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Abstract. We propose a relative optimization framework for quasi maximum
likelihood blind deconvolution and the relative Newton method as its particular
instance. Special Hessian structure allows its fast approximate construction and
inversion with complexity comparable to that of gradient methods. The use of
rational IIR restoration kernels provides a richer family of filters than the tradi-
tionally used FIR kernels. Smoothed absolute value and the smoothed deadzone
functions allow accurate and robust deconvolution of super- and sub-Gaussian
sources, respectively. Simulation results demonstrate the efficiency of the pro-
posed methods.

1 Introduction

Blind deconvolution problem appears in various applications related to acoustics, op-
tics, geophysics, communications, control, etc. In the general setup of the single-channel
blind deconvolution, the observed sensor signalx is created from thesource signals
passing through a causal convolutive system

xn =
∞∑

k=0

ak sn−k + un, (1)

with impulse responsea and additive sensor noiseu. The setup is termedblind if only
x is accessible, whereas no knowledge ona, s andu is available. The problem of blind
deconvolution aims to find such a deconvolution (or restoration) kernelw, that produces
a possibly delayed waveform-preserving source estimateŝn = (w ∗ x)n ≈ c · sn−∆,
wherec is a scaling factor and∆ is an integer shift. Equivalently, theglobal system
responseg = a ∗w should be approximately a Kroenecker delta, up to scale factor and
shift. A commonly used assumption is thats is non-Gaussian.

Many blind deconvolution methods described in literature focus on estimating the
impulse response of the convolution systemA(z) from the observed signalx using a
causal finite length (FIR) model and then determining the source signals from this esti-
mate [1–5]. Many of these methods use batch mode calculations and usually suffer from
high computational complexity. Conversely, a wide class of the so-calledBussgang-
typealgorithms estimate directly the inverse kernelW (z) = A−1(z) by minimizing
some functional using gradient descent iterations. These methods usually operate in the
time domain and the gradient is usually derived by applying some non-linearity to the
correlation of the observed signal and the estimated source. One of the most popular
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algorithms in this class is the constant modulus algorithm (CMA) proposed by Godard
[6]. A review of these algorithms can be found in [7].

In their fundamental work, Amariet al. [8] introduced an iterative time-domain
blind deconvolution algorithm based on the natural gradient learning, which was orig-
inally used in context of blind source separation [9–11] and became very attractive
due to the so-calleduniform performance property[11]. The natural gradient algo-
rithm estimates directly the restoration kernel and allows real-time processing. Efficient
frequency-domain implementation was presented in [12].

Natural gradient demonstrates significantly higher performance compared to gradi-
ent descent. In this work, we present a blind deconvolution algorithm based on the rela-
tive Newton method, which brings further acceleration. The relative Newton algorithm
was originally proposed in the context of sparse blind source separation in [13, 14]. We
utilize special Hessian structure to derive a fast version of the algorithm with complex-
ity comparable to that of gradient methods. We focus our attention on a batch mode
single-channel blind deconvolution algorithm with FIR restoration kernel and outline
the use of IIR kernels. We use the smoothed absolute value for deconvolution of super-
Gaussian sources, and propose the smoothed deadzone linear function for sub-Gaussian
sources.

2 QML blind deconvolution

Under the assumption that the restoration kernelW (z) is strictly stable, and the source
signal is real and i.i.d., the normalized minus-log-likelihood function of the observed
signalx in the noise-free case is [8]

`(x; w) = − 1
2π

∫ π

−π

log
∣∣W (eiθ)

∣∣ dθ +
1
T

T−1∑
n=0

ϕ (yn) , (2)

wherey = w ∗ x is a source estimate;ϕ(s) = − log p (s), wherep(s) is the probability
density function (PDF) of the sources. We assume thatw is an FIR kernel supported on
n = −N, ..., N , and denote its length byK = 2N+1. We will also assume without loss
of generality thats is zero-mean. Cost function (2) can be also derived using negative
joint entropy and information maximization considerations. In practice, the first term of
`(x; w) containing the integral is difficult to evaluate; however, it can be approximated
to any desired accuracy using the FFT.

Consistent estimator can be obtained by minimizing`(x; w) even whenϕ(s) is not
exactly equal to− log p (s). Suchquasi MLestimation has been shown to be practical
in instantaneous blind source separation when the source PDF is unknown or not well-
suited for optimization [13]. The choice ofϕ(s) and the consistency conditions of the
QML estimator are discussed in Section 5.

The gradient of̀ (x; w) w.r.t. wi is given by

gi = −q−i +
1
T

T−1∑
n=0

ϕ′(yn) xn−i, (3)
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whereqn is the inverse DFT ofW−1
k . The Hessian of̀(x; w) is given by

Hij = r−(i+j) +
1
T

T−1∑
n=0

ϕ′′(yn) xn−ixn−j , (4)

wherern is the inverse DFT ofW−2
k (for derivation see [15]). Both the gradient and

the Hessian can be evaluated efficiently using FFT.

3 Relative optimization

Here we introduce a relative optimization framework for blind deconvolution. The main
idea of relative optimization is to iteratively produce source signal estimate and use it
as the observed signal at the next iteration. Similar approach was explored in [14] in the
context of blind source separation.

Relative optimization algorithm

1. Start with initial estimates of the restoration kernelw(0) and the sourcex(0) =
w(0) ∗ x.

2. Fork = 0, 1, 2, ..., until convergence
3. Start withw(k+1) = δ.
4. Using an unconstrained optimization method, findw(k+1) such that

`(x(k); w(k+1)) < `(x(k); δ).
5. Update source estimate:x(k+1) = w(k+1) ∗ x(k).

6. End

The restoration kernel estimate atk-th iteration isŵ = w(0) ∗ ... ∗ w(k), and the source
estimate iŝs = x(k). This method allows to construct large restoration kernels growing
at each iteration, using a set of relatively low-order factors. In real application, it might
be necessary to limit the filter length to some maximum order, which can be done by
croppingw after each update. The relative optimization algorithm has uniform perfor-
mance, i.e. its step at iterationk depends only ong(k−1) = a ∗ w(0) ∗ ... ∗ w(k−1), since
the update in Step 5 does not depend explicitly ona, but on the currents global system
response only. When the input signal is very long, it is reasonable to partition the input
into blocks and estimate the restoration kernel for the current block using the data of
the previous block and the previous restoration kernel estimate.

3.1 Fast relative Newton step

A Newton iteration can be used in Step 4 of the relative optimization algorithm, yielding
very fast convergence. However, its practical use is limited to small values ofN andT ,
due to the complexity of Hessian construction, and solution of the Newton system.
This complexity can be significantly reduced if special Hessian structure is exploited.
Near the solution point,x(k) ≈ cs, hence∇2`(x; δ) evaluated at each relative Newton
iteration becomes approximately∇2`(cs; δ). For a sufficiently large sample size (in
practice,T > 102), the following approximation holds:
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Proposition 1. The Hessiaǹ(cs; δ) has an approximate diagonal-anti-diagonal struc-
ture, with ones on the anti-diagonal.

Proof. Substitutingw = δ, x = cs andy = δ ∗ x = cs into `(x; w) in (4), one obtains

Hij = δi+j +
1
T

T−1∑
n=0

ϕ′′(csn) csn−i csn−j .

For a large sample sizeT , the sum approaches the corresponding expectation value.
Invoking the assumption thats is zero-mean i.i.d., the off-diagonal and off-anti-diagonal
elements ofH vanish. ut
Typical Hessian structure is depicted in Figure 1 (left). Under this approximation, the
Newton system separates toK systems of linear equations of size2× 2

(
H−k,−k 1

1 Hkk

) (
d−k

dk

)
= −

(
g−k

gk

)
(5)

for k = 1, ..., K, and an additional equation

H00 d0 = −g0. (6)

In order to guarantee decent direction and avoid saddle points, we force positive defi-
niteness of the Hessian by inverting the sign of negative eigenvalues in system (5) and
forcing small eigenvalues to be above some positive threshold. Computation of the Hes-
sian approximation involves evaluation of its main diagonal only, which is of the same
order as gradient computation. Approximate solution of the Newton system requires
O (N) operations.

4 IIR restoration kernels

When the convolution systemA(z) has zeros close to the unit circle, the restoration
kernel W (z) has to be long in order to achieve good restoration quality. Therefore,
whenW (z) is parameterized by the set of FIR coefficientsw−N , ..., wN , the number of
parameters to be estimated is large. Under such circumstances, it might be advantageous
to use a rational IIR restoration kernel of the form

W (z) =
h−NzN + ... + hNz−N

(1 + b1z−1 + ... + bMz−M ) (1 + c1z + ... + cLzL)
,

parameterized byh−N , ..., hN , b1, ..., bM and c1, ..., cL. The asymptotic Hessian of
`(x; h, b, c) with respect to these coefficients, evaluated atw = δ (i.e., all the coeffi-
cients, excepth0 = 1 are set to zero) andx = cs has the sparse structure depicted in
Figure 1 (right) [16]. Approximate Newton system solution can be carried out using
an analytical expression for the regularized inverse of the structured Hessian. Another
possibility is to consider techniques for solution of sparse symmetric systems. In both
cases, approximate Hessian evaluation and Newton system solution have the complex-
ity of a gradient descent iteration.
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Fig. 1. Hessian structure at the solution point for FIR restoration kernel withN = 3 (left) and
IIR restoration kernel withN = M = L = 3 (right). White represents near-zero elements.

5 The choice ofϕ(s)

The choice ofϕ(s) is limited first of all by the QML estimator consistency (or asymp-
totical stability) conditions, which guarantee thatw = a−1 is a stable minimum of
`(x; w) in the limit T →∞ [16].

When the source is super-Gaussian, e.g. sparse (sources common in seismology), or
sparsely representable, a smooth approximation of the absolute value function usually
obeys the asymptotic stability conditions [17, 18]. We use the following function [14]

ϕABS
λ (s) = |s| − λ log

(
1 +

|s|
λ

)
, (7)

which in the limit λ → 0+ yields an asymptoticall stable QML estimator if IE|s| <
2σ2p(0), whereσ2 = IEs2 [16]. In the particular case of strictlysparsesources, i.e.
such sources that take the value of zero with some non-zero probability,super-efficiency
is achieved in the limitλ → 0+ and in absence of noise [16].

In case of sub-Gaussian sources, common in digital communications, the family of
power functions

ϕPWR
µ (s) = |s|µ (8)

with the parameterµ > 2 is usually a good choice forϕ(s). This function yields an
asymptotically stable estimator for IE|s|µ+2 < (µ + 1)σ2 IE|s|µ, which for the partic-
ular choice ofµ = 4 corresponds to negative kurtosis excess [16]. An increase ofµ
usually yields better performance. However, it is obvious that large values ofµ imply
high sensitivity to outliers due to the high powers. As a remedy, we propose to replace
the power function with thedeadzone linearfunction of the form

ϕDZ
µ (s) = µ ·max {|s| − 1, 0} , (9)

which is often used for regression, data fitting and estimation [19]. This function has
linear increase with controllable slopeµ, and is known to have low sensitivity to out-
liers compared to the power function. Up to an additive constant, the deadzone linear
function can be smoothly approximated by

ϕDZ
λ,µ(s) =

µ

2
(
ϕABS

λ (s− 1) + ϕABS
λ (s + 1)

)
, (10)
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where the parameterλ controls the smoothness.
When the source PDF is compactly supported (e.g. digital communication signals),

both the power function and the smoothed deadzone linear function yield super-efficient
estimators in the limitµ → ∞. When in addition the source signal takes the val-
ues at the extremal points of the interval,sext, with some non-zero probabilityρ, the
use of the smoothed deadzone linear function achieves super-efficiency withλ → 0+

andfinite µ. In the latter case, the estimator is asymptotically stable ifµρ > 1 and
2σ2 max

{
(µρ− 1)2, 1

}
> s2

extλµρ [16].

6 Numerical results

The convolution system was modelled by the empirically measured digital microwave
channel impulse response from [20]. Two104 samples long 2-level PAM and sparse
normal i.i.d. processes were used as inputs. Input SNRs from 10 to 100 dB were tested.
FIR restoration kernel with 33 coefficients was adapted in a block-wise manner, using
blocks of length 33. The block fast relative Newton algorithm was compared to Joho’s
FDBD algorithm [12]. In both the power function withµ = 4 was used for the PAM
signal, whereas for the sparse source the smoothed absolute value withλ = 10−2 was
used in the relative Newton algorithm and the exact absolute value was used in the
FDBD algorithm. In case of the PAM signal, performance was also compared to CMA
with p = 2. Figure 2 (left) presents the restoration SIR averaged over 10 independent
Monte-Carlo runs, as a function of the input SNR (95% confidence intervals are indi-
cated on the plot). For SNR higher than 20 dB, the block relative Newton algorithm
demonstrates an average improvement of about 4 dB compared to other methods for
the PAM sources and about 7 dB for the sparse sources. Good restoration quality is
obtained for SNR starting from 10 dB. Figure 2 (right) depicts the convergence of the
compared algorithms, averaged over 10 independent runs with input SNR set to 20 dB.

Figure 3 (left) shows the SIR for the PAM source, averaged over 20 independent
Monte-Carlo runs, whereinϕ(s) is chosen as the power function and the smoothed
deadzone linear function. The comparison was performed both in the absence of noise,
and in the presence of shot noise (sparse normal noise with 0.1% density, which in-
troduced outliers into the signal). Unlike the power function, the proposed smoothed
deadzone linear function appears to yield higher performance and demonstrates negli-
gible sensitivity to outliers.

Advantages of an IIR restoration kernel can be seen in Figure 3 (right), which de-
picts the SIR for the sparse source, averaged over 10 Monte-Carlo runs, as a function
of the number of optimization variables for different assignments of the degrees of
freedom to restoration kernel numerator and denominator. A practically ideal SIR was
achieved by the all-pole IIR kernel starting from 8 degrees of freedom. Additional sim-
ulation results can be found in [15, 18].

7 Conclusion

We have presented a relative optimization framework for QML single channel blind de-
convolution and studied the relative Newton method as its particular instance. Diagonal-
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Fig. 2. Left: average SIR as a function of input SNR; right: average convergence in terms of SIR
for input SNR of 20 dB. Top: 2-level PAM source; bottom: sparse source.
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Fig. 3. Left: Average restoration SIR for the power function (left), and the smoothed deadzone
linear function (two rightmost bars), with and without the presence of shot noise. Right: SIR as a
function of degrees of freedom for different restoration kernel configurations.

anti-diagonal structure of the Hessian in the proximity of the solution allowed to derive
a fast version of the relative Newton algorithm, with iteration complexity comparable
to that of gradient methods. Additionally, we introduced rational restoration kernels,
which often allow to reduce the optimization problem size. We also propose the use of
the deadzone linear function for sub-Gaussian sources, which is significantly less sen-
sitive to outliers than the commonly used non-linearities, and achieves super-efficient
estimation in the absence of noise.

In simulation studies with super- and sub-Gaussian sources, the proposed methods
exhibited very fast convergence and higher accuracy compared to the state-of-the-art
approaches such as CMA and natural gradient-based QML algorithms. We are currently
working on extending the presented approach to the multichannel and complex cases.
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