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Kernel Combined Sparse Representation
for Disease Recognition

Qingxiang Feng and Yicong Zhou, Senior Member, IEEE

Abstract—Motivated by the idea that the correlation structure
of the entire training set can disclose the relationship between the
test sample and the training samples, we propose the combined
sparse representation (CSR) classifier for disease recognition.
The CSR classifier minimizes the correlation structure of the
entire training set multiplied by its transposition and the sparse
coefficient together for classification. Including the kernel concept,
we propose the kernel combined sparse representation classifier
utilizing the high-dimensional nonlinear information instead
of the linear information in the CSR classifier. Furthermore,
considering the information of the training samples and the
class center, we then propose the center-based kernel combined
sparse representation (CKCSR) classifier. CKCSR uses the center-
based kernel matrix to increase the center-based information
that is helpful for classification. The proposed classifiers have
been evaluated by extensive experiments on several well-known
databases including the EXACT09 database, Emphysema-CT
database, mini-MIAS database, Wisconsin breast cancer database,
and HD-PECTF database. The experimental results demonstrate
that the proposed classifiers achieve better recognition rates
than the sparse representation-based classification, collaborative
representation based classification, and several state-of-the-art
methods.

Index Terms—Collaborative representation, disease recognition,
sparse representation.

I. INTRODUCTION

DUE to the fast development of medical imaging technolo-
gies, a large number of medical images have been gen-

erated every single minute in clinic applications all over the
world. Disease recognition based on medical images is an ef-
fective tool in the computer-aid system that helps doctors to
quickly locate and diagnose the disease in the patient’s body.
Disease recognition is also a challenging problem in the medi-
cal field because of complex and diversity of individual patient
health conditions. This attracts more and more attentions of re-
searchers. To perform disease recognition [1], [2], accurate and
efficient image classification, recognition and retrieving meth-
ods are demanded. To meet this need, this paper focuses on
medical image classification for disease recognition.
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In general, image classification includes two stages: feature
extraction and classification. Existing research on feature ex-
traction manly works on incorporating dictionary learning tech-
niques [3]–[5], generating new feature descriptors [6]–[8] and
performing optimized feature selection [9], [10]. For classi-
fication, the classifiers play an important role for the overall
classification performance. Therefore, we aim to develop the
better classifiers that can help doctors to efficiently determine
the disease’s categories. The supervised classifier can be roughly
divided into two categories: The class-subspace- based classi-
fiers such as the nearest neighbor (NN) [11] and linear regression
[12]–[15]; and the entire-space-based classifiers such as sparse
representation classification (SRC)[16], [17]. The latter one has
attracted growing attention in recent years.

In the above description, the hospitals and medical institu-
tions need the better methods to meet the disease recognition
task. As the well-known classification method, sparse repre-
sentation based classification (SRC) [16], [17] attracts a lot of
researchers’ attention and obtains the good performance for
image classification task [18]–[29]. However, the above sparse-
based methods fail to consider the correlation structure of the
prototype set, which is also useful for classification [30], [31].
Motivated by this, this paper tries to minimize the correlation
structure of the entire training set multiplied by its transposi-
tion and the sparse coefficient together. Based on this idea, the
combined sparse representation (CSR) classifier is proposed for
disease recognition. CSR can find the relationship between the
test sample and the training samples. Moreover, we propose
the kernel combined sparse representation (KCSR) classifier to
map the original feature to a nonlinear high-dimensional fea-
ture such that it can obtain the nonlinear information for clas-
sification. In order to increase the information of the training
samples and the corresponding class mean sample, we further
propose the center-based kernel combined sparse representation
(CKCSR) classifier using the center-based kernel matrix. Due
to the increase of the center-based nonlinear information, the
CKCSR classifier can obtain better performance than KCSR for
the most situations. Experiments on Emphysema-CT database,
EXACT09 database, mini-MIAS database, WBC database and
HD-PECTF database are used to evaluate the proposed algo-
rithms. The experimental results show that the proposed meth-
ods achieve better recognition rates than sparse representation
based classification (SRC), collaborative representation based
classification (CRC), and several state-of-the-arts approaches.
To sum up, the main contributions of this paper can be summa-
rized as follows.

1) We propose the combined sparse representation (CSR)
classifier, which considers the correlation structure and
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sparsity together. In the CSR classifier, the correlation
structure of the entire training set multiplied by its trans-
position is used such that the correlation can be encoded
for classification.

2) Based on the kernel concept, the kernel combined sparse
representation (KCSR) classifier is also proposed. It uti-
lizes the high-dimension nonlinear information instead of
the linear information in the CSR classifier.

3) Considering the information of the training samples and
the class center, we further propose center-based ker-
nel combined sparse representation (CKCSR) classifier. It
uses the center-based kernel matrix to increase the center-
based information, which is helpful for classification.

4) Extensive experiments are carried out on five medi-
cal disease databases including the EXACT09 database,
Emphysema-CT database, mini-MIAS database, WBC
database and HD-PECTF database. The experiment re-
sults show that the proposed classifiers obtain better per-
formance than several state-of-the-art methods.

II. RELATED WORK

In the class-subspace-based classifier [32], the number of pro-
totype samples is usually quite small, which makes the classifi-
cation much difficult. The nearest feature line (NFL) proposed
by Li et al. [33], [34] attempts to enhance the representation ca-
pacity of the limited sample set by using the line passing through
each pair of the samples in the same class. After NFL, Pan et al.
proposed the neighborhood feature line segment (NFLS) [35]
selecting the useful lines rather than using all the lines for clas-
sification; Chien et al. proposed the nearest feature plane (NFP)
[36], which uses the feature plane instead of the feature line
in NFL; Feng et al. proposed the center-based nearest feature
plane (CNFP) and line-based nearest feature plane (LNFP) [37]
constituting the new feature plane.

Different from the class-subspace-based classifier, sparse rep-
resentation based classification (SRC) [16], [17] uses all class-
subspaces to solve the L1-norm minimum problem and to
classify the test sample. Based on the SRC classifier, some
researchers use the idea of SRC to perform the feature selection
[18], [19], [20], while other researchers pay attention to improve
the classifier. Yang et al. proposed the regularized robust cod-
ing [38] using a new data distribution method for classification.
Zhang et al. proposed the collaborative representation classifica-
tion (CRC) [39], which solves the L2-norm minimum problem
instead of L1-norm minimum problem in SRC, and uses the
collaborative representation instead of the sparse representation
in SRC. Based on CRC, Yang et al. proposed the relaxed collab-
orative representation [40] and Cai et al. proposed probabilistic
collaborative representation based classification [41] for pattern
recognition. Xu et al. proposed two-phase sparse representa-
tion (TPSR) [42], which chooses some useful samples while
removing the remaining samples in the first phase and solves
the L2-norm minimum problem in the second phase. In [22],
Fang et al. proposed the non-negative sparse graph, which solves
the non-negative sparse coefficient for classification. In [24] and
[23], Lai et al. used the sparse idea to perform the dimension re-

duction. In [25], Feng et al. proposed the superposed method for
the sparse representation and obtained the good performance.
In [43], Xu et al. proposed a novel sparse representation method
using data uncertainty idea for face recognition. In [27], Gu et al.
proposed dictionary pairing learning (DPL) achieving from dic-
tionary learning to dictionary pair learning. In [28], Yang et al.
proposed Fisher Discrimination Dictionary Learning (FDDL) to
make the dimension reduction. In [44], Deng et al. proposed the
superposition sparse representation classification (SSRC) using
the prototype plus variations to optimize the prototype set.

All above methods are based on the linear information and
fail to consider the nonlinear information. Motivated by this,
researchers utilize the kernel idea to solve it. For example, Gao
et al. proposed kernel sparse representation (KSR) [29]. It maps
the original feature to a nonlinear high-dimension feature and
uses the feature searching method to solve the optimization
problem. Based on KSR, Zhang et al. proposed kernel sparse
representation based classification (KSRC) [45]. It uses the di-
mension reduction method to reduce the dimension of the non-
linear feature so that the computation cost is much less than that
of KSR. Wang et al. proposed kernel collaborative representa-
tion classification (KCRC) [46] utilizing the collaborative repre-
sentation instead of the sparse representation in KSRC. Lu et al.
proposed kernel linear regression classification (KLRC) [47],
which maps the original feature to a nonlinear high-dimension
feature and uses the least square errors for classification. Feng
et al. proposed the center-based weighted kernel linear regres-
sion classification (CWKLRC) [48], which brings the ”weighted
idea” to KLRC. It can encode the important information of the
training samples. Wang et al. proposed a kernel classification
framework (KCF) [49] for metric learning, which gains a fast
speed for the metric leaning. Li et al. proposed kernel collab-
orative representation classification with Tikhonov regulariza-
tion (KCRC-TR) [50] using the Tikhonov Matrix to encode
the important information. Chou et al. proposed class-specific
kernel linear regression classification (CKLRC) [51] increas-
ing the class-specific for KLRC. Zhang et al. proposed kernel
sparse representation- based classifier ensemble (KSRCE) [52]
considering the ensemble [53], [54],[55], [56] information for
KSRC. Moreover, Shrivastava et al. used the multiple kernels
learning for sparse representation [57], which can benefit from
both multiple kernels and sparsity. Lan et al. proposed the joint
sparse representation [58] and Robust joint discriminative fea-
ture learning [59], which both obtained good performance for
visual tracking. Xu et al. proposed learning a structured dictio-
nary for video-based face recognition [60] and obtained good
performance.

Recently, some researchers have applied SRC to medical im-
ages such that the doctors can efficiently determine the dis-
ease’s categories. For example, Song et al. proposed large mar-
gin local estimate (LMLE) for medical image classification [1].
Kong et al. proposed the jointly sparse learning for breast can-
cer [2]. Tong et al. utilized the sparse coding for MR images
segmentation [61]. Zhang et al. used the sparse representa-
tion for deformable segmentation [4]. Wang et al. integrated
the sparse multi-modality representation and anatomical con-
straint for isointense infant brain MR image segmentation [62].
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Song et al. combined the sparse and boost for ILD classifica-
tion [63]. Liu et al. proposed localized sparse code gradient in
Alzheimers disease staging [5]. Weiss et al. utilized the sparse
coding for multiple sclerosis lesion segmentation [64]. Zhang
et al. [65] applied the sparse representation for higher-order
functional interaction patterns in task-based fMRI data.

III. PROPOSED CSR CLASSIFIER

In this section, we first introduce the objective function of
the proposed CSR classifier. Section III-B describes the solu-
tion method of the objective function. Next, the detailed clas-
sification procedures of the CSR classifier are described in
Section III-C. Finally, Section III-D describes the CSR vs meth-
ods in [30], [31].

Definition: Let X = {xc
i }, c = 1, 2, . . . ,M, i = 1, 2, . . . , Nc

denote the prototype set, where xc
i is the ith prototype belonging

to the cth -class, M is the number of classes, and Nc is the
number of prototype samples in the cth -class.

A. Objective Function of CSR

In [30], [31], authors showed that the sparsity is effective in
sample selection for representation while the correlation struc-
ture helps to find the relationship between the query sample
and the training samples. Therefore, they tried to minimize the
structure of entire training set X and the sparse coefficient to-
gether. In order to emphasize the importance of the correlation
structure of the entire training set, this paper tries to increase
the entire training sets transposition for optimization. That is,
this paper tries to minimize the correlation structure of the en-
tire training set multiplied by its transposition, XT X , and the
sparse coefficient together. Motivated by the methods in [30],
[31], we try to utilize the Lp -minimization (1 < p < 2) to solve
the sparse problem, which is different from the L1-minimization
optimization problem in SRC and L2-minimization optimiza-
tion problem in CRC. The objective function of CSR can be
described as follows:

min ||XT X Diag(β)||∗
s.t. x =Xβ (1)

where || • ||∗ is the trace or nuclear norm. In order to explain the
relationship between the proposed objective function and the
objective functions in SRC and CRC, two examples are given
as follows. Suppose that the subjects of X are different from
each other, the columns in X are orthogonal, that is, XT X = I ,
where I denotes the identity matrix. Then, the decomposition is

||XT X Diag(β)||∗ = ||Diag(β)||∗

= Tr[(Diag(β))T (Diag(β))]
1/2

= ||β||1 . (2)

Therefore, the objective function in (1) is equivalent to that of
SRC. On the other hand, suppose that the subjects of X are
similar to x1 , the first column of X , that is XT X = 11T (1 is
a vector of size n =

∑M
c=1 Nc , each element of which is one).

According to [31], the decomposition is described as

||XT XDiag(β)||∗ = ||11T Diag(β)||∗
= ||11T Diag(β)||F
=

√
n||β||2 (3)

where || • ||F is the Frobenius norm. The derivation procedure
of (3) is described in Appendix A. Notice: For a specific clas-
sification task, the training set is fixed. That is, the number
of training samples n is a fixed value. Thus, minimization of√

n‖β‖2 is equivalent to minimization of ‖β‖2 . Generally, the
samples of the prototype set X are neither distinct from each
other nor similar to each other. Thus, the objective function in (1)
can be treated as a combination of the L1- minimization in SRC
and L2- minimization in CRC. That is, the objective function in
(1) can benefit from both L1-norm minimization and L2-norm
minimization according to the correction of the samples in the
prototype set X . Because x = Xβ implies XT x = XT Xβ, the
(1) can be rewritten as

min ||XT XDiag(β)||∗
s.t. XT x =XT Xβ. (4)

It is noted that the objective function in (4) is designed for
the situation that the samples have no noise. However, noise
often exists in the real-world applications. Considering noise,
the objective function in (4) becomes

min ||XT XDiag(β)||∗
s.t. ||XT x−XT Xβ||1 < ε. (5)

Equation (5) is the final objective function of the CSR classifier.

B. Solution of the Optimization Problem

According to the optimization approaches in [66] and [67],
the method of inexact augmented Lagrange multipliers (IALM)
[68] is used to solve the minimization problem in (5), which can
be converted to the following minimization problem:

min
E ,e,β

||E||∗ + ||e||1

s.t. e = XT x−XT Xβ

E = XT XDiag(β). (6)

Instead of solving the minimization problem in (6), we solve
the following augmented Lagrange multiplier problem in (7) as

L(E, e, β) = λ||E||∗ + ||e||1 + yT
1 (a − Aβ − e)

+ Tr[Y T
2 (E − ADiag(β))] +

u

2
(||a − Aβ − e||22

+ ||E − ADiag(β)||2F ) (7)

where u > 0 is a parameter, y1 and Y2 are Lagrange multipliers,
A = XT X and a = XT x.

Variables E, e and β in (7) can be optimized alternatively
with the other two fixed. The detailed optimization procedures
of E, e and β are described as follows.



FENG AND ZHOU: KERNEL CSR FOR DISEASE RECOGNITION 1959

Update E when e and β are fixed, which is equivalent to solve
the minimization problem in (8)

E∗ = arg min
E

L(E, e, β)

= arg min
E

λ||E||∗ + Tr(Y T
2 E) +

u

2
||E − ADiag(β)||2F

= arg min
E

λ

u
||E||∗ +

1
2
||E −

(

ADiag(β) − 1
u

Y2

)

||2F .

(8)

The minimization problem in (8) can be solved approximately
by the singular value thresholding (SVT) operator [69].

Afterwards, update β when e and E are fixed, which is equiv-
alent to solve the minimization problem in (9)

β ∗ = arg min
β

L(E, e, β)

= arg min
β

−yT
1 Aβ − Tr(Y T

2 ADiag(β))

+
u

2
(βT AT Aβ − 2(a − e)T Aβ − 2Tr(ET ADiag(β))

+Tr((ADiag(β))T ADiag(β)))

= arg min
β

u

2
βT (AT A + Diag(diag(AT A)))β

−(AT y1 +uAT A(a−e)+diag(Y T
2 A+uET A))T β.

(9)

It is easy to solve the minimization problem in (9) by

β ∗ = (AT A + Diag(diag(AT A)))−1AT

(
1
u

y1 + A(a − e)
)

+ (AT A + Diag(diag(AT A)))−1diag

(

AT

(
1
u

Y2 + E

))

.

(10)

Next, update e when E and β are fixed, which is equivalent to
solve the following minimization problem:

e∗ = arg min
e

L(E, e, β)

= arg min
e

||e||1 − yT
1 e +

u

2
||a − Aβ − e||2F

= arg min
e

1
u
||e||1 +

1
2
||e −

(

a − Aβ +
1
u

y1

)

||22 . (11)

The solution of the minimization problem in (11) can be solved
by the soft thresholding (shrinkage) operator [70].

After updating E, e and β, the multipliers y1 and Y2 can be
updated by

y1 = y1 + u(a − Aβ − e)

Y2 = Y2 + u(E − ADiag(β)). (12)

The parameter u can be updated by

u = min(ρu, umax) (13)

where ρ, umax are constants and given in advance.

C. Classification

After obtaining the results of the optimization problem of the
objective function, we calculate the sum of coefficients of each
class by

sc =
Nc∑

i=1

βc
i , c = 1, 2, ...,M. (14)

Finally, the test sample will be classified into the class with the
maximum sum of coefficients by

c∗ = arg max(sc). (15)

The detailed classification procedures of CSR are summarized
in Algorithm 1.

D. CSR Versus Methods in [30] and [31]

The objective function of methods in [30], [31] considers
the correlation structure of the prototype set and sparsity to-
gether for classification. Their objective function can be de-
scribed as min ||XDiag(β)||∗ s.t. x =Xβ and obtain the good
performance for some classification tasks. Motivated this, CSR
tries to emphasize the importance of the correlation structure
of the entire training set. CSR increases the correlation struc-
ture of the entire training set’s transposition for the optimiza-
tion problem. That is, CSR tries to minimize the correlation
structure of the entire training set multiplied by its transpo-
sition, XT X , and the sparse coefficient together for classi-
fication. The objective function of CSR can be described as
min ||XT XDiag(β)||∗ s.t. x =Xβ. Therefore, the main dif-
ference between CSR and methods in [30], [31] is that CSR
uses the entire training set multiplied by its transposition, XT X ,
instead of the entire training set, X , as in [30], [31].

IV. PROPOSED KCSR AND CKCSR CLASSIFIERS

In this section, we first introduce the kernel trick in
Section IV-A. Afterwards, the proposed KCSR classifier is de-
scribed in Section IV-B. Next, Section IV-C presents the pro-
posed CKCSR classifier. In Section IV-D, KCSR and CKCSR vs
methods in [30], [31] is described. Finally, KCSR and CKCSR
vs KSRC is described in Section IV-E.

A. Kernel Trick

In machine learning, the kernel trick as a well-known tech-
nique utilizes a linear algorithm to its nonlinear counterpart
without ever having to compute the mapping explicitly. Two
popular kernels are polynomial kernel and Gaussian radial ba-
sis function (RBF) kernel. For simplicity, this paper uses the
Gaussian radial basis function (RBF) kernel, which can be rep-
resented as

k(x, y) = φ(x)T φ(y) = exp
(

−||x − y||2
σ

)

(16)

where x and y are two original samples, and σ is the parameter.
In kernel methods, φ(∗) is unknown. The only way to access
the feature space is using k(∗, ∗).
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Algorithm 1: Combined Sparse Representation (CSR) Classifier.

Require: The entire prototype set X with M class models Xc ∈ Rq×Nc for c = 1, 2, . . . ,M and a test sample vector
x ∈ Rq×1 . Initialize the value of E, e, β, y1 , Y2 , u, ρ, ε and umax

Ensure: The class index of x.
1: Use the entire prototype set X and test sample x to constitute the objective function as

β∗ = arg min ||XT x − XT Xβ||1 + λ||XT XDiag(β)||∗
2: Transform the problem in Step 1 to the Lagrange multiplier problem as follows and solve it with the while circle.

L(E, e, β) = λ||E||∗ + ||e||1 + yT
1 (a − Aβ − e) + Tr[Y T

2 (E − ADiag(β))]

+
u

2
(||a − Aβ − e||22 + ||E − ADiag(β)||2F )

3: while until convergence do
4: Update the E when the others are fixed by E∗ = arg min

E

λ
u ||E||∗ + 1

2 ||E − (ADiag(β) − 1
u Y2)||2F

5: Update the β when the others are fixed by

β ∗ = (AT A + Diag(diag(AT A)))−1AT (
1
u

y1 + x − e)

+(AT A + Diag(diag(AT A)))−1diag(AT (
1
u

Y2 + E))

6: Update the e when the others are fixed by e∗ = arg min
e

1
u ||e||1 + 1

2 ||e − (x − Aβ + 1
u y1)||2

7: Update the multipliers y1 and Y2 by y1 = y1 + u(a − Aβ − e) and Y2 = Y2 + u(E − ADiag(β))
8: Update the parameter u by u = min(ρu, umax)
9: Check the convergence conditions ||a − Aβ − e||∞ ≤ ε and ||E − ADiag(β)||∞ ≤ ε
10: end while
11: Compute the sum of coefficients of each class by sc =

∑Nc

i=1 βc
i , c = 1, 2, . . . ,M .

12: Classify the test sample x into the class with the maximum sum of coefficients by c∗ = arg max(sc)

B. Proposed KCSR Classifier

Suppose that there exists a nonlinear feature mapping function
Φ(.) : Rq → RQ (q << Q), which maps the test sample x and
the prototype set X to a high dimensional feature space as

x → Φ(x)

X → Φ(X) = [Φ(x1
1) . . . Φ(xc

i ) . . . Φ(xM
Nc

) ]. (17)

Similar to the proposed CSR classifier in Section III, the objec-
tive function of KCSR can be described as follows:

min ||Φ(X)T Φ(X)Diag(γ)||∗

s.t. Φ(X)T Φ(x) =Φ(X)T Φ(X)γ. (18)

The objective function in (18) can be also treated as the com-
bination of the L1-minimization and L2- minimization. That is,
the objective function in (18) can also benefit from both L1-
norm minimization and L1-norm minimization according to the
correction of the samples in the prototype set X .

The objective function in (18) is also designed for the situation
that the samples have no noise. Considering noise, the objective
function in (18) can be rewritten as

min ||Φ(X)T Φ(X)Diag(γ)||∗

s.t. ||Φ(X)T Φ(x)−Φ(X)T Φ(X)γ||1 ≤ ε. (19)

Using the optimization approaches in [66] and [67], the method
of inexact augmented Lagrange multipliers (IALM) [68] is used

to solve the minimization problem in (19), which can be con-
verted to the following minimization problem:

min
H,h,γ

||H||∗ + ||h||1

s.t. h = Φ(X)T Φ(x)−Φ(X)T Φ(X)γ

H = Φ(X)T Φ(X)Diag(γ). (20)

Suppose that K = φ(X)T φ(X) and k = φ(X)T φ(x), which
can be computed as follows:

K = φ(X)T φ(X)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

k(x1
1 , x

1
1) k(x1

1 , x
1
2) ... k(x1

1 , x
M
N c

)

k(x1
2 , x

1
1) k(x1

2 , x
1
2) ... k(x1

2 , x
M
N c

)

... ... ... ...

k(xM
N c

, x1
1) k(xM

N c
, x1

2) ... k(xM
N c

, xM
N c

)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(21)

and

k = φ(X̂ )T φ(x) = [k(x1
1 , x) k(x1

2 , x) . . . k(xM
Nc

, x) ].
(22)



FENG AND ZHOU: KERNEL CSR FOR DISEASE RECOGNITION 1961

Algorithm 2: Kernel Combined Sparse Representation
(KCSR) Classifier.

Require: The entire prototype set X with M class models
Xc ∈ Rq×Nc for c = 1, 2, . . . ,M and a test
sample vector x ∈ Rq×1 . Initialize the value of

Ensure: The class index of x.
1: Use the entire prototype set X and test sample x to

constitute the kernel matrix K and test vector k by
(21) and (22).

2: Define the objective function as

lγ∗ = arg min ||Φ(XT )Φ(x) − Φ(XT )Φ(X)γ||1
+ λ||Φ(XT )Φ(X)Diag(γ)||∗

3: Transform the problem in Step 2 to the Lagrange
multiplier problem. The solution is similar to
Algorithm 1.

4: Compute the sum of coefficients of each class by

sc =
Nc∑

i=1

γc
i c = 1, 2, . . . , M.

5: Classify the test sample x into the class with the
maximum sum of coefficients by c∗ = arg max(sc).

Using the (21) and (22), the (20) can be rewritten as

min
H,h,γ

||H||∗ + ||h||1

s.t. h = k−Kγ

H = KDiag(γ). (23)

Afterwards, we can solve the following augmented Lagrange
multiplier problem in (24) instead of solving the minimization
problem in (23):

L(H,h, γ) = λ||H||∗ + ||h||1 + yT
1 (k − Kγ − h)

+ Tr[Y T
2 (H − KDiag(γ))]

+
u

2
(||k − Kγ − h||22 + ||H − KDiag(γ)||2F )

(24)

where u > 0 is a parameter, y1 and Y2 are Lagrange multipliers.
Similar to CSR classifier, variables H,h and γ in (24) can be
optimized alternatively with the other two fixed. The detailed
classification procedures of KCSR classifier are summarized in
Algorithm 2.

C. Proposed KCSR Classifier

Let mc be the mean sample of the cth class. A novel prototype-
set can be described as

X̂c = [xc
1 xc

2 . . . xc
Nc

mc ] ∈ Rq×(Nc +1) . (25)

Form all-class-subspaces model as

X̂ = [ X̂1 X̂2 . . . X̂M ] ∈ Rq×M (Nc +1) . (26)

Similar to KCSR, CKCSR Maps the test sample x and the
prototype set to a high dimensional feature space as

x → Φ(x)

X̂ → Φ(X̂) = [Φ(x1
1) . . . Φ(xc

i ) . . . Φ(xM
Nc +1) ].

(27)

Similar to the proposed KCSR classifier, the objective function
of CKCSR can be described as follows:

min ||Φ(X̂)T Φ(X̂)Diag(ξ)||∗

s.t. Φ(X̂)
T
Φ(x) =Φ(X̂)T Φ(X̂)ξ. (28)

The objective function in (28) can be also treated as the combi-
nation of the L1-minimization and L2- minimization. Similarly,
the objective function in (28) is also designed for the situation
that the samples have no noise. Considering noise, the objective
function in (28) can be rewritten as

min ||Φ(X)T Φ(X)Diag(β)||∗

s.t. ||Φ(X)T Φ(x)−Φ(X)T Φ(X)β||1 ≤ ε. (29)

Using the optimization approaches in [66] and [67], the
method of inexact augmented Lagrange multipliers (IALM) [68]
is used to solve the minimization problem in (29), which can be
converted to the following minimization problem:

min
P,p,ξ

||P ||∗ + ||p||1

s.t. p = Φ(X̂)
T
Φ(x)−Φ(X̂)T Φ(X̂)ξ

P = Φ(X̂)
T
Φ(X̂)Diag(ξ). (30)

Suppose that K̂ = φ(X̂)T φ(X̂) and k̂ = φ(X̂)T φ(x) can be
computed as follows:

K̂ = φ(X̂)T φ(X̂)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

k(x1
1 , x

1
1) k(x1

1 , x
1
2) ... k(x1

1 , x
M
N c +1)

k(x1
2 , x

1
1) k(x1

2 , x
1
2) ... k(x1

2 , x
M
N c +1)

... ... ... ...

k(xM
N c +1 , x

1
1) k(xM

N c +1 , x
1
2) ... k(xM

N c +1 , x
M
N c +1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(31)

and

k̂ = φ(X̂ )T φ(x)

= [k(x1
1 , x) k(x1

2 , x) . . . k(xM
Nc +1 , x) ]. (32)

Using the (31) and (32), the (30) can be rewritten as

min
P,p,ξ

||P ||∗ + ||p||1

s.t. p = k̂−K̂ξ

P = K̂Diag(ξ). (33)

Next, instead of solving the minimization problem in (33), we
can solve the following augmented Lagrange multiplier problem
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Algorithm 3: Center-based Kernel Combined Sparse Rep-
resentation (CKCSR) Classifier.

Require: The entire prototype set X with M class models
Xc ∈ Rq×Nc for c = 1, 2, . . . ,M and a test
sample vector x ∈ Rq×1 . Initialize the value of

Ensure: The class index of x.
1: Use the entire prototype set X to constitute the

center-based entire prototype set X̂ by (26)
2: Utilize the center-based entire prototype set X̂ to

constitute center-based kernel matrix K̂ and test vector
k̂ by (31) and (32), respectively.

3: Define the objective function as

ξ∗ = arg min ||Φ(X̂T )Φ(x) − Φ(X̂T )Φ(X̂)ξ||1
+ λ||Φ(X̂T )Φ(X̂)Diag(ξ)||∗

4: Transform the problem in Step 3 to the Lagrange
multiplier problem. The solution is similar to
Algorithm 1.

5: Compute the sum of coefficients of each class by

sc =
Nc +1∑

i=1

ξc
i , c = 1, 2, . . . ,M.

6: Classify the test sample x into the class with the
maximum sum of coefficients by c∗ = arg max(sc).

in (34) as

L(P, p, ξ) = λ||P ||∗ + ||p||1 + yT
1 (k̂ − K̂ξ − p)

+ Tr[Y T
2 (P − K̂Diag(ξ))]

+
u

2
(||k̂ − K̂β − p||22 + ||P − K̂Diag(ξ)||2F )

(34)

where u > 0 is a parameter, y1 and Y2 are Lagrange multipliers.
Variables P, p and ξ in (34) can be optimized alternatively with
the other two fixed. The detailed classification procedures of
CKCSR classifier are summarized in Algorithm 3.

D. KCSR and CKCSR Versus Methods in [30] and [31]

Similar to the CSR classifier, the proposed KCSR and CKCSR
try to minimize the correlation structure of the entire training
set multiplied by its transposition, and the sparse coefficient to-
gether for classification. Therefore, the first difference among
KCSR, CKCSR and methods in [30], [31] is that KCSR and
CKCSR use the entire training set multiplied by its transposi-
tion while the methods in [30], [31] use the entire training set.
Moreover, KCSR and CKCSR utilize the nonlinear information
for classification instead of using the linear information in [30],
[31]. Besides, CKCSR increases the nonlinear information of
the training samples and the class center while methods in [30],
[31] and KCSR fail to do so.

E. KCSR and CKCSR Versus KSRC

They all use the nonlinear information for classification. The
main difference among KCSR, CKCSR and KSRC is that KCSR
and CKCSR try to minimize the correlation structure of the en-
tire training set multiplied by its transposition and the sparse
coefficient together for classification while the KSRC consid-
ers only the sparsity for classification. Besides, CKCSR in-
creases the nonlinear information of the training samples and the
class center while KSRC and KCSR fail to consider this.

V. EXPERIMENTAL RESULTS

To assess the effectiveness of the proposed methods, the pro-
posed CSR, KCSR and CKCSR classifiers are compared with
the existed methods: LRC [12], SRC [17], CRC [39], DPL [27],
FDDL [28], SSRC [44], ASRC [31], NFLS-I [35], NFLS-II [35],
LMLE [1], KSRC [45], KCRC [46], KLRC [47], CWKLRC [48]
and KCRC-TR [10] with five medical disease databases. In the
experiments, the parameter for the minimization optimization
problem is set 0.001. The parameter ρ, u, umax for ADM solver
are set as 1.4, 1e-8 and 1e-6. ε is set as 1e-9. The max number
of iterations is set as 50. The parameter for the RBF kernel is
set as

σ =
∑M

c=1
∑Nc

i=1 ||xc
i − m||2

∑M
c=1

∑Nc

i=1 10

where m denotes the mean sample of all the training samples.
In the following experiments, the training and testing samples
are randomly selected. We repeat the experiments 20 times and
report their averages as the final results.

A. Experiment on EXACT09 Database

Extraction of Airways from CT 2009 (EXACT09) database is
a dataset of chest CT scans [71]. This database uses the DICOM
format to store the CT scan images. Following [72], 675 CT
images of CASE23 of testing set of EXACT09 are used in this
experiment. It includes 19 categories including 36, 23, 30, 30,
50, 42, 20, 45, 50, 24, 28, 24, 35, 40, 50, 35, 30, 28 and 55
CT images, respectively. Each CT image of this database is
512 × 512. Fig. 1(a) shows several images of this database.

In this experiment, all images of EXACT09 database are
manually resized into 128 × 128. Two cases are used. Case 1:
Each class selects four images for training, and the rest images
are used as the test set. Case 2: The training set chooses five
images from each class, the rest images are used as the test set.
Afterwards, the PCA feature [73] is used in the experiment. The
chosen Dims of the PCA feature are 50, 100, 150, 200, 250, 300,
350, 400, 450, and 500, respectively. The proposed CSR, KCSR
and CKCSR classifiers are compared with the LRC [12], SRC
[17], CRC [39], DPL [27], FDDL [28], SSRC [44], ASRC [31],
NFLS-I [35], NFLS-II [35], LMLE [1], KSRC [45], KCRC [46],
KLRC [47], KCRC-TR [10] and CWKLRC [48] classifiers. The
experimental results are exhibited in Fig. 2. The max and mean
recognition rates over the various Dims in Fig. 2 are shown in
Table I. From the results, the outcomes on EXACT09 database
can be summarized as follows.
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Fig. 1. Some images from the (a) EXAC09 database, (b) EMPHYSEMA-CT database, and (c) mini-MIAS database.

Fig. 2. Performance of several classifiers with various Dims of PCA feature on EXACT09 database. The horizontal axis denotes the chosen Dim of PCA feature.

TABLE I
RECOGNITION RATES (RRS) AND AVERAGED RRS OF

SEVERAL CLASSIFIERS ON EXACT09 DATABASE

Case 1 Case 2

Type Classifier Max RR Mean RR Max RR Mean RR

Linear-based LRC 52.09 52.00 52.24 52.17
SRC 53.09 52.83 53.28 53.09
CRC 53.59 48.16 53.45 48.45
DPL 52.90 52.80 53.30 53.18

FDDL 52.92 52.70 53.10 53.02
ASRC 53.26 52.99 53.28 53.19
SSRC 53.09 52.76 53.45 53.10

NFLS-I 52.42 52.29 52.93 52.31
NFLS-II 52.59 52.59 53.10 52.48
LMLE 53.09 52.80 53.30 53.10

Kernel-based KSRC 53.59 53.59 52.59 52.59
KCRC 53.93 53.93 53.97 53.87
KLRC 52.92 52.92 52.76 52.76

CWKLRC 52.92 52.92 52.76 52.76
KCRC-TR 54.09 54.09 54.10 54.88

Proposed CSR 53.59 53.59 53.45 53.43
KCSR 54.24 54.24 54.83 54.83

CKCSR 54.24 54.41 54.83 54.83

1) The proposed KCSR and CKCSR classifiers obtain the
best recognition rates among all the classifiers.

2) The proposed CSR classifiers obtain the best recognition
rates among linear-based classifiers.

3) The linear-based classifiers and the kernel-based classi-
fiers obtain the competitive performance.

4) The kernel-based classifiers with the various dimensions
have similar performance. However, the performance of
the linear-based classifiers with the various dimensions is
different.

B. Experiment on Emphysema-CT Database

Emphysema is characterized by loss of lung tissue and the
recognition of healthy and emphysematous lung tissue is quite
useful for analyzing the disease [74], [75]. Three categories
are included in the Emphysema-CT database. They are Normal
Tissue (NT), Centrilobular Emphysema (CLE), and Paraseptal
Emphysema (PSE). These three categories collected from 39
subjects have 59, 50 and 59 images, respectively. Fig. 1(b) shows
several selected images of this database.

In this experiment, all images in Emphysema-CT database are
manually cropped into 128 × 128. Case 1: Each class selects
four images for training, and the rest images are used as the
test set. Case 2: The training set chooses five images from each
class, the rest images are used as the test set. All cropped images
are transformed to the PCA feature [73] for the experiment. The
chosen Dims of the PCA feature are 50, 100, 150, 200, 250, 300,
350, 400, 450, and 500, respectively. The proposed CSR, KCSR
and CKCSR classifiers are compared with the LRC [12], SRC
[17], CRC [39], DPL [27], FDDL [28], SSRC [44], ASRC [31],
NFLS-I [35], NFLS-II [35], LMLE [1], KSRC [45], KCRC [46],
KLRC [47], KCRC-TR [61] and CWKLRC [48] classifiers. The
experimental results are exhibited in Fig. 3. The maximum and
mean recognition rates over the various Dims in Fig. 3 are shown
in Table II. The conclusions for the experiment results on the
Emphysema-CT database can be drawn as follows.

1) The proposed CKCSR classifier obtains the best perfor-
mance among all classifiers. It has the significantly im-
provement contrasted to the most compared methods.

2) The proposed CSR classifier only obtains the intermediate
performance among these linear-based classifiers.

3) The kernel-based classifiers obtain better performance
compared to the linear-based classifiers.
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Fig. 3. Performance of several classifiers with various Dims of PCA feature on EMPHYSEMA-CT database. The horizontal axis denotes the chosen Dim of
PCA feature.

TABLE II
RECOGNITION RATES (RRS) AND AVERAGED RRS OF SEVERAL

CLASSIFIERS ON EMPHYSEMA-CT DATABASE

Case 1 Case 2

Type Classifier Max RR Mean RR Max RR Mean RR

Linear-based LRC 48.72 46.35 47.06 44.77
SRC 39.74 37.82 40.52 38.56
CRC 43.59 41.99 41.18 40.52
DPL 52.90 52.82 47.10 41.70

FDDL 52.92 52.70 40.52 38.43
ASRC 42.31 38.40 38.56 34.97
SSRC 39.74 37.82 41.18 40.52

NFLS-I 52.42 52.25 47.06 46.01
NFLS-II 52.59 52.59 46.41 45.56
LMLE 54.92 54.25 53.52 52.56

Kernel-based KSRC 58.33 58.33 55.56 55.56
KCRC 61.54 61.54 56.86 56.86
KLRC 52.92 52.92 50.98 50.98

CWKLRC 55.13 55.13 50.98 50.98
KCRC-TR 60.50 60.50 58.98 58.98

Proposed CSR 44.23 43.27 42.48 39.67
KCSR 61.54 61.54 62.75 62.75

CKCSR 63.46 63.46 64.05 64.05

4) The performance of the kernel-based classifiers with the
various dimensions is similar while the performance of
the linear-based classifiers with the various dimensions is
different.

C. Experiment on Mini-MIAS Database

The mini-MIAS database [76] is developed by the Mamogra-
phy Images Analysis Society. The X-ray films of this database
have been digitized with a Joyce-Lobel scanning microdensito-
meter to a resolution of 50 × 50 um, 8-bit word. Each image of
the mini-MIAS database is 1024 × 1024 pixels. Fig. 1(c) shows
several selected images of this database.

In this experiment, all images of mini-MIAS database are
manually resized into 60 × 60. Each class selects four images
for training, the rest images are used as the test set. All resized
images are transformed to the PCA feature [73],[21] for the
experiment. The chosen Dims of the PCA feature are 50, 100,
150, 200, 250, 300, 350, 400, 450, and 500, respectively. The

Fig. 4. Performance of several classifiers with various Dims of PCA feature
on mini-MIAS database. The horizontal axis denotes the chosen Dim of PCA
feature.

proposed CSR, KCSR and CKCSR classifiers are compared
with the LRC [12], SRC [17], CRC [39], DPL [27], FDDL [28],
SSRC [44], ASRC [31], NFLS-I [35], NFLS-II [35], LMLE
[1], KSRC [45], KCRC [46], KLRC [47], KCRC-TR [10] and
CWKLRC [48] classifiers. The experimental results are exhib-
ited in Fig. 4 and Table III. The outcomes can be drawn as
follows.

1) The proposed CKCSR classifier obtains the best recogni-
tion rates among all the classifiers and has the significantly
improvement over the most methods.

2) The proposed CSR classifier obtains the best recognition
rates among linear-based classifiers.

3) The linear-based and the kernel-based classifiers obtain
the competitive performance.

4) The performance of the kernel-based classifiers with the
various dimensions is similar while the performance of
the linear-based classifiers with the various dimensions is
different.

D. Experiment on Two UCI Databases

The cardiac Single Proton Emission Computed Tomography
(SPECT) database [77] contains two categories: Normal and
Abnormal, which describes diagnosing of cardiac Single Proton
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TABLE III
RECOGNITION RATES (RRS) AND AVERAGED RRS OF

SEVERAL CLASSIFIERS ON MINI-MIAS DATABASE

Type Classifier Max RR Mean RR

Linear-based LRC 23.23 23.06
SRC 27.42 23.58
CRC 25.48 23.65
DPL 22.90 21.08

FDDL 27.42 23.84
ASRC 24.52 22.61
SSRC 27.42 23.65

NFLS-I 26.77 26.52
NFLS-II 24.52 23.94
LMLE 28.48 26.61

Kernel-based KSRC 23.87 23.87
KCRC 29.36 29.36
KLRC 21.94 21.94

CWKLRC 26.45 26.00
KCRC-TR 30.00 30.00

Proposed CSR 29.36 28.97
KCSR 29.68 29.68

CKCSR 31.94 31.94

Emission Computed Tomography (SPECT) images. The 267
SPECT image set (patients) of this database was processed to
extract features instead of the original SPECT images. As a
result, 44 continuous feature patterns were created for each pa-
tient. Two cases are used in this experiments. Case 1: Each class
selects six samples for training, the rest samples are used as the
test set. Case 2: The training set chooses ten samples from each
class, the rest samples are used as test set. The Wisconsin Breast
Cancer (WBC) database [78] was developed by the University
of Wisconsin Hospitals. This databases samples are collected
periodically in the clinical cases. There are 699 samples in the
database, which belong to two classes: Benign and Malignant.
In the experiment, we uses two cases. Case 1: Three samples are
chosen from each class for training, the rest samples are used as
the test set. Case 2: The training set selects five samples from
each class, the rest samples are used as test set.

In the experiment, the proposed CSR, KCSR and CKCSR
classifiers are compared with the LRC [12], SRC [17], CRC
[39], DPL [27], SSRC [44], ASRC [31], NFLS-I [35], NFLS-II
[35], KSRC [45], KCRC [47], Triplet-SVM [49] and Doublet-
SVM [49] classifiers. The experimental results are exhibited in
Table IV. The outcomes on the basis of the experiment results
on these two database can be drawn as follows.

1) The proposed CKCSR classifier obtains the best recogni-
tion rates among all the classifiers.

2) The proposed CSR classifier obtains the competitive per-
formance among linear-based classifiers.

3) The linear-based classifiers gain the worse performance
than the kernel-based classifiers.

E. Evaluation on Various Kernel Functions

In above experiments, KCSR and CKCSR classifiers use the
Gaussian radial basis function (RBF) to project the original
space into a high dimensional space. In this Section, we provide
experiment results to compare the performance of several clas-
sifiers using other kernels [79], such as the polynomial kernel,

TABLE IV
RECOGNITION RATES (RRS) OF THE CLASSIFIERS ON

WBC DATABASE AND HD-SPECTF DATABASE

WBC HD-SPECTF

Type Classifier Case 1 Case 2 Case 1 Case 2

Linear-based LRC 75.33 62.26 64.71 66.80
SRC 63.49 68.22 41.96 35.22
CRC 71.86 70.68 41.18 35.63
DPL 67.80 70.83 53.33 56.30

ASRC 60.03 69.81 43.92 44.13
SSRC 63.49 64.54 41.96 35.22

NFLS-I 90.33 72.42 61.60 66.40
NFLS-II 74.46 70.83 61.37 62.87

Kernel-based KSRC 88.89 86.36 58.43 68.42
KCRC 89.61 89.99 63.67 69.47

Triplet-SVM 89.47 86.94 56.86 61.54
Doublet-SVM 92.67 86.65 54.11 55.87

Proposed CSR 64.65 71.11 49.02 53.85
KCSR 92.50 91.15 65.88 70.04

CKCSR 93.36 92.31 67.45 70.45

TABLE V
AVERAGED RECOGNITION RATES OF THE CLASSIFIERS

WITH VARIOUS KERNEL ON EXACT09 DATABASE

Classifier Polynomial
kernel

Laplacian
kernel

Cauchy
kernel

Log Kernel Power
kernel

KSRC 51.72 53.27 53.44 53.28 53.28
KCRC 51.24 52.45 53.79 53.10 53.10
KLRC 51.24 52.93 52.93 53.10 53.10
CWKLRC 51.24 52.76 52.93 53.10 53.10
KCRC-TR 51.90 52.97 54.00 53.28 53.28

KCSR 52.07 53.62 54.14 55.17 55.17
CKCSR 52.07 53.79 54.31 55.35 55.35

Laplacian Kernel, Cauchy Kernel [80], Log Kernel and Power
Kernel. The experiment results are shown in Table V. These
kernel are described as follows. Given two original samples x
and y.

1) Polynomial Kernel: The Polynomial kernel is a non-
stationary kernel. Its kernel function is defined as

k(x, y) = (αxT y + c)d

where, c is a constant term and d is the polynomial degree.
In our experiment, c is set to zero and d is set to 3.

2) Laplacian Kernel: This kernel is closely relative to the
Gaussian kernel (RBF). Its kernel function is defined as

k(x, y) = exp
(

−||x − y||
σ

)

where, σ is a parameter. In this experiment σ is set to the
square root of the parameter of the RBF kernel.

3) Cauchy Kernel: The Cauchy kernel is based on the Cauchy
distribution. Its kernel function is defined as

k(x, y) =
1

1 + σ||x − y||2

where, σ is a parameter. In this experiment σ is set to the
parameter of the RBF kernel.
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4) Log Kernel: The kernel function of the Log kernel is
defined as

k(x, y) = − log(||x − y||d + 1)

where, d is a parameter. In this experiment d is set to 3.
5) Power Kernel: The kernel function of the Power kernel is

defined as

k(x, y) = −||x − y||d

where, d is a parameter. In this experiment d is set to 3.
In our experiment, the proposed KCSR and CKCSR classi-

fiers are compared with the KSRC [45], KCRC [46], KCRC-TR
[10], KLRC [47] and CWKLRC [48] classifiers when various
kernels are used. The experimental set follow Section V-A. The
experimental results are exhibited in Table V. The outcomes
of the experiment results over the EXACT09 database can be
concluded as follows.

1) The proposed KCSR and CKCSR classifiers obtain the
better recognition rates than several kernel-based methods
on various kernel functions.

2) The performance of all the classifiers with various kernel
functions is different.

VI. CONCLUSION

In this paper, a novel combined sparse representation (CSR)
classifier and its kernel version, kernel CSR (KCSR) and center-
based kernel CSR (CKCSR), have been proposed for disease
recognition. The proposed three approaches consider the cor-
relation structure of the entire prototype set multiplied by its
transposition, for classification. The proposed methods can be
treated as a combination of L1-minimization and L2- mini-
mization such that it can benefit from the L1-minimization and
L2- minimization. Experimental results have shown that the
proposed CSR, KCSR and CKCSR classifiers achieve better
recognition rates than the well-known SRC, CRC, and several
state-of-the-art classifiers. The analyses and the experimental
results on several famous medical databases have confirmed the
effectiveness of the proposed classifiers for disease recognition.

APPENDIX A
THE DERIVATION PROCEDURE OF (3)

Suppose that the subjects of X are similar to x1 , the first
column of X , that is XT X = 11T (1 is a vector of size n =∑M

c=1 Nc , where each element is one). The objective function
can be re-written as

||XT XDiag(β)||∗ = ||11T Diag(β)||∗ . (35)

For matrix B ∈ Rm×t of rank r, we know the following in-
equalities [81], [82] as 1

||B||F ≤ ||B||∗ ≤
√

r||B||F . (36)

It is easy to know that the rank of matrix 11T Diag(β) is one.
That is r = 1. With (35)-(36), the objective function will become

||XT XDiag(β)||∗ = ||11T Diag(β)||F . (37)

1[Online]. Available: https://en.wikipedia.org/wiki/Matrix_norm

The definition of Frobenius norm is as

||B||F =
√

∑m

i=1

∑t

j=1
|bij |2 . (38)

With (37)-(38), the objective function will be

||XT XDiag(β)||∗ =
√

n||β||2 . (39)

Notice: For a specific classification task, the training set is fixed.
That is, the number of training samples n is a fixed value. Thus,
minimization of

√
n‖β‖2 is equivalent to minimization of ‖β‖2 .
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