Rayleigh’s proportional damping is a special case:

βi(•) = αiI. (1.34)

The functions βi(•) are called proportional damping functions .
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From this discussion we have the following general result for damped linear

systems:

Theorem 1.2. Viscously damped positive definite linear systems will have

classical normal modes if and only if the damping matrix can be represented

as

(a) C = M β1
(
M−1K

)
+ K β2

(
K−1M

)
, or

(b) C = β3
(
KM−1)M + β4

(
MK−1)K

for any smooth continuous functions βi(•), i = 1, · · · , 4.
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Example 1.2.

This example is chosen to show the general nature of the proportional damping

functions which can be used within the scope of conventional modal analysis. It

will be shown that the linear dynamic system satisfying the following equation

of free vibration

Mq̈+

[
Me

−
(
M

−1
K

)2

/2
sinh(K−1M ln(M−1K)2/3)

+ K cos2(K−1M)
4
√

K−1M tan−1

√
M−1K

π

]
q̇ + Kq = 0

(1.35)

possesses classical normal modes. Numerical values of M and K matrices are

assumed to be the same as in example 1.1.

Direct calculation shows

C = −




67.9188 104.8208 95.9566

104.8208 161.1897 147.7378

95.9566 147.7378 135.2643


 . (1.36)

Using the modal matrix calculated before in equation (1.28), we obtain

ΦTCΦ =



−88.9682 0.0 0.0

0.0 0.0748 0.0

0.0 0.0 0.5293


 ,

a diagonal matrix. Analytically the modal damping factors can be obtained

as

2ξjωj = e−ω4
j /2 sinh

(
1

ω2
j

ln
4

3
ωj

)
+ ω2

j cos2

(
1

ω2
j

)
1√
ωj

tan−1 ωj

π
. (1.37)
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This example shows that using the generalized proportional damping it is

possible to model any variation of the damping factors with respect to the fre-

quency. This is the basis of the damping identification method to be proposed

later in section 3.2. With Rayleigh’s proportional damping in equation (1.26),

the modal damping factors have a special form

ζj =
1

2

(
α1

ωj
+ α2ωj

)
. (1.38)

Clearly, not all form of variations of ζj with respect to ωj can be captured

using equation (1.38). The damping identification method proposed in the

next section removes this restriction.
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1.6 Forced Dynamic Response of Generally Damped Linear Sys-
tems

 The conditions for existence of proportional damping are purely math-

ematical in nature and there is no reason why a general system should

obey such conditions.

 In general a linear system will have non-proportional as well as non-

viscous damping.

 The equation of motion of forced vibration of an N -degrees-of-freedom

linear system with non-viscous damping of the form (1.19) is given by

Mq̈(t) +

∫ t

0
G(t− τ)q̇(τ)dτ + Kq(t) = f(t). (1.39)

together with the initial conditions

q(0) = q0 ∈ RNand q̇(0) = q̇0 ∈ RN . (1.40)

 Question: Is classical modal analysis valid for such systems?

AThe answer is yes , but not in a straightforward manner

(Adhikari, 2002).

S.Adhikari@bristol.ac.uk

mailto:S.Adhikari@bristol.ac.uk?subject=Enquiry regarding your paper�


University of Catania, 24th June 2005 28

1.6.1 Eigenvalues and Eigenvectors

 Considering the free vibration, that is f(t) = q0 = q̇0 = 0, and taking the

Laplace transform of the equation of motion (1.39) one has

s2Mq̄ + sG(s)q̄ + Kq̄ = 0. (1.41)

Here q̄(s) = L [q(t)] ∈ CN , G(s) = L [G(t)] ∈ CN×N and L [•] denotes

the Laplace transform.

 Assumptions: (a) M−1 exists, and (b) all the eigenvalues of M−1K are

distinct and positive, and (c) G(s) is such that the motion is dissipative.

 The elements of G(s) can be represented as

Gjk(s) =
pjk(s)

qjk(s)
; lim

|s|→sj

|Gjk(s)| < ∞ (1.42)

 The eigenvalues associated with equation (1.41) are the roots of the char-

acteristic equation

det
[
s2M + sG(s) + K

]
= 0. (1.43)

The roots of this equation are either real, or if complex, then must appear

in conjugate pairs.

 Suppose the order of the characteristic polynomial m = 2N + p; p ≥ 0.

 For an underdamped systems, among the m eigenvalues, 2N woll ap-

pear in complex conjugate pairs and the remaining p will be purely real.

Arrange the eigenvalues as

s1, s2, · · · , sN , s∗1, s
∗
2, · · · , s∗N , s2N+1, · · · , sm (1.44)
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 The eigenvalue problem associated with equation (1.39) can be defined

from (1.41) as

D(sj)zj = 0, for j = 1, · · · ,m (1.45)

where D(sj) = s2
jM + sj G(sj) + K ∈ CN×N (1.46)

 Corresponding to the 2N complex conjugate pairs of eigenvalues, the

N eigenvectors together with their complex conjugates will be called

elastic modes . These modes are related to the N modes of vibration

of the structural system. Physically, the ‘2N complex conjugate pairs of

eigenvalues’ means that all the elastic modes are oscillatory in nature,

that is, they are sub-critically damped.

 The modes corresponding to the ‘additional’ p eigenvalues will be called

non-viscous modes . These modes are induced by the non-viscous effect

of the damping mechanism. For stable passive systems the non-viscous

modes are over-critically damped (i.e., negative real eigenvalues) and not

oscillatory in nature.
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1.6.2 Elastic Modes

 Once the eigenvalues are known, all modes can be obtained from equation

(1.45) by fixing any one element and inverting the associated (N − 1) ×
(N − 1) complex matrix-partition of D(sj).

 An approximate solution will be given to enhance the understanding of

non-viscously damped systems.

 Sine for distinct undamped eigenvalues (ω2
l ), the undamped mode shapes

xl, ∀ l = 1, · · · , N , form a complete set of vectors, zj can be expanded as

a complex linear combination of xl:

zj =
N∑

l=1

α
(j)
l xl; α

(j)
j = 1 (the normalization) (1.47)

 Substituting the expansion of zj, from equation (1.45)

N∑

l=1

s2
jα

(j)
l Mxl + sjα

(j)
l G(sj)xl + α

(j)
l Kxl = 0. (1.48)

 Premultiplying by xT
k and using the orthogonality property of the undamped

eigenvectors

s2
jα

(j)
k + sj

N∑

l=1

α
(j)
l G′

kl(sj) + ω2
kα

(j)
k = 0, ∀k = 1, · · · , N (1.49)

where G′
kl(sj) = xT

k G(sj)xl.

 For light non-proportionally damped systems , G′
kl(sj) ≤ G′

kk(sj), ∀k 6=
l, sj. Considering the j-th set of equation (1.49) and neglecting the
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second-order terms involving α
(j)
k and G′

kl(sj), ∀k 6= l:

s2
j + sjG

′
jj(sj) + ω2

j ≈ 0

or sj ≈ ±iωj −G′
jj(±iωj)/2

that is sj ≈ iωj −G′
jj(iωj)/2 or sj ≈ −iωj −G′

jj(−iωj)/2.

(1.50)

This is the first-order approximate expression of the eigenvalues of the

non-viscously damped system (1.39) corresponding to the elastic modes.

 Because G(t) is a real function, G′
jj(•) satisfies the property

G′
jj(−iωj) = G′∗

jj(iωj). (1.51)

Using this it can be confirmed that approximate eigenvalues in (1.50)

appear in complex conjugate pairs.

 To obtain an approximate expression of the eigenvectors, rewrite equation

(1.49) as

s2
jα

(j)
k + sj


G′

kj(sj) + α
(j)
k G′

kk(sj) +
N∑

l 6=k 6=j

α
(j)
l G′

kl(sj)


 +ω2

kα
(j)
k = 0,

∀k = 1, · · · , N ; 6= j.

(1.52)

 Neglecting the second-order terms involving α
(j)
k and G′

kl(sj), ∀k 6= l

s2
jα

(j)
k + sjG

′
kk(sj)α

(j)
k ω2

kα
(j)
k ≈ −sjG

′
kj(sj),

or α
(j)
k ≈ sjG

′
kj(sj)

ω2
k + s2

j + sjG′
kk(sj)

∀k = 1, · · · , N ; 6= j.
(1.53)
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 Substituting α
(j)
k in equation (1.47)

zj ≈ xj −
N∑

k=1
k 6=j

sjG
′
kj(sj)xk

ω2
k + s2

j + sjG′
kk(sj)

. (1.54)

This is the approximate first-order expression of the complex modes.
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1.6.3 Non-viscous Modes

 When 2N < j ≤ m, the eigenvalues and eigenvectors become real Parti-

tion zj as

zj =

{
z1j

z2j

}
. (1.55)

and D(sj) as

D(sj) =

[
D11(sj) D12(sj)

D21(sj) D22(sj)

]
(1.56)

where D11(sj) ∈ R, D12(sj) ∈ R1×(N−1), D21(sj) ∈ R(N−1)×1 and D22
(j) ∈

R(N−1)×(N−1).

 Select z1j = 1 so that z2j ∈ R(N−1) can be determined from equations

(1.45)

D22(sj)z2j = −D21(sj) or z2j = − [D22(sj)]
−1 D21(sj). (1.57)
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The Special Case: Viscously Damped Systems With Light Non-proportional Damping

 The eigensolutions of viscously damped systems consist of only the elastic

modes. The results derived for elastic modes can be applied to viscously

damped systems by considering the fact that the matrix of the damping

functions, G(s), is a constant matrix, say G(s) = C, ∀s, where C is the

viscous damping matrix.

 Using this simplification, from equation (1.50), the approximate eigenval-

ues (appear in complex conjugate pairs) are obtained as

sj ≈ ±iωj − C ′
jj/2 = −C ′

jj/2 + iωj, −C ′
jj/2− iωj. (1.58)

 From equation (1.54), the first-order approximate expressions of eigen-

vectors are obtained as

zj ≈ xj −
N∑

k=1
k 6=j

sjC
′
kjxk

ω2
k + s2

j + sjC ′
kk

. (1.59)
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1.6.4 Transfer Function of the System

 The transfer function (matrix) of a system completely defines its input-

output relationship in the steady-state.

 Taking the Laplace transform of equation (1.39) gives

s2Mq̄ + sG(s)q̄ + Kq̄ = f̄ or D(s)q̄ = f̄ (1.60)

where the dynamic stiffness matrix

D(s) = s2M + sG(s) + K ∈ CN×N . (1.61)

 From equation (1.60) the response vector q̄ can be obtained as

q̄ = D−1(s)̄f = H(s)̄f (1.62)

where

H(s) = D−1(s) ∈ CN×N (1.63)

is the transfer function matrix.

 Clearly

H(s) =
adj [D(s)]

det [D(s)]
. (1.64)

 The poles of H(s), denoted by sj, are the eigenvalues of the system.

Because it is assumed that all the m eigenvalues are distinct, each pole

is a simple pole.

 From the residue theorem it is known that any analytic complex function

can be expressed in terms of the poles and residues, that is, the transfer
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function has the form

H(s) =
m∑

j=1

Rj

s− sj
. (1.65)

Where

Rj =
res

s=sj
[H(s)]

def
= lim

s→sj

(s− sj) [H(s)] (1.66)

is the residue of the transfer function matrix at the pole sj.

 The residues can be obtained exactly (see Appendix A for details) in

terms of the system eigenvectors as

Rj =
zjz

T
j

zT
j

∂D(sj)
∂sj

zj

. (1.67)

 Recalling that, among the m eigenvalues 2N appear in complex conjugate

pairs, from equation (1.65) the transfer function matrix is obtained as

H(iω) =
N∑

j=1

[
γjzjz

T
j

iω − sj
+

γ∗j z
∗
jz
∗T

j

iω − s∗j

]
+

m∑

j=2N+1

γjzjz
T
j

iω − sj
, (1.68)

where

γj =
1

zT
j

∂D(sj)
∂sj

zj

. (1.69)

The transfer function matrix has two parts, the first part is due to the

elastic modes, and the second part is due to the non-viscous modes.

 This expression is a natural generalization of the familiar transfer function

matrices of undamped or viscously damped systems:

1.Undamped systems : In this case G(s) = 0 results the order of the

characteristic polynomial m = 2N ; sj is purely imaginary so that
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sj = iωj where ωj ∈ R are the undamped natural frequencies and

zj = xj ∈ RN . In view of the mass normalization relationship in

(1.10), γj = 1
2iωj

and equation (1.68) leads to

H(iω) =
N∑

j=1

1

2iωj

[
1

iω − iωj
− 1

iω + iωj

]
xjx

T
j =

N∑
j=1

xjx
T
j

ω2
j − ω2 .

(1.70)

2.Viscously-damped systems with non-proportional damping (see for

example, Géradin and Rixen, 1997): In this case m = 2N and

γj = 1
zT

j [2sjM+C]zj
. These reduce expression (1.68) to

H(iω) =
N∑

j=1

[
γjzjz

T
j

iω − sj
+

γ∗jz
∗
jz
∗T

j

iω − s∗j

]
. (1.71)
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1.6.5 Dynamic Response

Frequency Domain Analysis

 Taking the Laplace transform of equation (1.39) and considering the ini-

tial conditions in (1.40)

s2Mq̄− sMq0 −Mq̇0 + sG(s)q̄−G(s)q0 + Kq̄ = f̄(s)

or
[
s2M + sG(s) + K

]
q̄ = f̄(s) + Mq̇0 + [sM + G(s)]q0.

(1.72)

 Using the expression for the transfer function derived before, the response

vector q̄ may be obtained as

q̄ =
m∑

j=1

γjzjz
T
j

s− sj

{
f̄(s) + Mq̇0 + [sM + G(s)]q0

}
. (1.73)

 This can be simplified further to

q̄(iω) =
m∑

j=1

γjAj(iω)

iω − sj
zj

=
N∑

j=1

{
γjAj(iω)

iω − sj
zj +

γ∗j A
∗
j(iω)

iω − s∗j
z∗j

}
+

m∑

j=2N+1

γjAj(iω)

iω − sj
zj

(1.74)

where the frequency-dependent complex scalar

Aj(iω) = zT
j f̄(iω) + zT

j Mq̇0 + iωzT
j Mq0 + zT

j G(iω)q0. (1.75)

The first part of the summation in equation (1.74) corresponds to the 2N

complex conjugate pairs of elastic modes and the second part corresponds

to the contribution of the non-viscous modes.
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Time Domain Analysis

 From the expression of the transfer function in equation (1.68), the im-

pulse response function matrix h(t) ∈ RN×N may be obtained as

h(t) =
N∑

j=1

[
γjzjz

T
j esjt + γ∗jz

∗
jz
∗T

j es∗j t
]

+
m∑

j=2N+1

γjzjz
T
j esjt. (1.76)

 The response due to the initial conditions may also be obtained by taking

the inverse transform of equation (1.73). First, simplify equation (1.73)

q̄(s) =
m∑

j=1

γj

[
zT

j f̄(s) + zT
j G(s)q0

s− sj
+

zT
j Mq̇0

s− sj
+

(
1 +

sj

s− sj

)
zT

j Mq0

]
zj.

(1.77)

 From the above

q(t) = L−1[q̄(s)] =
N∑

j=1

[
γjaj(t)zj + γ∗j a

∗
j(t)z

∗
j

]
+

m∑

j=2N+1

γjaj(t)zj (1.78)

where the time-dependent scalar coefficients

aj(t) =

∫ t

0
esj(t−τ) {zT

j f(τ) + zT
j G(τ)q0

}
dτ+esjt

{
zT

j Mq̇0 + sjz
T
j Mq0

}
; ∀t > 0.

(1.79)
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 Summary of the response analysis

AThe expression of the system response, either the frequency-domain

description in equation (1.74) or the time-domain description in equa-

tion (1.78), is similar to the classical modal superposition result for

undamped or proportionally damped systems usually obtained using

the mode-orthogonality relationships.

AIt is a generalization of the classical result where the real normal

modes are appropriately ‘replaced’ by the elastic modes and the non-

viscous modes.

AWe have not used any orthogonality relationship – the expression

of the transfer function residue in equation (1.67) allows us to ex-

press the response in terms of superposition of individual modes

even when the equation of motion cannot be decoupled.
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1.6.6 Numerical Example

Consider a three degree-of-freedom system in figure 1.2. Damping is associated

u

c g(t)

321

ku

m

ku

m m
ku ku

u u

Figure 1.2: Three degree-of-freedom non-viscously damped system, mu = 1 kg, ku = 1

N/m, c = 0.3 Ns/m

only with the middle mass, and the kernel function corresponding to this

damper

G22(t) = c g(t), where g(t) = µe−µt; µ, t ≥ 0. (1.80)

 For a viscously damped system g(t) = δ(t). The value of µ give a notion of

non-viscousness − if it is large the damping behavior will be near-viscous,

and vice versa.

 The mass and stiffness matrices and the damping matrix in the Laplace

domain for the problem can be obtained as:

M =




mu 0 0

0 mu 0

0 0 mu


 , K =




2ku −ku 0

−ku 2ku −ku

0 −ku 2ku


 , G(s) =




0 0 0

0 cG(s) 0

0 0 0


 .

(1.81)

where G(s) = µ
s+µ .
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 Using these expressions, the characteristic equation can be simplified as

m3
us

7 + m3
uµ s6 +

(
2 m2

uku + mu (µ cmu + 4 muku)
)
s5 + 6 kum

2
uµ s4

+
(
2 ku (µ cmu + 4 muku) + mu

(
2 µ cku + 2 ku

2)) s3 + 10 ku
2muµ s2

+ 2 ku

(
2 µ cku + 2 ku

2) s + 4 ku
3µ = 0. (1.82)

The order of the above polynomial, m = 7. Since the system has three

degrees of freedom there are three elastic modes corresponding to the

three modes of vibration. The number of the non-viscous modes, p =

m− 2N = 1.
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Behaviour of the Eigenvalues
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Figure 1.3: Root-locus plot of the third eigenvalue (s3) as a function of µ.

 The locus is much more sensitive in the region of lower values of µ (i.e.,

when damping is significantly non-viscous) compared to that in the region

of higher values.

 The eigenvalue of the corresponding viscously damped system is also plot-

ted (marked by *) in the same diagram. The non-viscous damping model

approaches the viscous damping model when µ & 50.0.
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Dynamic Response Analysis

The stationary random vibration of the system is considered. Suppose the

system is subjected to a band-limited Gaussian white noise at the third DOF.

We are interested in the resulting displacement at the third DOF (i.e., z3).

The power spectral density (PSD) of the response

Suu(iω) = |H33(iω)|2Sff(iω) (1.83)

where Sff(iω) = 1 if 0 < ω ≤ 2.5 and Sff(iω) = 0 elsewhere.

0 0.5 1 1.5 2 2.5
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Frequency (rad/sec)

P
S

D

| H
33

(i ω)|2, µ = 50.0
| H

33
(i ω)|2,  µ = 0.5

Non−viscous term, µ = 50.0     
Non−viscous term, µ = 0.5      

Figure 1.4: Power spectral density function of the displacement at the third DOF (z3)

together with the non-viscous term (the second term) appearing in equation (1.68)
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1.7 Conclusions

 In this lecture different mathematical models used for dynamic analysis

of engineering structures have been introduced.

 Different models of damping used in the literature have been briefly re-

viewed.

 The proportional damping assumption has been critically examined and

the concept of generalized proportional damping has been introduced.

The generalized proportional damping extend the Rayleigh’s classical

damping model by expressing the damping matrix in terms of any non-

linear function involving specially arranged mass and stiffness matrices.

 The problem of dynamic analysis of general non-viscously damped multiple-

degrees-of-freedom linear systems has been considered. The non-viscous

damping model is such that the damping forces depend on the past history

of motion via convolution integrals over some kernel functions.

 The dynamics of non-viscously damped system is governed by elastic

modes and non-viscous modes.

 Exact closed-form expressions of the dynamic response due to arbitrary

forcing functions and initial conditions were obtained.

 It was shown that, like classically damped systems, the dynamic response

can be expressed in terms of modal superposition even when the equation

of motion cannot be decoupled in the modal coordinate.
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2 What is Model Validation and Model Verification?

How it is Done?
2.1 Introduction

Once the modeling and the simulation have been performed, it is required to

‘judge’ the model and simulation against the three criteria mentioned before,

namely, fidelity to experimental data, robustness with respect to random errors

and predictive capability. This process broadly falls under model validation

and verification (V&V).

 Model Verification: Model verification is defined as ensuring that the

computer program of the computerized model and its implementation are

correct.

 Model Validation: Model validation is defined to mean substantiation

that a computerized model within its domain of applicability possesses a

satisfactory range of accuracy consistent with the intended application of

the model.
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 With the development of the finite-element method together with eas-

ily available computational hardware, within the past three decades the

models have become more complex and simulations have become more

computationally intensive.

 These, combined with the development of powerful computing languages,

software packages, realistic pre and post processing visualization software

and hardware, development of sophisticated information technology (IT)

systems and easily available trained software professionals have pushed

the engineering community to rely more on their models than ever before.

 This fact is also fuelled by increasing cost of conducting full-scale exper-

iments compared to simulations due to tough environmental regulations,

stringent health and safety conditions and various social factors.

 As a direct result of all these factors, the developers and users of the

models, the decision makers using information derived from the results

of the models, and people affected by decisions based on such models are

highly concerned with the accuracy, predictive capability and credibility

of the modeling and simulation process as a whole.

 The objective of V&V activities is to provide measures by which these

qualities can be judged in a scientific, methodical, rigorous, consistent,

generalized and possibly simple manner.
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The scope of V&V activities

 Why should we believe that the predictions of our numerical simulations

are any better than crystal-ball reading?

 What is the prediction accuracy of the model, especially away from those

settings that can be measured experimentally?

 What is the validation domain for a given application?

 Is the computer code free of programming mistakes?

 Does the computational mesh (or grid) provide converged solutions?

 Which feature of the response best provides physical insight about the

phenomenon?

 Where is an observed variability coming from?

 Which parameters of the numerical simulation control the spread of out-

put results?

 What is the effect of modeling uncertainty on the predictions?

 Can the physics-based simulation be replaced by a fast-running surrogate?

 How to meaningfully compare physical measurements to numerical pre-

dictions?

 Where is the modeling error coming from, and how can it be reduced?
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 Which numerical modeling technique is better for a particular applica-

tion?

 How robust are predictions to the modeling error?

 How to study the trade-offs between prediction accuracy and modeling

lack-of-knowledge?
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2.2 Experimental Modal Analysis (EMA

 An essential step of V&V in structural dynamics is the experimental

modal analysis (EMA).

 References: See the books by Ewins (2000), Maia and Silva (1997) and

Silva and Maia (1998). Another important source of information is the

Proceedings of the International Modal Analysis Conference (IMAC).

This conference, organized by the Society of Experimental Mechanics

(SEM, see http://www.sem.org), is running since 1982 and has produced

great amount useful infirmation.

Outline of EMA

beam
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computer with A/D card

oscilloscope

output charge amplifier

input charge amplifier
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Figure 2.1: Schematic representation of a typical modal testing setup
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Figure 2.2: Data flow in a typical experimental modal analysis procedure
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2.3 Measures of Model Correlations

A crucial step for dynamic model validation is to compare experimental results

from the test structure with predicted results from the corresponding finite

element model. The basic questions surrounding this process are

1. What quantities shall we compare?

2. How do we actually compare them?

3. How many modes shall we (or can we) compare?

4. The FE model has more degrees-of-freedom compared to the number of

transducers in the experimental set up. How can we take account of this

fact?

5. The FE model is normally undamped. How to deal with damping?

6. What about the (random) errors introduced by experimental hardware

which have not been modeled in FE?

7. Finally, does a good comparison result always means a good analytical

model?

The comparison between the test results and analytical results can be per-

formed in the following three levels:

(a) Comparison of the modal properties

(b) Comparison of the spatial properties (the mass and stiffness matrices)

(c) Comparison of response (transfer functions)
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Comparison of the modal properties

 This process consist of comparing the mode shapes and natural frequen-

cies. Suppose Xe ∈ RNe×m is the matrix of modes shapes and Ωe ∈ Rm×m

is the diagonal matrix of the natural frequencies obtained from the ex-

periment.

 Comparing the natural frequencies obtained from the experiment with

that from the FE model is the easiest task. Once can simply plot them

together in a single graph or tabulate them to see their differences.

 For systems with well separated modes it is also possible to compare the

mode shapes graphically. A typical case is shown in figure 2.3 where

first four experimental and analytical mode shapes of a free-free beam in

compared.
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Figure 2.3: Comparison of the first four mode shapes of a free-free beam,‘—’ experiment,
‘−−’ theory
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 For structures with closely spaced modes or structures with complex ge-

ometry (such as an automobile body) this type of comparison is less sim-

ple to do. The main challenge there is to identify an experimental mode

which correlates to an FE mode or vice versa.

 Several researchers have developed different methods to quantify the cor-

relation between experimental and FE mode shapes. Among all, most

popular is the Modal Assurance Criterion (MAC) (Allemang and Brown,

1982). The MAC between an experimentally obtained mode xej
and an

analytical mode xak
is defined as

MACjk =

∣∣∣xT
ej
xak

∣∣∣
2

∣∣xT
ak
xak

∣∣
∣∣∣xT

ej
xej

∣∣∣
. (2.1)

The value of MAC is between 0 and 1. A value of 1 indicates one mode

shape is fully correlated to the other.

 Usually the values of MAC are placed in a matrix. For a well correlated

model one expects the diagonal of the MAC matrix close to one and zero

elsewhere.
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Comparison of the spatial properties (the mass and stiffness matrices)

Using the orthogonality properties of the mode shapes it can be shown that

the mass and stiffness matrices of the experimental system are given by

M−1
e = XeX

T
e ∈ RNe×Ne (2.2)

and K−1
e = XeΩ

−2
e XT

e ∈ RNe×Ne (2.3)

 Ne, the number of degrees-of-freedom of the experimental system (i.e.,

the number of response measurement points), is much smaller compared

to the number of degrees-of-freedom of the FE model N . Since N À Ne,

the comparison of Me and Ke with M and K is not very meaningful.

 There are two approaches one could adopt at this stage. The first is to

perform a model reduction of the FE system matrices so that they com-

parable to that of the experimental matrices. The second is to perform

a model expansion of the experimental matrices using FE mode shapes.

See the book by Friswell and Mottershead (1995) for further discussions

on model reduction and model expansion methods.
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Comparison of response (transfer functions))

 It is difficult to compare the experimentally obtained time histories with

the time histories obtained from the analytical model. The main rea-

son behind this is the damping. The time histories are very sensitive to

damping and since the initial numerical model normally do not have any

damping it hardly meaningful to compare them directly.

 The usual way to compare the response is to look at the frequency do-

main response. Individual FRFs can be compared graphically by simply

plotting the test and analytical results together.

 There are four issues to be kept in mind while comparing the frequency

response functions: (a) the amount and nature of damping, (b) range of

frequency (c) number of modes and (d) separation between the modes.

 In some applications it is required to compare the complete set of transfer

functions. This is a difficult task simply due to overwhelming volume of

data that one has to deal with. Extending the analogy of MAC, in this

case a frequency response assurance criteria (FRAC) can be defined in a

similar way

FRACjk =

∣∣He(ωj)
THa(ωk)

∣∣2
|Ha(ωk)THa(ωk)| |He(ωj)THe(ωj)| . (2.4)

A diagram similar to MAC can be used to represent FRAC. The only

difference will be that a FRAC diagram will be very dense since there are

thousands of frequency points in each FRFs.
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2.4 Conclusions

 The scope of validation and verification (V&V) of numerical models of

dynamic systems have been explained.

 The experimental modal analysis (EMA) plays a central role in the V&V

of structural dynamic models.

 Some approaches to measure the correlation between experimental results

and output of numerical models in dynamics, such as MAC and FRAC

have been discussed.

After an initial validation exercise one usually finds that there are discrepancies

between the results from the FE models and that from the experiments. Once

such differences are quantified using the methods outlined here, the next step

is to update the FE model so that these differences can be reduced. Model

updating is an essential step for building a credible numerical model. It is an

active area of research, see the book by Friswell and Mottershead (1995) for

details.
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3 Identification of Damping
3.1 Introduction

The Aim is to obtain the viscous damping matrix C from EMA.

 The validation of FE models hinges crucially on damping.

 In general obtaining a damping matrix from the first-principle is difficult.

Normally the damping matrix is constructed from modal testing data.

 The methods of damping identification can be divided into two basic

categories:

Adamping identification from modal data (Alvin et al., 1997, Hassels-

man, 1972, Ibrahim, 1983, Minas and Inman, 1991)

Adirect damping identification from the forced response measurements

(Baruch, 1997, Chen et al., 1996, Mottershead, 1990).
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3.2 Damping Identification Using Generalized Proportional Damp-
ing Model

 This method assumes that the system is effectively proportionally damped

so that the complex modes can be neglected.

 The damping matrix will be identified using the expressions of the pro-

portional damping matrix given in Theorem 1.2.

Considering expression (a) in Theorem 1.2 it can be shown that

ΦTCΦ = β1
(
Ω2) + Ω2β2

(
Ω−2)

or 2ζ Ω = β1
(
Ω2) + Ω2β2

(
Ω−2) .

(3.1)

The modal damping factors can be expressed from equation (3.1) as

ζj =
1

2

β1(ω
2
j )

ωj
+

1

2
ωjβ2

(
1/ω2

j

)
. (3.2)

For the purpose of damping identification the function β2 can be omitted

without any loss of generality. To simplify the identification procedure, the

damping matrix is expressed by

C = Mf
(
M−1K

)
. (3.3)

Using this simplified expression, the modal damping factors

2ζjωj = f
(
ω2

j

)
(3.4)

or ζj =
1

2ωj
f

(
ω2

j

)
= f̂(ωj) (say). (3.5)

The function f̂(•) can be obtained by fitting a continuous function represent-

ing the variation of the measured modal damping factors with respect to the
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natural frequencies. From equations (3.3) and (3.4) note that in the argument

of f(•), the term ωj can be replaced by
√

M−1K while obtaining the damping

matrix. With the fitted function f̂(•), the damping matrix can be identified

using equation (3.5) as

2ζjωj = 2ωj f̂(ωj) (3.6)

or Ĉ = 2M
√

M−1K f̂
(√

M−1K
)

. (3.7)
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Example 3.1.
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Figure 3.1: Variation of modal damping factors.

Suppose figure 3.1 shows modal damping factors as a function of frequency

obtained by conducting simple vibration testing on a structure. We want to

identify a damping matrix which shows this kind of behavior.

The first step is to fit a function which passes through these points:

f̂(ω) =
1

15

(
e−2.0ω − e−3.5ω

) (
1 + 1.25 sin

ω

7π

) (
1 + 0.75ω3) . (3.8)

From the above equation, the modal damping factors in terms of the discrete

natural frequencies, can be obtained by

2ξjωj =
2ωj

15

(
e−2.0ωj − e−3.5ωj

) (
1 + 1.25 sin

ωj

7π

) (
1 + 0.75ω3

j

)
. (3.9)
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To obtain the damping matrix, consider equation (3.9) as a function of ω2
j and

replace ω2
j by M−1K (that is ωj by

√
M−1K) and any constant terms by that

constant times I. Therefore, from equation (3.9) we have

C =M
2

15

√
M−1K

[
e−2.0

√
M

−1
K − e−3.5

√
M

−1
K

]

×
[
I + 1.25 sin

(
1

7π

√
M−1K

)] [
I + 0.75(M−1K)3/2

] (3.10)

as the identified damping matrix. Using the numerical values of M and K

from example 1.1 we obtain

C =




2.3323 0.9597 1.4255

0.9597 3.5926 3.7624

1.4255 3.7624 7.8394


× 10−2. (3.11)

If we recalculate the damping factors from the above constructed damping ma-

trix, it will produce three points corresponding to the three natural frequencies

which will exactly match with our initial data.

The damping identification procedure itself does not introduce errors as long

as the modes are not highly complex. From equation (3.7) it is obvious that

the accuracy of the fitted damping matrix depends on the accuracy the mass

and stiffness matrix models.
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3.2.1 Comparison with the existing methods

Two existing methods are considered:

 Method 1: Caughey Series Method

Géradin and Rixen (1997) have outlined a systematic method to obtain

the damping matrix using Caughey series (1.29). The coefficients αj in

series (1.29) can be obtained by solving the linear system of equations

Wα = ζe (3.12)

where

W =
1

2




1

ω1
ω1 ω3

1 · · ·ω2N−3
1

1

ω2
ω2 ω3

2 · · ·ω2N−3
2

...
...

...
...

1

ωN
ωN ω3

N · · ·ω2N−3
N




, α =





α1

α2
...

αN





and ζe =





ζ1

ζ2
...

ζN





.

(3.13)

The mass and stiffness matrices and the constants αj calculated from

the preceding equation can be substituted in equation (1.29) to obtain

the damping matrix. Géradin and Rixen (1997) have mentioned that the

coefficient matrix W in (3.13) becomes ill-conditioned for systems with

well separated natural frequencies.

 Method 2: Inverse Modal Transformation Method

Another simple, yet very general, method to obtain the proportional

damping matrix is by using the inverse modal transformation method.
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From experimentally obtained modal damping factors and natural fre-

quencies one can construct the diagonal modal damping matrix C′ =

ΦTCΦ as

C′ = 2ζeΩ. (3.14)

From this, the damping matrix in the original coordinate can be obtained

using the inverse transformation as

C = Φ−TC′Φ−1. (3.15)
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Example 3.2.
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Figure 3.2: Linear array of N spring-mass oscillators, N = 30, m = 1 Kg, k = 3.95 ×
105N/m. Dampers are attached between 8th and 23rd masses with c = 40 Ns/m.

The mass matrix of the system has the form M = mI where I is the N × N

identity matrix. The stiffness matrix of the system is given by

K = k




2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
. . . . . . −1

−1 2




. (3.16)

Some of the masses of the system shown in figure 3.2 have viscous dampers

connecting them to each other. The damping matrix C has similar form to

the stiffness matrix except that it has non-zero entries corresponding to the

masses attached with the dampers only. With such a damping matrix it is

easy to verify that the system is actually non-proportionally damped.
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Consider a situation where the modal parameters of only first ten modes are

known. Numerical values of ωj and ζj for the first ten modes are shown in

table 3.1.

Table 3.1: Natural frequencies (Hz) and modal damping factors for first ten modes

ωj ζj

10.1326 0.0005

20.2392 0.0032

30.2938 0.0057

40.2707 0.0060

50.1442 0.0067

59.8890 0.0095

69.4800 0.0117

78.8927 0.0117

88.1029 0.0125

97.0869 0.0155

Using this data, the following three methods are used to fit a proportional

damping model:

(a) method using Caughey series

(b) inverse modal transformation method

(c) the method using generalized proportional damping

The modal damping factors corresponding to the higher modes, that is from

mode number 11 to 30, are available from simulation results. The aim of this

example is to see how the modal damping factors obtained using the identified

damping matrices from the above three methods compare with the ‘true’ modal
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damping factors corresponding to the higher modes.

 For the method using Caughey series, it has not been possible to obtain

the constants αj from equation (3.12) since the associated W matrix

become highly ill-conditioned. Numerical calculation shows that the 10×
10 matrix W has a condition number of 1.08× 1051.

 To apply the inverse modal transformation method, only the first ten

columns of the analytical modal matrix Φ are retained in the truncated

modal matrix Φ̂ ∈ R30×10. Using the pseudo inverse, the damping matrix

in the original coordinate has been obtained from equation (3.15) as

C =

[(
Φ̂

T
Φ̂

)−1
Φ̂

T
]T

[2ζeΩ]

[(
Φ̂

T
Φ̂

)−1
Φ̂

T
]
∈ R30×30. (3.17)

From the identified C matrix, the modal damping factors are recalculated

using

ζ2 =
1

2
[ΦTCΦ]Ω−1 ∈ R30×30 (3.18)

where Φ is the full 30× 30 modal matrix.
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Now consider the method using generalized proportional damping. Using the

data in table 3.1, figure 3.3 shows the variation of modal damping factors for

first the ten modes. Looking at the pattern of the curve in figure 3.3 we have
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Figure 3.3: Variation of modal damping factors for first ten modes.

selected the function f̂(•) as

ζ = f̂(ω) = θ1ω + θ2 sin (θ3ω) (3.19)

where θi, i = 1, 2, 3 are undetermined constants. Using the data in table 3.1,

together with a least-square error minimization approach results

θ1 = 0.0245× 10−3 and θ2 = −0.5622× 10−3 and θ3 = 9.0. (3.20)
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 Recalculated values of ζj using this fitted function is compared with the

original function in figure 3.3.

 This simple function matches well with the original modal data.

 Neither the function in equation (3.19), nor the parameter values in equa-

tion (3.20) are unique. One can use more complex functions and sophis-

ticated parameter fitting procedures to obtain more accurate results.

The damping matrix corresponding to the fitted function in equation (3.19)

can be obtained using equation (3.7) as

C = 2M
√

M−1K f̂
(√

M−1K
)

= 2M
√

M−1K
[
θ1

√
M−1K + θ2 sin

(
θ3

√
M−1K

)]

= 2θ1 K + 2θ2 M
√

M−1K sin
(
θ3

√
M−1K

)
(3.21)

The first part of the C matrix in equation (3.21) is stiffness proportional and

the second part is mass proportional in the sense of generalized proportional

damping.
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The aim of this study is to see how the different methods work when modal

damping factors are compared against full set of 30 modes.
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Figure 3.4: Variation of modal damping factors for all 30 modes.

In figure 3.4, the values of ζj obtained by the inverse modal transformation

method in equation (3.18) is compared with the original damping factors for

all the 30 modes calculated using complex modal analysis. As expected, there

is a perfect match with the original damping factors for the first ten modes.

However, beyond the first ten modes the damping factors obtained using the
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inverse modal transformation method do not match with the true damping

factors. This is also expected since this information has not been used in

equations (3.17) and (3.18) and the method itself is not capable of extrapolat-

ing the available modal information. Modal damping factors using the fitted

function in equation (3.19) are also shown in figure 3.4 for all 30 modes. The

‘predicted’ damping factors for modes 11 to 30 matched well with the origi-

nal modal damping factors. This is due to the fact that the pattern of the

variation of modal damping factors with natural frequencies does not change

significantly beyond the first ten modes and hence the fitted function provides

a good description of the variation. This study demonstrates the advantage

of using generalized proportional damping over the conventional proportional

damping models.
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In summary, this identification procedure can be described by the following

steps:

1.Measure a suitable transfer function Hij(ω) by conducting vibration test-

ing.

2.Obtain the undamped natural frequencies ωj and modal damping factors

ζj, for example, using the circle-fitting method.

3.Fit a function ζ = f̂(ω) which represents the variation of ζj with respect

to ωj for the range of frequency considered in the study.

4.Calculate the matrix T =
√

M−1K

5.Obtain the damping matrix using Ĉ = 2 M T f̂ (T)

Most of the currently available finite element based modal analysis packages

usually offer Rayleigh’s proportional damping model or a constant damping

factor model. A generalized proportional damping model together with the

proposed damping identification technique can be easily incorporated within

the existing tools to enhance their damping modelling capabilities without

using significant additional resources.
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3.3 Conclusions

 The identification of the damping matrix from experimental measure-

ments is a key component in model validation and verification.

 A damping identification method based on generalized proportional damp-

ing model has been described. The generalized proportional damping

expresses the damping matrix in terms of smooth continuous functions

involving specially arranged mass and stiffness matrices so that the sys-

tem still posses classical normal modes.

 This enables one to model variations in the modal damping factors with

respect to the frequency in a simplified manner.

 Once a scalar function is fitted to model such variations, the damping

matrix can be identified very easily using the proposed method. This

implies that the problem of damping identification is effectively reduced

to the problem of a scalar function fitting.

 The method requires the measurement of damping factors and natural

frequencies only and it is applicable to any linear structures provided

accurate mass and stiffness matrices are available and the modes are not

significantly complex.
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4 Model Uncertainty: Quantification and Propagation
4.1 Why and How a Model Turns Uncertain?

The Classification of Uncertainty

Uncertainties can be broadly divided into following three categories.

 The first type of uncertainty is due to the inherent variability in the

system parameters, for example, different cars manufactured from a single

production line are not exactly the same. This type of uncertainty is often

referred to as aleatoric uncertainty . If enough samples are present, it is

possible to characterize the variability using well established statistical

methods and the probably density functions of the parameters can be

obtained.

 The second type is uncertainty due to lack of knowledge regarding a sys-

tem. This type of uncertainty is often referred to as epistemic uncertainty

and generally arise in the modelling of complex systems, for example the

problem of predicting cabin noise in helicopters. Due its very nature, it is

difficult to quantify or model this type uncertainties. Unlike aleatoric un-

certainties, it is recognized that probabilistic models are not quite suitable

for epistemic uncertainties. Several possibilistic approaches based on in-

terval algebra, convex sets, Fuzzy sets and generalized Dempster-Schafer

theory have been proposed to characterize this type of uncertainties.
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 The third type of uncertainty is similar to the first type except that the

corresponding variability characterization is not available , in which case

work can be directed to gain better knowledge. This type uncertainty of-

ten termed as prejudicial uncertainty , may consist of systematic and/or

random errors, bias or other prejudices. An example of this type of un-

certainty is the use of viscous damping model in spite of knowing that

the true damping model is not viscous.

The total uncertainty of a system is the combination of these three types of

uncertainties.
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Anatomy of Uncertainty in Structural Dynamics

Different sources of uncertainties in the modeling and simulation of dynamic

systems may be attributed, but not limited, to the following factors:

 Mathematical models

AEquations (linear, non-linear)

AGeometry

ADamping model (viscous, non-viscous, fractional derivative, · · · )

ABoundary conditions (fixed, free, clamped, · · · )

AJoints

AInitial conditions

AInput forces

AUnmodeled dynamics

 Model parameters

AYoung’s modulus

AMass density

APoisson’s ratio

ADamping model parameters (damping coefficient, relaxation modu-

lus, fractional derivative order)

AInitial stresses

ATemperature
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 Numerical algorithms

AWeak formulations

ADiscretisation of displacement fields (in finite element method)

AChoice of elements (beam, shell, 3D brick element, · · · )

ADiscretisation of stochastic fields (in stochastic finite element method)

AApproximate solution algorithms

ATruncation and roundoff errors

ATolerances in the optimization and iterative methods

AArtificial intelligent (AI) method (choice of neural network types)

 Surrogate models

AChoice of model

AApproximation error

AInterpolation error

AExtrapolation error
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 Measurements

ANoise

AResolution (number of sensors and actuators)

AExperimental hardware

AExcitation method (nature of shakers and hammers)

AExcitation and measurement point

AData processing (amplification, number of data points, FFT, filtering)

ACalibration

We will focus our attention to the modeling and propagation of parametric

uncertainties using probabilistic models.
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4.2 Parametric Uncertainty in Structural Dynamics

The governing equation of motion of a linear structural system with stochastic

parameter uncertainties, subjected to external excitations is most often a set

of linear differential equation with random coefficients. The problem can be

stated as finding the solution of the equation

L(Ω, r, t)u(Ω, r, t) = f(Ω, r, t) (4.1)

with prescribed boundary conditions and initial conditions. In the above equa-

tion L is a linear stochastic differential operator, u is the random system re-

sponse to be determined, f is the dynamic excitation which can be random, r is

the special coordinate vector, t is the time and Ω is the sample space denoting

the stochastic nature of the problem.

 Equation (4.1) with L as a deterministic operator and f as a random

forcing function, has been studied extensively within the scope of random

vibration theory.

 Our interest is when the operator L itself is random.

 There are mainly two methods to model parametric uncertainty using the

probabilistic approach: (a) uncertainty modeling using random variables,

and (b) uncertainty modeling using random processes.

The methods for solving structural dynamic problems with statistical un-

certainties can be broadly grouped under Stochastic Finite Element Method

(SFEM) and Statistical Energy Analysis (SEA). SEA was developed during
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1960s (Lyon and Dejong, 1995) to analyze high frequency vibration problems

where non-parametric uncertainties plays a key role. The stochastic finite el-

ement method is ideally suitable for low-frequency vibration problems where

parametric uncertainties plays a key role.

4.3 Uncertainty Propagation Using Stochastic Finite Element Method

Stochastic finite element method (SFEM) is a generalization of the determin-

istic finite element method (FEM) to incorporate the random field models for

the elastic, mass and damping properties (see the monographs by Ghanem

and Spanos, 1991, Kleiber and Hien, 1992). Application of the stochastic finite

element method to linear structural dynamics problems typically consists of

the following steps:

1.Selection of appropriate probabilistic models for parameter uncertainties

and boundary conditions (such as Gaussian/non-Gaussian models).

2.Discretization of random fields, i. e., replacement of the element property

random fields by an equivalent finite set of random variables.

3.Formulation of the system equations of motion of the form (1.20), using

stochastic generalization of standard methods such as variational method,

energy method, virtual work method or weighted residual method. As

a result of this process, the elements of M,C and K will be random

variables.

4.At this point one can take two routes. The first, and the most common

approach, is to solve the free vibration problem, which in this case turns
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out to be a random matrix eigenvalue problem. The aim is to obtain the

joint statistics of the mode shapes and natural frequencies. Once they

are obtained, the next step is the characterization of response variability

for the forced vibration problem.

5.The second route to solve the problem is using the dynamic stiffness

method. The main challenge here is to invert the global dynamic stiffness

matrix, which in general is a random complex symmetric matrix.

Extensive research works have been done in all of the above mentioned ar-

eas during the last few decades. In this course we will discuss the random

eigenvalue problems.
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Figure 4.1: ‘Difficulty’ in structural analysis as an approximate function of the ‘amount of

uncertainty’ (statistical overlap factor)

The statistical overlap factor (σ), as defined by Manohar and Keane (1994),

is the ratio of standard deviation of the natural frequencies to the average

spacing of the natural frequencies.
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5 Random Eigenvalue Problems in Structural

Dynamics
5.1 Introduction

 Random eigenvalue problem is a fundamental problem in the dynamics

of linear stochastic systems.

 This problem could either be a differential eigenvalue problem or a ma-

trix eigenvalue problem, depending on whether a continuous model or a

discrete model is used to describe the given vibrating system. We will

discuss stochastic matrix eigenvalue problems.

 Several studies have been conducted on this topic since the mid-sixties.

The paper by Boyce (1968) and the book by Scheidt and Purkert (1983)

are useful sources of information on early work in this area of research

and also provide a systematic account of different approaches to ran-

dom eigenvalue problems. Several review papers, for example, by Be-

naroya (1992), Benaroya and Rehak (1988), Ibrahim (1987), Manohar

and Ibrahim (1999) and Manohar and Gupta (2003) have appeared in

this field which summarize the current as well as the earlier works.

In this note discrete linear systems or discretized continuous systems are

considered. The random eigenvalue problem of undamped or proportionally

damped systems can be expressed by

K(x)φj = λjM(x)φj (5.1)
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Here λj and φj are the eigenvalues and the eigenvectors of the dynamic system.

M(x) : Rm 7→ RN×N and K(x) : Rm 7→ RN×N , the mass and stiffness ma-

trices, are assumed to be smooth, continuous and at least twice differentiable

functions of a random parameter vector x ∈ Rm. The vector x may consist of

material properties, eg., mass density, Poisson’s ratio, Young’s modulus; geo-

metric properties, eg., length, thickness, and boundary conditions. The matri-

ces K(x) and M(x) can be obtained using the stochastic finite element method

(Kleiber and Hien, 1992). The statistical properties of the system are com-

pletely described by the joint probability density function px(x) : Rm 7→ R.

For mathematical convenience we express

px(x) = exp {−L(x)} (5.2)

where −L(x) is often known as the log-likelihood function. For example, if x

is a m-dimensional multivariate Gaussian random vector with mean µ ∈ Rm

and covariance matrix Σ ∈ Rm×m then

L(x) =
m

2
ln(2π) +

1

2
ln ‖Σ‖+

1

2
(x− µ)T Σ−1 (x− µ) (5.3)

It is assumed that in general the random parameters are non-Gaussian and

correlated, i.e., L(x) can have any general form provided it is a smooth, con-

tinuous and at least twice differentiable function. It is further assumed that

M and K are symmetric and positive definite random matrices so that all the

eigenvalues are real and positive.

The central aim of studying random eigenvalue problems is to obtain the joint

probability density function of the eigenvalues and the eigenvectors. The cur-
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rent literature on random eigenvalue problems arising in engineering systems

is dominated by the perturbation methods.

5.2 Classical Perturbation Methods
5.2.1 Perturbation Expansion

The mass and the stiffness matrices are in general non-linear functions of the

random vector x. Denote the mean of x as µ ∈ R, and consider that

M(µ) = M, and K(µ) = K (5.4)

are the ‘deterministic parts’ of the mass and stiffness matrices respectively.

In general M and K are different from the mean matrices. The deterministic

part of the eigenvalues:

λj = λj(µ) (5.5)

is obtained from the deterministic eigenvalue problem:

Kφj = λj Mφj (5.6)

The eigenvalues, λj(x) : Rm 7→ R are non-linear functions of the parameter

vector x. If the eigenvalues are not repeated, then each λj(x) is expected to be

a smooth and twice differentiable function since the mass and stiffness matrices

are smooth and twice differentiable functions of the random parameter vector.

In the mean-centered perturbation approach the function λj(x) is expanded

by its Taylor series about the point x = µ as

λj(x) ≈ λj(µ) + dT
λj

(µ) (x− µ) +
1

2
(x− µ)T Dλj

(µ) (x− µ) (5.7)
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Here dλj
(µ) ∈ Rm and Dλj

(µ) ∈ Rm×m are respectively the gradient vector

and the Hessian matrix of λj(x) evaluated at x = µ, that is

{
dλj

(µ)
}

k
=

∂λj(x)

∂xk
|x=µ (5.8)

and
{
Dλj

(µ)
}

kl
=

∂2λj(x)

∂xk ∂xl
|x=µ (5.9)

Expressions of the elements of the gradient vector and the Hessian matrix are

given in Section B. Due to equation (5.5), equation (5.7) implies that the

eigenvalues are effectively expanded about their corresponding deterministic

value λj.

Equation (5.7) represents a quadratic form in the basic non-Gaussian random

variables. The first-order perturbation, which is often used in practice, is ob-

tained from equation (5.7) by neglecting the Hessian matrix. In this case the

eigenvalues are simple linear functions of the basic random variables. This

formulation is expected to produce acceptable results when the random varia-

tion in x is small. If the basic random variables are Gaussian then first-order

perturbation results in a Gaussian distribution of the eigenvalues. In this case

a closed-form expression for their joint probability density function can be

obtained easily, see for example, Collins and Thomson (1969), Hart (1973),

Hasselman and Hart (1972), Ramu and Ganesan (1993) and Sankar et al.

(1993). However, if the elements of x are non-Gaussian then even the first-

order perturbation method is not helpful because there is no general method

to obtain the resulting pdf in a simple manner.

S.Adhikari@bristol.ac.uk

mailto:S.Adhikari@bristol.ac.uk?subject=Enquiry regarding your paper�


University of Catania, 24th June 2005 88

5.2.2 Eigenvalue Statistics Using the Theory of Quadratic Forms

Considering x as a multivariate Gaussian random vector, the moment gener-

ating function of λj(x), for any s ∈ C, can be obtained from (5.7) as

Mλj
(s) = E [exp {sλj(x)}]

=

∫

Rm
exp

{
sλj(µ) + sdT

λj
(µ) (x− µ) +

s

2
(x− µ)T Dλj

(µ) (x− µ)− L(x)
}

dx

(5.10)

where L(x) is given by equation (5.3). Using the transformation

y = (x− µ) (5.11)

the integral in (5.10) can be evaluated exactly as

or Mλj
(s) =

exp
{

sλj + s2

2 dT
λj

(µ)Σ
[
I− sΣ Dλj

(µ)
]−1

dλj
(µ)

}
√∥∥I− sΣ Dλj

(µ)
∥∥

(5.12)

To obtain the pdf of λj(x), the inverse Laplace transform of (5.12) is required.

Exact closed-form expression of the pdf can be obtained for few special cases

only. Some approximate methods to obtain the pdf of λj(x) will be discussed

in Section 5.5.

If mean-centered first-order perturbation is used then Dλj
(µ) = O and from

equation (5.12) we obtain

Mλj
(s) ≈ exp

{
sλj +

s2

2
dT

λj
(µ)Σ dλj

(µ)

}
(5.13)

This implies that λj(x) is a Gaussian random variable with mean λj and

variance dT
λj

(µ)Σ dλj
(µ). However, for second-order perturbation in general

the mean of the eigenvalues is not the deterministic value. The cumulants of
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λj(x) can be obtained from

κ
(r)
j =

dr

dsr
ln Mλj

(s)|s=0 (5.14)

Here κ
(r)
j is the rth order cumulant of jth eigenvalue and from equation (5.12)

we have

ln Mλj
(s) = sλj+

s2

2
dT

λj
(µ)Σ

[
I− sΣ Dλj

(µ)
]−1

dλj
(µ)−1

2
ln

∥∥I− sΣ Dλj
(µ)

∥∥
(5.15)

Using this expression and after some simplifications it can be shown that

κ
(r)
j = λj +

1

2
Trace

(
Dλj

(µ)Σ
)

if r = 1, (5.16)

κ
(r)
j =

r!

2
dT

λj
(µ)

[
Σ Dλj

(µ)
]r−2

Σ dλj
(µ) +

(r − 1)!

2
Trace

([
Dλj

(µ)Σ
]r)

if r ≥ 2

(5.17)

The mean and first few cumulants of the eigenvalues can be explicitly obtained

λ̂j = κ
(1)
j = λj +

1

2
Trace

(
Dλj

(µ)Σ
)

(5.18)

Var [λj] = κ
(2)
j = dT

λj
(µ)Σ dλj

(µ) +
1

2
Trace

([
Dλj

(µ)Σ
]2

)
, (5.19)

κ
(3)
j = 3dT

λj
(µ)

[
Σ Dλj

(µ)
]
Σ dλj

(µ) + Trace
([

Dλj
(µ)Σ

]3
)

,

(5.20)

and κ
(4)
j = 12dT

λj
(µ)

[
Σ Dλj

(µ)
]2

Σ dλj
(µ) + 3Trace

([
Dλj

(µ)Σ
]4

)

(5.21)

From the cumulants, the raw moments µ
(r)
j = E

[
λr

j

]
and the central moments

µ
′(r)
j = E

[
(λj − λ̄j)

r
]

can be obtained easily.

S.Adhikari@bristol.ac.uk

mailto:S.Adhikari@bristol.ac.uk?subject=Enquiry regarding your paper�


University of Catania, 24th June 2005 90

5.3 Perturbation Method Based on an Optimal Point
5.3.1 Perturbation Expansion

In the mean-centered perturbation method, λj(x) is expanded in a Taylor

series about x = µ. This approach may not be suitable for all problems,

especially if x is non-Gaussian then px(x) may not be centered around the

mean. Here we are looking for a point x = α in the x-space such that the

Taylor series expansion of λj(x) about this point

λj(x) ≈ λj(α) + dT
λj

(α) (x−α) +
1

2
(x−α)T Dλj

(α) (x−α) (5.22)

is optimal in ‘some sense’. The optimal point α can be selected in various

ways. For practical applications the mean of the eigenvalues is often the most

important. For this reason, the optimal point α is selected such that the

mean or the first moment of each eigenvalue is calculated most accurately.

The mathematical formalism presented here is not restricted to this specific

criteria and can be easily modified if any moment other than the first moment

is required to be obtained more accurately. Using equation (5.2) the mean of

λj(x) can be obtained as

λ̂j = E [λj(x)] =

∫

Rm
λj(x)px(x) dx =

∫

Rm
λj(x)e−L(x) dx (5.23)

or λ̂j =

∫

Rm
e−hj(x) dx (5.24)

where hj(x) = L(x)− ln λj(x) (5.25)

Evaluation of the integral (5.24), either analytically or numerically, is in gen-

eral difficult because (a) λj(x) and L(x) are complicated nonlinear functions

of x, (b) an explicit functional form λj(x) is not easy to obtain except for
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very simple problems (usually an FE run is required to obtain λj for every x),

and (c) the dimension of the integral m is large. For these reasons some kind

of approximation is required. From equation (5.24) note that the maximum

contribution to the integral comes from the neighborhood where hj(x) is min-

imum. Therefore, expand the function hj(x) in a Taylor series about a point

where hj(x) has its global minimum. By doing so the error in evaluating the

integral (5.24) would be minimized. Thus, the optimal point can be obtained

from
∂hj(x)

∂xk
= 0 or

∂L(x)

∂xk
=

1

λj(x)

∂λj(x)

∂xk
, ∀k (5.26)

Combining the above equations for all k, at x = α we have

dλj
(α) = λj(α)dL(α) (5.27)

Equation (5.27) implies that at the optimal point the gradient vectors of the

eigenvalues and log-likelihood function are parallel. The non-linear set of equa-

tions (5.27) have to be solved numerically. Due to the explicit analytical ex-

pression of dλj
in terms of the derivative of the mass and stiffness matrices,

expensive numerical differentiation of λj(x) at each step is not needed. More-

over, for most px(x), a closed-form expression of dL(x) is available. For exam-

ple, when x has multivariate Gaussian distribution, L(x) is given by equation

(5.3). By differentiating this we obtain

dL(x) = Σ−1 (x− µ) (5.28)

Substituting this in equation (5.27), the optimal point α can be obtained as

α = µ +
1

λj(α)
Σ dλj

(α) (5.29)
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This equation also gives a recipe for an iterative algorithm to obtain α. One

starts with an initial α in the right-hand side and obtains an updated α in the

left-hand side. This procedure can be continued till the difference between the

values of α obtained from both sides of (5.29) is less than (l2 vector norm can

be used to measure the difference) a predefined small value. A good value to

start the iteration process is α = µ, as in the case of mean-centered approach.

The form of equation (5.22) is similar to that of equation (5.7). As mentioned

before, when the basic random variables are non-Gaussian, determination of

moments and the pdf is not straightforward. However, when x is Gaussian,

some useful statistics of the eigenvalues can be obtained in closed-form.

5.3.2 Eigenvalue Statistics Using the Theory of Quadratic Forms

For notational convenience we rewrite the optimal perturbation expansion

(5.22) as

λj(x) ≈ cj + aT
j x +

1

2
xTAjx (5.30)

where the constants cj ∈ R, aj ∈ Rm and Aj ∈ Rm×m are given by

cj = λj(α)− dT
λj

(α)α +
1

2
αTDλj

(α)α (5.31)

aj = dλj
(α)−Dλj

(α)α (5.32)

Aj = Dλj
(α) (5.33)

From equation (5.30), the closed-form expression of the moment generating

function of λj(x) can be obtained exactly in a way similar to what discussed

for the case of mean-centered perturbation method. Using equation (5.3) it
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can be shown that

Mλj
(s) = E [exp {sλj(x)}]

= (2π)−m/2‖Σ‖−1/2
∫

Rm
exp

{
s

(
cj + aT

j x +
1

2
xTAjx

)
− 1

2
(x− µ)T Σ−1 (x− µ)

}
dx

(5.34)

This m-dimensional integral can be evaluated exactly to obtain

Mλj
(s) =

exp
{

scj − 1
2µ

TΣ−1µ + 1
2 (µ + sΣ aj)

T [I− sΣ Aj]
−1 (µ + sΣ aj)

}
√‖I− sΣ Aj‖

(5.35)

From the prceeding expression, the cumulants of the eigenvalues can be eval-

uated using equation (5.14) as

κ
(r)
j = cj +

1

2
Trace (AjΣ) +

1

2
µTAj µ + aT

j µ if r = 1, (5.36)

and κ
(r)
j =

(r − 1)!

2
Trace ([AjΣ]r) +

r!

2
aT

j [Σ Aj]
r−2 Σ aj

+ r! µT [AjΣ]r−1 Aj µ + r! aT
j [Σ Aj]

r−1 Aj µ if r ≥ 2

(5.37)

The mean and first few cumulants of the eigenvalues can be explicitly obtained

as

λ̂j = κ
(1)
j = cj +

1

2
Trace (AjΣ) +

1

2
µTAj µ + aT

j µ (5.38)

Var [λj] = κ
(2)
j =

1

2
Trace

(
[AjΣ]2

)
+ aT

j Σ aj + +2 µT [AjΣ]Aj µ + 2 aT
j [Σ Aj]Aj µ,

(5.39)

κ
(3)
j = Trace

(
[AjΣ]3

)
+ 3aT

j [Σ Aj] aj + 6 µT [AjΣ]2 Aj µ + 6 aT
j [Σ Aj]

2 Aj µ,

(5.40)

κ
(4)
j = 3Trace

(
[AjΣ]4

)
+ 12aT

j [Σ Aj]
2 aj + 24 µT [AjΣ]3 Aj µ + 24 aT

j [Σ Aj]
3 Aj µ

(5.41)
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Since equations (5.16), (5.17) and (5.36), (5.37) give cumulants of arbitrary or-

der, it is possible to construct the pdf of the eigenvalues from them. However,

when the elements of x are non-Gaussian then neither the first-order pertur-

bation nor the second-order perturbation methods are helpful because there

is no general method to obtain the resulting statistics in a simple manner. In

such cases the method outlined in the next section might be more useful.
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5.4 Method Based on the Asymptotic Integral
5.4.1 Multidimensional Integrals in Unbounded Domains

In this section the moments of the eigenvalues are obtained based on the

asymptotic approximation of the multidimensional integral. Consider a func-

tion f(x) : Rm 7→ R which is smooth and at least twice differentiable. Suppose

we want to evaluate an integral of the following form:

J =

∫

Rm
exp {−f(x)} dx (5.42)

This is a m-dimensional integral over the unbounded domain Rm. The max-

imum contribution to this integral comes from the neighborhood where f(x)

reaches its global minimum. Suppose that f(x) reaches its global minimum at

an unique point θ ∈ Rm. Therefore, at x = θ

∂f(x)

∂xk
= 0,∀k or df (θ) = 0 (5.43)

Using this, expand f(x) in a Taylor series about θ and rewrite equation (5.42)

as

J =

∫

Rm
exp

{
−

{
f (θ) +

1

2
(x− θ)T Df (θ) (x− θ) + ε (x, θ)

}}
dx

= exp {−f (θ)}
∫

Rm
exp

{
−1

2
(x− θ)T Df (θ) (x− θ)− ε (x, θ)

}
dx

(5.44)

where ε (x, θ) is the error if only the terms up to second-order were retained

in the Taylor series expansion. With suitable scaling of x the integral in

(5.42) can be transformed to the so called ‘Laplace integral’. Under special

conditions such integrals can be well approximated using asymptotic methods.

The relevant mathematical methods and formal derivations are covered in
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detail in the books by Bleistein and Handelsman (1994) and Wong (2001).

Here we propose a somewhat different version of asymptotic integrals. The

error ε(x, θ) depends on higher order derivatives of f(x) at x = θ. If they are

small compared to f (θ) and the elements of Df (θ), their contribution will

be negligible to the value of the integral. Therefore, we assume f(θ) and the

elements of Df (θ) are large so that
∣∣∣∣

1

f (θ)
D(j)(f (θ))

∣∣∣∣ → 0 and ∀k, l,

∣∣∣∣
1

[Df(θ)]kl

D(j)(f (θ))

∣∣∣∣ → 0 for j > 2

(5.45)

where D(j)(f (θ)) is jth order derivative of f(x) evaluated at x = θ. Un-

der such assumptions ε(x, θ) → 0. Therefore, the integral in (5.44) can be

approximated as

J ≈ exp {−f (θ)}
∫

Rm
exp

{
−1

2
(x− θ)T Df (θ) (x− θ)

}
dx (5.46)

If θ is the global minima of f(x) in Rm, the symmetric Hessian matrix Df (θ) ∈
Rm×m is also expected to be positive definite. Now use the coordinate trans-

formation

ξ = (x− θ)D
−1/2
f (θ) (5.47)

The Jacobian of this transformation is

‖J‖ = ‖Df (θ)‖−1/2 (5.48)

Using equation (5.47), the integral in equation (5.46) can be evaluated as

J ≈ exp {−f (θ)}
∫

Rm
‖Df (θ)‖−1/2 exp

{
−1

2

(
ξTξ

)}
dξ (5.49)

or J ≈ (2π)m/2 exp {−f (θ)} ‖Df (θ)‖−1/2 (5.50)
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5.4.2 Calculation of Arbitrary Moments of The Eigenvalues

An arbitrary rth order moment of the eigenvalues can be obtained from

µ
(r)
j = E

[
λr

j(x)
]

=

∫

Rm
λr

j(x)px(x) dx

=

∫

Rm
exp {− (L(x)− r ln λj(x))} dx, r = 1, 2, 3 · · ·

(5.51)

The equation can be expressed in the form of equation (5.42) by choosing

f(x) = L(x)− r ln λj(x) (5.52)

Differentiating the above equation with respect to xk we obtain

∂f(x)

∂xk
=

∂L(x)

∂xk
− r

λj(x)

∂λj(x)

∂xk
(5.53)

The optimal point θ can be obtained from (5.43) by equating the above ex-

pression to zero. Therefore at x = θ

∂f(x)

∂xk
= 0, ∀ k (5.54)

or
r

λj(θ)

∂λj(θ)

∂xk
=

∂L(θ)

∂xk
, ∀ k (5.55)

or dλj
(θ)r = λj(θ)dL(θ) (5.56)

Equation (5.56) is similar to equation (5.27) and needs to solved numerically

to obtain θ. The elements of the Hessian matrix Df (θ) can be obtained by

differentiating equation (5.53) with respect to xl:

∂2f(x)

∂xk ∂xl
=

∂2L(x)

∂xk ∂xl
− r

(
− 1

λ2
j(x)

∂λj(x)

∂xl

∂λj(x)

∂xk
+

1

λj(x)

∂2λj(x)

∂xk ∂xl

)

=
∂2L(x)

∂xk ∂xl
+

1

r

{
r

λj(x)

∂λj(x)

∂xk

}{
r

λj(x)

∂λj(x)

∂xl

}
− r

λj(x)

∂2λj(x)

∂xk ∂xl

(5.57)
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At x = θ we can use equation (5.55) so that equation (5.57) reads

∂2f(x)

∂xk ∂xl
|x=θ =

∂2L(θ)

∂xk ∂xl
+

1

r

∂L(θ)

∂xk

∂L(θ)

∂xl
− r

λj(θ)

∂2λj(θ)

∂xk ∂xl
(5.58)

Combining this equation for all k and l we have

Df (θ) = DL(θ) +
1

r
dL(θ)dL(θ)T − r

λj(θ)
Dλj

(θ) (5.59)

where Dλj
(•) is defined in equation (5.9). Using the asymptotic approximation

(5.50), the rth moment of the eigenvalues can be obtained as

µ
(r)
j ≈ (2π)m/2λr

j(θ) exp {−L (θ)}
∥∥∥∥DL(θ) +

1

r
dL(θ)dL(θ)T − r

λj(θ)
Dλj

(θ)

∥∥∥∥
−1/2

(5.60)

This is perhaps the most general formula to obtain the moments of the eigen-

values of linear stochastic dynamic systems. The optimal point θ needs to

be calculated by solving non-linear set of equations equation (5.56) for each

λj and r. Several special cases arising from equation (5.60) are of practical

interest:

 Mean of the eigenvalues: The mean of the eigenvalues can be obtained

by substituting r = 1 in equation (5.60), that is

λ̂j = µ
(1)
j = (2π)m/2λj(θ) exp {−L (θ)}

∥∥∥DL(θ) + dL(θ)dL(θ)T −Dλj
(θ)/λj(θ)

∥∥∥
−1/2

(5.61)

 Central moments of the eigenvalues: Once the mean in known, the central

moments can be expressed in terms of the raw moments µ
(r)
j using the

binomial transform

µ
′(r)
j = E

[(
λj − λ̂j

)r]
=

r∑

k=0

(
r

k

)
(−1)r−kµ

(k)
j λ̂r−k

j (5.62)
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 Random vector x has multivariate Gaussian distribution: In this case

L(x) is given by equation (5.3) and by differentiating equation (5.28) we

obtain

and DL(x) = Σ−1 (5.63)

The optimal point θ can be obtained from equation (5.56) as

θ = µ +
r

λj(θ)
Σ dλj

(θ) (5.64)

Using equation (5.28) and equation (5.63), the Hessian matrix can be

derived from equation (5.59) as

Df (θ) = Σ−1 +
1

r
Σ−1 (θ − µ) (θ − µ)T Σ−1 − r

λj(θ)
Dλj

(θ)

= Σ−1
(
I +

1

r
(θ − µ) (θ − µ)T Σ−1

)
− r

λj(θ)
Dλj

(θ)

(5.65)

Therefore, the rth moment of the eigenvalues can be obtained from equa-

tion (5.60) as

µ
(r)
j ≈ λr

j(θ) exp

{
−1

2
(θ − µ)T Σ−1 (θ − µ)

}
‖Σ‖−1/2 ‖Df (θ)‖−1/2

(5.66)

The probability density function of the eigenvalues is considered in the next

section.
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5.5 Probability Density Function of the Eigenvalues
5.5.1 Maximum Entropy Probability Density Function

Once the cumulants/moments of the eigenvalues are known, the pdf of the

eigenvalues can be obtained using Maximum Entropy Method (MEM). Be-

cause Eqs. (5.16), (5.17), (5.36), (5.37) and (5.60) can be used to calculate

any arbitrary order cumulant and moment, the pdf can be obtained accurately

by taking higher order terms.

Since M and K are symmetric and positive definite random matrices, all the

eigenvalues are real and positive. Suppose the pdf of λj is given by pλj
(u) where

u ∈ R is positive, that is u ∈ [0,∞]. Considering that only first n moments

are used, the pdf of each eigenvalue must satisfy the following constraints:

∫ ∞

0
pλj

(u)du = 1 (5.67)

and

∫ ∞

0
urpλj

(u)du = µ
(r)
j , r = 1, 2, 3, · · · , n (5.68)

Using Shannon’s measure of entropy

S = −
∫ ∞

0
pλj

(u) ln pλj
(u)du (5.69)

we construct the Lagrangian

L = −
∫ ∞

0
pλj

(u) ln pλj
(u)du−(ρ0−1)

[∫ ∞

0
pλj

(u)du− 1

]
−

n∑
r=1

ρr

[∫ ∞

0
urpλj

(u)du− µ
(r)
j

]

(5.70)

where ρr, r = 0, 1, 2, · · · , n are Lagrange multipliers. The function pλj
(u) which

maximizes L can be obtained using the calculus of variations. Using the Euler-
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Lagrange equation the solution is given by

pλj
(u) = exp

{
−ρ0 −

n∑

i=1

ρiu
i

}
= exp {−ρ0} exp

{
−

n∑

i=1

ρiu
i

}
, u ≥ 0

(5.71)

The Lagrange multipliers can be obtained from the constraint equations (5.67)

and (5.68) as

exp {ρ0} =

∫ ∞

0
exp

{
−

n∑
i=1

ρiu
i

}
du (5.72)

and exp {ρ0}µ
(r)
j =

∫ ∞

0
ur exp

{
−

n∑

i=1

ρiu
i

}
du, for r = 0, 1, 2, · · ·n

(5.73)

Closed-form expressions for ρr are in general not possible for all n. If we take

n = 2, then the resulting pdf can be expressed by a truncated Gaussian density

function

pλj
(u) =

1
√

2πσj Φ
(
λ̂j/σj

) exp




−

(
u− λ̂j

)2

2σ2
j





, u ≥ 0 (5.74)

where σj is given by

σ2
j = µ

(2)
j − λ̂2

j (5.75)

The approach presented above can also be used in conjunction with the per-

turbation methods by transforming the cumulants obtained from Eqs. (5.16),

(5.17), (5.36) and (5.37) to moments. The truncated Gaussian density func-

tion derived here ensures that the probability of any eigenvalues becoming

negative is zero.
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5.5.2 Approximation by χ2 Probability Density Function

We use an approximation analogous to Pearson’s (Pearson, 1959) three mo-

ment central χ2 approximation to the distribution of a noncentral χ2 . The

pdf of the eigenvalues are approximated as

pλj
(u) ≈ ηj + γjχ

2
νj

(u) (5.76)

where χ2
νj

(u) is a central χ2 density function with νj degrees-of-freedom. The

constants ηj, γj, and νj are obtained such that the first three moments of λj

are equal to that of the approximated χ2 pdf. The moment generating function

of the approximated χ2 pdf is given by

E
[
exp

{
−s

(
ηj + γjχ

2
νj

)}]
= exp {−sηj} (1 + 2sγj)

−νj/2 (5.77)

Equating the first three moments we have

ηj + νjγj = µ
(1)
j , (5.78)

ηj
2 + 2ηjνjγj + νj

2γj
2 + 2νjγj

2 = µ
(2)
j (5.79)

and ηj
3 + 3ηj

2νjγj + 3ηjνj
2γj

2 + 6ηjνjγj
2 + νj

3γj
3 + 6νj

2γj
3 + 8νjγj

3 = µ
(3)
j

(5.80)
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This set of coupled non-linear equations can be solved exactly in closed-form

to obtain ηj, γj, and νj:

ηj =
µ

(1)
j

2
µ

(2)
j − 2 µ

(2)
j

2
+ µ

(1)
j µ

(3)
j

2 µ
(1)
j

3 − 3 µ
(1)
j µ

(2)
j + µ

(3)
j

(5.81)

γj =
2 µ

(1)
j

3 − 3 µ
(1)
j µ

(2)
j + µ

(3)
j

4
(
µ

(2)
j − µ

(1)
j

2) , (5.82)

and νj = 8

(
µ

(2)
j − µ

(1)
j

2)3

(
2 µ

(1)
j

3 − 3 µ
(1)
j µ

(2)
j + µ′3

)2 (5.83)

Moments of λj(x) obtained in equation (5.60), can be used directly in the right-

hand side of these equations. Alternatively, this approach can also be used

in conjunction with the perturbation methods by transforming the cumulants

obtained from Eqs. (5.16), (5.17), (5.36) and (5.37) to moments. Using the

transformation in equation (5.76) the approximate probability density function

of λj(x) is given by

pλj
(u) ≈ 1

γj
pχ2

νj

(
u− ηj

γj

)
=

(u− ηj)
νj/2−1 exp {−(u− ηj)/2γj}
(2γj)νj/2Γ(νj/2)

(5.84)

The two approximated pdf proposed here have simple forms but it should be

noted that they are not exhaustive. Given the moments/cumulants, different

probability density functions can be fitted using different methods. Applica-

tion of the approximate pdfs derived here is illustrated in the next section.
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5.6 Numerical Examples
5.6.1 A two DOF system

System model and computational methodology

m m
2

k k 23k
1
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1
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Figure 5.1: The undamped two degree-of-system system, m1 = 1 Kg, m2 = 1.5 Kg, k̄1 =

1000 N/m, k̄2 = 1100 N/m and k3 = 100 N/m.

A simple two-degree-of-freedom undamped system has been considered to il-

lustrate a possible application of the expressions developed so far. The main

purpose of this example is to understand how the proposed methods compare

with the existing methods. Figure 5.1 shows the example, together with the

numerical values of the masses and spring stiffnesses. The system matrices for

the example are given by

M =

[
m1 0

0 m1

]
and K =

[
k1 + k3 −k3

−k3 k2 + k3

]
(5.85)

It is assumed that only the stiffness parameters k1 and k2 are uncertain so that

ki = k̄i(1 + εixi), i = 1, 2 and k̄i denote the deterministic values of the spring

constants. Here x = {x1, x2}T ∈ R2 is a vector of standard Gaussian random

variables, that is µ = 0 and Σ = I. The numerical values of the ‘strength

parameters’ are considered as ε1 = ε2 = 0.25. The strength parameters are
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selected so that the system matrices are almost surely positive definite. Noting

that M is independent of x and K is a linear function of x, the derivative of

the system matrices with respect to the random vector x can be obtained as

∂K

∂x1
= ε1

[
k̄1 0

0 0

]
,

∂K

∂x2
= ε2

[
0 0

0 k̄2

]
, (5.86)

∂M

∂xi
= O and

∂2K

∂xi ∂xj
= O (5.87)

We calculate the raw moments and the probability density functions of the two

eigenvalues of the system. Recall that the eigenvalues obtained from equation

(5.1) are square of the natural frequencies (λj = ω2
j ). Following six methods

are used to obtain the moments and the pdfs:

1.Mean-centered first-order perturbation: This case arises when Dλj
(µ) in

the Taylor series expansion (5.7) is assumed to be a null matrix so that

only the first-order terms are retained. This is the simplest approxima-

tion, and as mentioned earlier, results in Gaussian distribution of the

eigenvalues. Recalling that for this problem µ = 0 and Σ = I, the result-

ing statistics for this special case can be obtained from Eqs. (5.18) and

(5.19) as

λ̂j = λj (5.88)

and Var [λj] = dT
λj

(0)dλj
(0) (5.89)

The gradient vector dλj
(0) can be obtained from equation (B.2) using the

system derivative matrices (5.86) and (5.87).
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2.Mean-centered second-order perturbation: In this case all the terms in

equation (5.7) are retained. This approximation results in a quadratic

form in Gaussian random variables. The resulting statistics can be ob-

tained from Eqs. (5.16) and (5.17) by substituting µ = 0 and Σ = I.

The elements of the Hessian matrix Dλj
(0) can be obtained from equation

(B.4) and using the system derivative matrices (5.86) and (5.87).

3.Optimal point first-order perturbation: This case arises when Dλj
(α) in

the Taylor series expansion (5.22) is assumed to be a null matrix so that

only the first-order terms are retained. Like its mean-centered counter-

part, this approach also results in a Gaussian distribution of the eigen-

values. From equation (5.30) we have

cj = λj(α)− dT
λj

(α)α, aj = dλj
(α) and Aj = O (5.90)

The equation to obtain the optimal point α can be given from equation

(5.29) as

α = dλj
(α)/λj(α) or dλj

(α) = λj(α)α (5.91)

Using these equations, the mean and the variance can be obtained as

special cases of Eqs. (5.38) and (5.39)

λ̂j = λj(α)− dT
λj

(α)α = λj(α)− λj(α)αTα (5.92)

or λ̂j = λj(α)
(
1− |α|2) (5.93)

and Var [λj] = dT
λj

(α)dλj
(α) = λ2

j(α)|α|2 (5.94)

4.Optimal point second-order perturbation: In this case all the terms in
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equation (5.22) are retained. Like the mean-centered approach, this ap-

proximation also results in a quadratic form in Gaussian random variables,

but with different coefficients. The resulting statistics can be obtained

from Eqs. (5.36) and (5.37).

5.Method based on the asymptotic integral: In this case the moments can be

obtained using equation (5.60). For the standardized Gaussian random

vector substituting µ = 0 and Σ = I in equation (5.66) the moment

formula can be simplified to

µ
(r)
j ≈ λr

j(θ) exp

{
−1

2
|θ|2

} ∥∥∥∥I +
1

r
θθT/r − r

λj(θ)
Dλj

(θ)

∥∥∥∥
−1/2

,

(5.95)

and θ = rdλj
(θ)/λj(θ), r = 1, 2, 3, · · · (5.96)

The vector θ needs to be calculated for each r and j from equation (5.96)

using the iterative approach discussed before. The moments obtained

from equation (5.95) can be used to obtain the pdf using the approach

given in Section 5.5.

6.Monte Carlo Simulation: The samples of two independent Gaussian ran-

dom variables x1 and x2 are generated and the eigenvalues are computed

directly from (5.1). A total of 15000 samples are used to obtain the statis-

tical moments and pdf of both the eigenvalues. Results obtained from the

Monte Carlo simulation is assumed to be the benchmark for the purpose

of comparing the five analytical methods described above.
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Numerical results

Figure 5.2 shows the percentage error for the first four raw moments of the first

eigenvalue. The percentage error for an arbitrary kth moment of an eigenvalue
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Figure 5.2: Percentage error for the first eigenvalue.

obtained using any one of the five analytical methods is given by

Errorith method =

∣∣∣{µ(r)
j }ith method − {µ(r)

j }MCS

∣∣∣
{µ(r)

j }MCS

× 100, i = 1, · · · 5 (5.97)

Percentage error for the first four raw moments of the second eigenvalue is

shown in figure 5.3. For both eigenvalues error corresponding to the mean-

centered first-order perturbation method is more than the other four methods.

Error corresponding to the optimal point first-order perturbation method fol-
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Figure 5.3: Percentage error for the second eigenvalue.

lows next. Moments obtained from mean-centered and optimal point second-

order perturbation methods are more accurate compared to their correspond-

ing first-order counterparts. In general the moments obtained from the asymp-

totic formula (5.60) turns out to be quite accurate. Absolute error for the

second eigenvalue is less compared to the first eigenvalue. For the first eigen-

value, the moments obtained from the asymptotic formula turns out to be the

most accurate, while for the second eigenvalue, mean-centered second-order

perturbation method yields most accurate results.

Now consider the probability density function of the eigenvalues. Figures

5.4 and 5.5 respectively show the pdf of the first and the second eigenvalue
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Figure 5.4: Probability density function of the first eigenvalue.

obtained from the five methods described earlier. The pdf corresponding to

first five methods are obtained using the χ2 distribution in equation (5.84).

The constants appearing in this equation are calculated from the moments

using Eqs. (5.81)–(5.83). In the same plots, normalized histograms of the

eigenvalues obtained from the Monte Carlo simulation are also plotted. For the

first eigenvalue, pdf from the second-order perturbation methods are accurate

in the lower and in the upper tail. For the second eigenvalue, pdf from the

asymptotic moments is accurate over the whole curve.
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Figure 5.5: Probability density function of the second eigenvalue.

5.6.2 A Three Dof System with Closely Spaced Eigenvalues

System model and computational methodology

A three-degree-of-freedom undamped spring-mass system, taken from Friswell

(1996), is shown in figure 5.6. The main purpose of this example is to under-

stand how the proposed methods work when some of the system eigenvalues

are closely spaced. This is an interesting case because it is well known that

closely spaced eigenvalues are parameter sensitive. We will investigate how the

parameter uncertainty effects the eigenvalue distribution in such cases. This

study has particular relevance with dynamics of nominally symmetric rotat-

ing machineries, for example, turbine blades with random imperfections. The
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Figure 5.6: The three degree-of-freedom random system.

mass and stiffness matrices of the example system are given by

M =




m1 0 0

0 m2 0

0 0 m3


 and K =




k1 + k4 + k6 −k4 −k6

−k4 k4 + k5 + k6 −k5

−k6 −k5 k5 + k3 + k6




(5.98)

It is assumed that all mass and stiffness constants are random. The random-

ness in these parameters are assumed to be of the following form:

mi = mi (1 + εmxi) , i = 1, 2, 3 (5.99)

ki = ki (1 + εkxi+3) , i = 1, · · · , 6 (5.100)

Here x = {x1, · · · , x9}T ∈ R9 is the vector of random variables. It is assumed

that all random variables are Gaussian and uncorrelated with zero mean and

unit standard deviation, that is µ = 0 and Σ = I. Therefore, the mean

values of mi and ki are given by mi and ki. The numerical values of both the

‘strength parameters’ εm and εk are fixed at 0.15. In order to obtain statistics

of the eigenvalues using the methods proposed here the gradient vector and

the Hessian matrix of the eigenvalues are required. As shown in Section B,
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this in turn requires the derivative of the system matrices with respect to the

entries of x. For most practical problems, which usually involve Finite Element

modeling, these derivatives need to be determined numerically. However, for

this simple example the derivatives can be obtained in closed-form. For the

mass matrix we have

∂M

∂x1
=




m1εm 0 0

0 0 0

0 0 0


 ,

∂M

∂x2
=




0 0 0

0 m2εm 0

0 0 0


 ,

∂M

∂x3
=




0 0 0

0 0 0

0 0 m3εm




(5.101)

All other
∂M

∂xi
are null matrices. For the derivative of the stiffness matrix

∂K

∂x4
=




k1εk 0 0

0 0 0

0 0 0


 ,

∂K

∂x5
=




0 0 0

0 k2εk 0

0 0 0


 ,

∂M

∂x6
=




0 0 0

0 0 0

0 0 k3εk




∂K

∂x7
=




k4εk −k4εk 0

−k4εk k4εk 0

0 0 0


 ,

∂K

∂x8
=




0 0 0

0 k5εk −k5εk

0 −k5εk k5εk


 ,

∂M

∂x9
=




k6εk 0 −k6εk

0 0 0

−k6εk 0 k6εk




(5.102)

and all other
∂K

∂xi
are null matrices. Also note that all of the first-order deriva-

tive matrices are independent of x. For this reason, all the higher order deriva-

tives of the M(x) and K(x) matrices are null matrices.
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We calculate the moments and the probability density functions of the three

eigenvalues of the system. The following two sets of physically meaningful

parameter values are considered:

 Case 1: All eigenvalues are well separated

For this case mi = 1.0 kg for i = 1, 2, 3; ki = 1.0 N/m for i = 1, · · · , 5

and k6 = 3.0 N/m.

 Case 2: Two eigenvalues are close

All parameter values are the same except k6 = 1.275 N/m.

The moments of the eigenvalues for the above two cases are calculated from

Eqs. (5.95) and (5.96). The moments are then used to obtain σj from equa-

tion (5.75) and the constants in Eqs. (5.81)–(5.83). Using these constants the

truncated Gaussian pdf and the χ2 pdf of the eigenvalues are obtained from

Eqs. (5.74) and (5.84) respectively. These results are compared with Monte

Carlo simulation. The samples of the nine independent Gaussian random vari-

ables xi, i = 1, · · · , 9 are generated and the eigenvalues are computed directly

from equation (5.1). A total of 15000 samples are used to obtain the statistical

moments and histograms of the pdf of the eigenvalues. The results obtained

from Monte Carlo simulation are assumed to be the benchmark for the pur-

pose of comparing the analytical methods. For the purpose of determining the

accuracy, we again calculate the percentage error associated with an arbitrary

rth moment using equation (5.97). The results for the two cases are presented

and discussed in the next subsection.
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Numerical results

Case 1: All eigenvalues are well separated

When all of the eigenvalues are well separated their derivatives with respect to

the system parameters generally behave well. For the given parameter values

the eigenvalues of the corresponding deterministic system is given by

λ1 = 1, λ2 = 4, and λ3 = 8 (5.103)

The random ‘scatter’ of the eigenvalues is shown in figure 5.7 for 1000 samples

from the Monte Carlo simulation. It can be seen that the highest eigenvalue
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Figure 5.7: Statistical scatter in the eigenvalues; Case 1.

has the maximum scatter and because the eigenvalues are well separated, there

is very little statistical overlap between them. Figure 5.8 shows the percentage
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error for the first four moments of the eigenvalues. These errors are reasonably
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Figure 5.8: Percentage error for first four moments of the eigenvalues; Case 1.

small considering that the strength of randomness for all nine random variables

are 15%. Error associated with higher eigenvalues are higher and also for a

fixed eigenvalue, the higher order moments have more errors.

Now consider the probability density function of the eigenvalues. The pdf of

the first eigenvalue obtained from the two methods are shown in figure 5.9.

On the same plot, normalized histograms of the eigenvalue obtained from the

Monte Carlo simulation are also shown. Both approximate methods match

well with the Monte Carlo simulation result. This is expected since the first

three moments are obtained accurately (less than 0.2% error as seen in fig-
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Figure 5.9: Probability density function of the first eigenvalue; Case 1.

ure 5.8). The probability density functions of the second and third eigenvalues

are shown in figure 5.10. The region of statistical overlap is indeed small and

can be verified from the plot of the actual samples in figure 5.7. Again, both

approximate methods match well with the Monte Carlo simulation result.

Case 2: Two eigenvalues are close

When some eigenvalues are closely spaced, their derivatives with respect to the

system parameters may not behave well (Friswell, 1996). Indeed, if repeated

eigenvalues exist, the formulation proposed here breaks down. The purpose

of studying this case is to investigate how the proposed methods work when

there are closely spaced eigenvalues so that there is a significant statistical
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Figure 5.10: Probability density functions of the second and third eigenvalues; Case 1.

overlap between them. For the given parameter values the eigenvalues of the

corresponding deterministic system are calculated as

λ1 = 1, λ2 = 4, and λ3 = 4.55 (5.104)

Clearly λ2 and λ3 are close to each other. The random scatter of the eigenvalues

is shown in figure 5.11 for 1000 samples from the Monte Carlo simulation.

It can be seen that the third eigenvalue has the maximum scatter and because

the second and the third eigenvalues are close there is significant statistical

overlap between them. Figure 5.12 shows the percentage error for the first

four moments of the eigenvalues. The general trend of these errors are similar

to the previous case except that the magnitudes of the errors corresponding to
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Figure 5.11: Statistical scatter in the eigenvalues; Case 2.

second and third eigenvalues are higher. This is expected because these two

eigenvalues are close to each other.

The probability density function of the first eigenvalue obtained from the two

methods are shown in figure 5.13. On the same plot, normalized histograms

of the eigenvalue obtained from Monte Carlo simulation are also shown. As

in the previous case, both approximate methods match well with the Monte

Carlo simulation result. This is expected since the first three moments are

obtained accurately for this case also. The probability density functions of the

second and third eigenvalues are shown in figure 5.14. There is a significant

region of statistical overlap which can also be verified from the plot of the
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Figure 5.12: Percentage error for first four moments of the eigenvalues; Case 2.

actual samples in figure 5.11. In this case the truncated Gaussian density

function performs better than the χ2 density function. However, none of the

approximate methods match the Monte Carlo simulation result as well as in

the previous case.

5.7 Conclusions

The statistics of the eigenvalues of discrete linear dynamic systems with pa-

rameter uncertainties have been discussed in this lecture. It is assumed that

the mass and stiffness matrices are smooth and at least twice differentiable

functions of a set of random variables. The random variables are in general

considered to be non-Gaussian. The usual assumption of small randomness
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Figure 5.13: Probability density function of the first eigenvalue; Case 2.

employed in most mean-centered based perturbation analysis is not employed

here. Two methods, namely (a) optimal point expansion method, and (b)

asymptotic moment method, have been outlined. The optimal point is ob-

tained so that the mean of the eigenvalues are estimated most accurately. Both

methods are based on an unconstrained optimization problem. Moments and

cumulants of arbitrary orders are derived for both the approaches. Two sim-

ple approximations for the probability density function of the eigenvalues are

derived. One is in terms of a truncated Gaussian random variable obtained

using the maximum entropy principle. The other is a χ2 random variable

approximation based on matching the first three moments of the eigenvalues.
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Figure 5.14: Probability density functions of the second and third eigenvalues; Case 2.

Both formulations yield closed-form expressions of the pdf which can be com-

puted easily. Proposed formulae are applied to two problems. The moments

and the pdf match encouragingly well with the corresponding Monte Carlo

simulation results. However, when some eigenvalues are closely spaced, the

proposed methods do not produce very accurate results. Further research is

required to deal with systems with closely spaced or repeated eigenvalues.
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A Derivation of the Residues in the Transfer Function

of Non-viscously Damped Dynamic Systems

The eigenvectors of the dynamic stiffness matrix play an important role in

determining the residues of the transfer function matrix. For any given s ∈ C,

the eigenvalue problem associated with the dynamic stiffness matrix can be

expressed by

D(s)φk(s) = νk(s)φk(s), ∀ k = 1, · · · , N. (A.1)

In the preceding equation the eigenvalues νk(s) ∈ C are the roots of the char-

acteristic equation

det [D(s)− ν(s)IN ] = 0 (A.2)

and φk(s) ∈ CN is the k-th eigenvector of D(s). The symbols νk(s) and φk(s)

indicate functional dependence of these quantities on the complex parameter

s. Such a continuous dependence is expected whenever D(s) is a sufficiently

smooth matrix function of s. It should be noted that because D(s) is an N×N

complex matrix for a fixed s, the number of eigenvalues (and consequently

the eigenvectors) must be N . Further, it can be shown that, for distinct

eigenvalues, φk(s) also satisfy an orthogonality relationship although zk do

not enjoy any such simple relationship. We normalize φk(s) such that

φT
j (s)φk(s) = δkj, ∀ k, j = 1, · · · , N (A.3)

In view of the above relationship, from equation (A.1) we have

φT
j (s)D(s)φk(s) = νk(s)δkj, ∀ k, j = 1, · · · , N (A.4)
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or in the matrix form

ΦT (s)D(s)Φ(s) = ν(s). (A.5)

Here

Φ(s) = [φ1(s), φ2(s), · · · , φN(s)] ∈ CN×N , (A.6)

and ν(s) = diag [ν1(s), ν2(s), · · · , νN(s)] ∈ CN×N . (A.7)

It is possible to establish the relationships between the original eigenvalue

problem of the system defined by equation (1.45) and that by equation (A.1).

Consider the case when the parameter s approaches any one of the system

eigenvalues, say sj. Since all the νk(s) are assumed to be distinct, for nontrivial

eigenvectors, comparing equations (1.45) and (A.1) we can conclude that one

and only one of the νk(s) must be zero when s → sj (see Yang and Wu, 1998).

Suppose that the r-th eigenvalue of the eigenvalue problem (A.1) is zero when

s → sj. It is also clear that the eigenvector in (A.1) corresponding to the r-th

eigenvalue also approaches the eigenvector in (1.45) as s → sj. Thus, when

s = sj one has

νr(sj) = 0 and νk(sj) 6= 0, ∀k = 1, · · · , N ; 6= r (A.8)

and also

φr(sj) = zj. (A.9)

These equations completely relate the eigensolutions of (1.45) with (A.1). Now,

these relationships will be utilized to obtain the residues of the transfer func-

tion matrix.
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From equation (A.5) one has

D−1(s) = Φ(s)ν−1(s)ΦT (s). (A.10)

Using the expression of the transfer function in equation (1.63) and noting that

ν(s) is a diagonal matrix, we may expand the right-hand side of the above

equation to obtain

H(s) = D−1(s) =
N∑

k=1

φk(s)φ
T
k (s)

νk(s)
. (A.11)

Separation of the r-th term in the above sum yields

H(s) =
φr(s)φ

T
r (s)

νr(s)
+




N∑
k=1
k 6=r

φk(s)φ
T
k (s)

νk(s)


 . (A.12)

Clearly, when s → sj, the second term of the right-hand side of equation (A.12)

is analytic because according to equation (A.8) νk(sj) 6= 0,∀k = 1, · · · , N ; 6= r.

Now, from equation (1.66) the residue at s = sj may be obtained as

Rj
def
= lim

s→sj

(s− sj)





φr(s)φ
T
r (s)

νr(s)
+




N∑
k=1
k 6=r

φk(s)φ
T
k (s)

νk(s)








= lim
s→sj

(s− sj)
φr(s)φ

T
r (s)

νr(s)

=
φr(s)φ

T
r (s)|s=sj

∂νr(s)

∂s
|s=sj

+ lim
s→sj

(s− sj)
∂

∂s

[
φk(s)φ

T
k (s)

]

∂νr(s)

∂s

(using l’Hôspital’s rule)

=
zjz

T
j

∂νr(s)

∂s
|s=sj

(by equation (A.9)).

(A.13)
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The denominator in the above expression for the residues, ∂νr(s)
∂s |s=sj

, is still

unknown. Now, consider the r-th eigenvalue problem associated with the

dynamic stiffness matrix. Differentiation of equation (A.1) for k = r with

respect to s yields

∂D(s)

∂s
φr(s) + D(s)

∂φr(s)

∂s
=

∂νr(s)

∂s
φr(s) + νr(s)

∂φr(s)

∂s
. (A.14)

Premultiplying the above equation by φT
r (s) and rearranging one obtains

φT
r (s)

∂D(s)

∂s
φr(s) +

[
φT

r (s)D(s)− φT
r (s)νr(s)

] ∂φr(s)

∂s
= φT

r (s)
∂νr(s)

∂s
φr(s).

(A.15)

Taking transpose of equation (A.1) it follows that the second term of the left-

hand side of the above equation is zero. Using the normalizing condition in

(A.3) and letting s → sj, from equation (A.15) we have

∂νr(s)

∂s
|s=sj

= zT
j

∂D(s)

∂s
|s=sj

zj = zT
j

∂D(sj)

∂sj
zj. (A.16)

The term
∂D(sj)

∂sj
can be obtained by differentiating equation (1.61) as

∂D(sj)

∂sj
= 2sjM + G(sj) + sj

∂G(sj)

∂sj
. (A.17)

Using (A.13) and (A.16) one finally obtains the residue as

Rj =
zjz

T
j

zT
j

∂D(sj)
∂sj

zj

. (A.18)

The above equation completely relates the transfer function residues to the

eigenvalues and eigenvectors of the system.
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B Gradient vector and Hessian matrix of the

eigenvalues

The eigenvectors of symmetric linear systems are orthogonal with respect to

the mass and stiffness matrices. Normalize the eigenvectors so that they are

unity mass normalized, that is,

φT
j Mφj = 1 (B.1)

Using this and differentiating equation (5.1) with respect to xk, following Fox

and Kapoor (1968) it can be shown that for any x

∂λj(x)

∂xk
= φj(x)TGjk(x)φj(x) (B.2)

where Gjk(x) =

[
∂K(x)

∂xk
− λj(x)

∂M(x)

∂xk

]
(B.3)

Differentiating equation (5.1) with respect to xk and xl Plaut and Huseyin

(1973) have shown that, providing the eigenvalues are distinct,

∂2λj(x)

∂xk ∂xl
= φj(x)T

[
∂2K(x)

∂xk ∂xl
− λj(x)

∂2M(x)

∂xk ∂xl

]
φj(x)

−
(

φj(x)T ∂M(x)

∂xk
φj(x)

)(
φj(x)TGjl(x)φj(x)

)

−
(

φj(x)T ∂M(x)

∂xl
φj(x)

) (
φj(x)TGjk(x)φj(x)

)

+ 2
N∑

r=1

(
φr(x)TGjk(x)φj(x)

)(
φr(x)TGjl(x)φj(x)

)

λj(x)− λr(x)
(B.4)

Equations (B.2) and (B.4) completely define the elements of the gradient vector

and Hessian matrix of the eigenvalues.
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