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ABSTRACT
Emergent quantum computing holds significant promise for achiev-
ing significant speedups in specific tasks by utilizing quantum
phenomena, leading to increasing interest from researchers in in-
corporating quantum computing into their research fields. Con-
sidering that current database systems are struggling to store and
process large datasets on classical computers, we could attempt to
use quantum computers to handle big data, allowing for a signifi-
cant reduction in storage requirements and speedups for a variety
of database operations and analyses. However, to support relational
tables of RDBMSs on quantum computers, relational data needs
to be represented in a quantum-compatible format. In this paper,
we propose two storage methods, Quantum Column-oriented Store
(QCOS) and Quantum Row-oriented Store (QROS), tailored to store
relational tables on universal quantum computers. We conduct theo-
retical analyses and simulation validations on the costs of qubit and
quantum gates in those two storage methods. The results indicate
that the qubit cost of both storage methods shows a logarithmic
growth trend as the data quantity increases. Besides, both methods
maintain linear requirements for𝑀𝐶𝑇 gates. We perform numerous
experiments on various real quantum machines from IBM, and the
results indicate that our approaches could enable existing devices
to hold datasets.
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1 INTRODUCTION
One core research topic in the field of Relational Database Manage-
ment Systems (RDBMSs) concerns harnessing cutting-edge hard-
ware infrastructures to manage data. The recent advent of universal
quantum computers [1, 2], especially gate-based quantum comput-
ers, heralds disruptive changes in the architectures supporting
relational data organization and retrieval fundamentally and offers
exciting opportunities for optimizing the processing of relational
data with quantum technologies.

In this paper, we aim to design two quantum storage formats
for relational tables in RDBMSs, offering two distinct advantages.
Firstly, with the properties of superposition states, a minuscule
number of qubits can store a vast amount of data, which means a
novel solution for storing big data. That is, such quantum advan-
tages may delineate a path toward reducing storage requirements
for RDBMSs. Secondly, these quantum architectures facilitate the
seamless conversion of relational tables into quantum states. This
intrinsic mapping naturally allows native quantum algorithms to
accelerate critical relational operations such as selections, joins, pro-
jections, and other database tasks. By quantizing relational tables,
one could hypothesize the prospect of exponential speedups for
a variety of database operations and analyses. This integration of
quantum information processing with relational databases harbors
transformative implications.

Although there are several prior works providing potential for-
mats for storing data on quantum circuits, those studies have not
presented a specific quantum storage scheme for database systems,
nor have they offered corresponding cost and performance analy-
ses. In this paper, we propose two distinct approaches for storing
relational tables on a universal quantum computer, namely Quan-
tum Column-oriented Store (QCOS) and Quantum Row-oriented Store
(QROS), akin to the column-oriented store [23] and row-oriented
store [6] paradigms of RDBMSs on classical computers. To illumi-
nate the characteristics of each approach, we theoretically quantify
their requirements of quantum resources, focusing analysis on
primary cost metrics such as the number of qubits and quantum
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Figure 1: Six basic quantum gates

gates (mainly𝑀𝐶𝑇 gates). To verify our analysis, we perform ex-
tensive numerical simulations to observe the cost of QCOS and
QROS circuits. To estimate practical performance under realistic
constraints, we implement our proposed quantum tabular storage
formats on IBM’s openly accessible quantum computing simulators
and currently available physical hardware, respectively. We hope
the proposed quantum storage paradigms for relational data and
corresponding experimental evaluations deliver valuable insights
toward realizing fully-fledged quantum database systems.

In detail, our contributions include:
(1) We propose two fundamentally distinct methods (i.e., QCOS

and QROS) for storing relational tables on universal quan-
tum computers.

(2) We analyze the qubit and𝑀𝐶𝑇 gate costs for these two stor-
age methods and verify the conclusions through numerical
simulations.

(3) We deploy two storage methods on IBM’s simulators and
real quantum computers, respectively, to examine the per-
formance of our two quantum storage methods in both
ideal and real-world environments.

Related work In recent years, more and more researchers have
been dedicated to developing quantum algorithms to address com-
plex challenges in the field of databases [3, 4, 7, 9, 10, 14, 16, 17, 19–
22, 24, 26, 29, 32]. As quantum hardware advances rapidly, the ne-
cessity of designing standardized data models for database storage
on quantum hardware becomes increasingly evident [31]. While
several preliminary solutions or prototypes [5, 7, 11, 12, 18, 27, 30]
have been proposed, these efforts simply treat quantum storage of
relational tables as a middle procedure for application algorithms
like quantum search. There is no paper offering a complete and
viable method for the quantum storage of relational tables, coupled
with an analysis and validation of the quantum resource cost it
entails. Furthermore, to the best of our knowledge, no prior work
has conducted quantum storage of relational tables on real quantum
computers.

2 PRELIMINARY
In this section, we concisely introduce some basic knowledge of
quantum computing related to our research content [13, 15].

2.1 Qubit
Qubit is the basic unit of quantum computing. Resembling the bits
in a classical computer, the states of a qubit can be represented by

0 and 1 after measurement(Measurement will be introduced later
in the Quantum Gate subsection). But the difference is that when a
qubit is not measured, as a quantum system, it is in a superposition
state of 0 and 1. If a qubit is measured, the result may be 0 or 1. After
the measurement, the state of the qubit will remain unchanged and
certain.

2.2 State Vector
The qubit is the fundamental information carrier in a quantum com-
puting system. Similarly to classical bits, the computational basic
states of a qubit can be expressed as |0⟩ and |1⟩ (denoted in Dirac
notation), which can also be represented as state vectors [1 0]𝑇
and [0 1]𝑇 , respectively, in a Hilbert space. A salient distinction,
however, is that before measurement, a qubit state is described
by a coherent superposition of these two basic states according
to the postulates of quantum mechanics. That is, the superposi-
tion state of a single qubit can be mathematically represented as
|𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 are complex probability ampli-
tudes such that |𝛼 |2 + |𝛽 |2 = 1. Upon measurement, the qubit state
probabilistically collapses to either |0⟩ or |1⟩, with probabilities |𝛼 |2
and |𝛽 |2, respectively.

The state of multiple qubits can be elegantly expressed as: |𝜓𝑛⟩ =∑
𝑖1,𝑖2,...,𝑖𝑛∈{0,1} 𝑎𝑖1𝑖2 ...𝑖𝑛 |𝑖1𝑖2 ...𝑖𝑛⟩, where |𝑖1𝑖2 ...𝑖𝑛⟩ is the basic vec-

tor of multi-qubit space. That is, before measurement, the state of a
quantum circuit comprising multiple qubits can be described as a
quantum superposition over the computational basic states. The
orthonormal basic states of multi-qubit systems, along with their
associated probability amplitudes, provide an ideal probabilistic
representation for encoding data amenable to quantum algorithms.
Critically, the number of basic states allowed within the Hilbert
space grows exponentially with the number of qubits, endowing
quantum computing with exponential potential for enhanced per-
formance over classical analogues.

2.3 Quantum Gate
Quantum gates, which can manipulate the superposition state of
qubits, serve as the fundamental building blocks of quantum circuits.
They can be divided into two types: single-qubit gates and multi-
qubit gates.

In this paper, the single-qubit gates used to implement the pro-
posed storage design are the Hadamard gate (denoted as𝐻 ) and the
Pauli-𝑋 gate (denoted as 𝑋 ), as shown in Figure 1. The Pauli-𝑋 gate
is similar to the NOT operation in classical computing, which can
turn |0⟩ into |1⟩ or |1⟩ into |0⟩. The 𝐻 gate will turn |0⟩ or |1⟩ into
a uniform superposition state. Their mathematical descriptions are
as follows:

𝑋 (𝑎 |0⟩ + 𝑏 |1⟩) = 𝑎 |1⟩ + 𝑏 |0⟩

𝐻 (𝑎 |0⟩ + 𝑏 |1⟩) = 𝑎 |0⟩ + |1⟩
√
2

+ 𝑏 |0⟩ − |1⟩
√
2

Besides, this article involves the application of multi-qubit gates,
including𝐶𝑁𝑂𝑇 gate,𝑀𝐶𝑇 gate, and Controlled-𝐻 gate. The𝐶𝑁𝑂𝑇
gate applies the Pauli-𝑋 gate on the target qubit only when the con-
trol qubit is in the |1⟩ state, otherwise leaving the target unchanged.
The mathematical description of the 𝐶𝑁𝑂𝑇 gate is as follows:

𝐶𝑁𝑂𝑇 (𝑎 |10⟩ +𝑏 |11⟩ + 𝑐 |00⟩ +𝑑 |01⟩) = 𝑎 |11⟩ +𝑏 |10⟩ + 𝑐 |00⟩ +𝑑 |01⟩



Primary Key Data
0 1
1 1
2 0

(a) A relational table

𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦 [0] |0⟩ 𝐻

𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦 [1] |0⟩ 𝐻 •

𝐷𝑎𝑡𝑎[0] |0⟩

𝐴𝑛𝑐𝑖𝑙𝑙𝑎𝑄𝑢𝑏𝑖𝑡 [0] |0⟩ •

(b) A quantum circuit

Figure 2: An example of transforming a relational table into
a quantum circuit. The top qubit represents the least
significant qubit, and the bottom qubit represents the most
significant qubit.

In addition to the 𝐶𝑁𝑂𝑇 gate described previously, this work
also utilizes the class of generalized Toffoli gates with multiple
controls (i.e., Multiple-Control Toffoli gate or 𝑀𝐶𝑇 gate) as well
as the Controlled-𝐻 gate (i.e., 𝐶𝐻 gate). Specifically, the𝑀𝐶𝑇 gate
applies 𝑋 to the target qubit conditioned on all control qubits being
in |1⟩. The 𝐶𝐻 gate performs 𝐻 on the target qubit depending
on the control qubit being |1⟩. Finally, as illustrated in Figure 1,
𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 gate allows us to observe a qubit.

3 DATA STORAGE ON QUANTUM CIRCUIT
Table 1 shows the symbols required for introducing our quantum
storage methods and cost analysis. Among them, 𝑎𝑟 , 𝑎𝑐 , and 𝑎𝑑 are
three indicators whose values can reflect the overall characteristics
of 𝑟𝑖 , 𝑐𝑖 , and𝑑𝑖 𝑗 . Although theymay not be equivalent to the average
values, they all represent a value located near the middle of the
data distribution.

We start our work with a common method to transform a re-
lational table into a quantum circuit [12, 28], which involves two
components: one is the construction of quantum basic states, and
the other is the storage of records. Based on this method, we propose
two storage schemas for relational tables: QCOS and QROS.

As shown in Figure 2, to obtain the quantum representation of
the relational table in Figure 2(a), we need to construct a quan-
tum circuit whose quantum state serves as a representation of
Figure 2(a). Firstly, using the circuit within the dotted box in the
Figure 2(b), we prepare a quantum state (i.e., 12 |00⟩ +

1√
2
|01⟩ + 1

2 |10⟩)
for the qubits stored in 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦 register (including two qubits:
𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦 [0] and 𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝐾𝑒𝑦 [1]) and use this state to repre-
sent Primary Key of the relational table. Secondly, the value of
PrimaryKey register, regarded as the controlling condition of 𝑀𝐶𝑇
gates, is used to set the value of Data register (including one qubit:

Table 1: Symbol Description

Symbol Description

𝑛 # of relational tables

𝑟𝑖 # of rows in 𝑖𝑡ℎ relational tables

𝑐𝑖 # of columns in 𝑖𝑡ℎ relational tables

𝑑𝑖 𝑗

# of bits for one element in the 𝑗𝑡ℎ
column of the 𝑖𝑡ℎ relational table(e.g.,
for one element of type char in 𝑖𝑡ℎ
table and 𝑗𝑡ℎ column, 𝑑𝑖 𝑗 = 8)

𝑑𝑞

𝑑𝑞 =
𝑛∑
𝑖=1

(𝑟𝑖 ∗
𝑐𝑖∑
𝑗=1

𝑑𝑖 𝑗 ) (i.e., number of

bits for tables of a database, namely
data quantity also.)

𝑚𝑟 max
𝑖∈ (1,𝑛)

(𝑟𝑖 )

𝑚𝑐 max
𝑖∈ (1,𝑛)

(𝑐𝑖 )

𝑚𝑑 max
𝑖∈ (1,𝑛), 𝑗∈ (1,𝑐𝑖 )

(𝑑𝑖 𝑗 )

𝑎𝑟

𝑎𝑟𝑛 =
𝑛∏
𝑖=1

𝑟𝑖 , 𝑎𝑟 is a value between the

maximum and minimum of 𝑟𝑖 , and
related with the database schema.

𝑎𝑑𝑖
𝑎𝑑𝑖 =

∑𝑐𝑖
𝑗=1 𝑑𝑖 𝑗
𝑐𝑖

, i.e. 𝑎𝑑𝑖 is the average
number of 𝑑𝑖 𝑗 of 𝑖𝑡ℎ table

𝑎𝑑 𝑎𝑐 ∗ 𝑎𝑑 ∗ 𝑛 =
𝑛∑
𝑖=1

𝑎𝑑𝑖 × 𝑐𝑖

𝑎𝑐

Although 𝑎𝑑 and 𝑎𝑐 can not be
calculated by the equation, it is
obvious that there exist cases where
both are values between the
maximums and minimums of 𝑎𝑑𝑖 and
𝑎𝑐 . And they are related with the
schema of the database.

𝐶𝑄 Qubits cost

𝐶𝑀 MCT Gates cost

𝐷𝑎𝑡𝑎[0]). Please note that 𝑀𝐶𝑇 gates used here are optimized
by [28]. Finally, the quantum state of the constructed quantum
circuit (|𝐷𝑎𝑡𝑎[0]𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝑘𝑒𝑦 [1]𝑃𝑟𝑖𝑚𝑎𝑟𝑦𝑘𝑒𝑦 [0]⟩) in Figure 2(b) is:
1
2 |100⟩ +

1√
2
|101⟩ + 1

2 |010⟩.



3.1 Quantum Row-oriented Store
QROS is composed of multiple quantum circuits (each quantum
circuit represents a relational table). Based on the method described
above, one relational table can be transformed to a quantum circuit.
And for several tables from one database, their corresponding quan-
tum circuits together form QROS circuit. The following format is
designed to store relational tables in the quantum circuit:

|𝑇𝑎𝑏𝑙𝑒𝑛−1⟩...|𝑇𝑎𝑏𝑙𝑒1⟩|𝑇𝑎𝑏𝑙𝑒0⟩

𝑅𝑜𝑤𝐼𝐷0 [0] 𝐻 •
𝐷𝑎𝑡𝑎00 [0]
𝐷𝑎𝑡𝑎01 [0]
𝑅𝑜𝑤𝐼𝐷1 [0]
𝐷𝑎𝑡𝑎10 [0]
𝐴𝑛𝑐𝑖𝑙𝑙𝑎

Table0

Table1

Figure 3: Quantum circuit for QROS. The top qubit
represents the least significant bit, and the bottom qubit
represents the most significant bit.

The required number of qubits for each register in the QROS cir-
cuit is shown in Table 2. For example, to store Table0 in Figure 4(a)
on the quantum circuit of Figure 3, we need to apply 𝑓 (2) = 1, 1,
and 1 qubits for 𝑅𝑜𝑤𝐼𝐷0, 𝐷𝑎𝑡𝑎00 and 𝐷𝑎𝑡𝑎01 registers, respectively.
Next, an 𝐻 gate is applied to the qubit 𝑅𝑜𝑤𝐼𝐷0 [0] for the purpose
of preparing the state in 𝑅𝑜𝑤𝐼𝐷0 register. Then, the optimized𝑀𝐶𝑇
gates are applied to 𝐷𝑎𝑡𝑎00 [0] and 𝐷𝑎𝑡𝑎01 [0] qubits conditioned
on the state of 𝑅𝑜𝑤𝐼𝐷0 [0]. Now, we have constructed a quantum
circuit forTable0 in the way of QROS. Similarly, we could construct
a quantum circuit for Table1. After combining them together, we
could obtain quantum circuit in Figure 3.

In the definition of QROS, it is evident that a basic state in reg-
isters of 𝑇𝑎𝑏𝑙𝑒𝑖 represents a row of 𝑇𝑎𝑏𝑙𝑒𝑖 . In the QROS quantum
circuit, a basic state is composed of 𝑛 rows, where each row corre-
sponds to a unique record of different relational tables. Since this,
we call this storage structure Quantum Row-oriented Store.

Table 2: The Required Number of Qubits in Each Quantum
Registers for QROS

Register # of Qubits

𝑅𝑜𝑤𝐼𝐷𝑖 𝑓 (𝑟𝑖 )
𝐷𝑎𝑡𝑎𝑖 𝑗 𝑑𝑖 𝑗

𝐴𝑛𝑐𝑖𝑙𝑙𝑎 1

3.2 Quantum Column-oriented Store
QCOS does not directly store the original relational tables. It stores
a table (called QuadrupleTable) containing information from mul-
tiple original relational tables. To store relational tables on the quan-
tum circuit, we represent multiple tables with our proposed quadru-
ple table, a tablewith only four columns, i.e.,QuadrupleTable(tableID,

Table 3: The Required Number of Qubits in Each Quantum
Register for QCOS

Register # of Qubits

𝑇𝑎𝑏𝑙𝑒𝐼𝐷 𝑓 (𝑛)
𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝐷 𝑓 (𝑚𝑐)
𝑅𝑜𝑤𝐼𝐷 𝑓 (𝑚𝑟 )
𝐷𝑎𝑡𝑎 𝑚𝑑

𝐴𝑛𝑐𝑖𝑙𝑙𝑎 1

Table0
rowID column0 column1
0 0 1
1 0 0

Table1
rowID column0
0 0

(a) Multiple Tables

QuadrupleTable
tableID columnID rowID data

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0

(b) A Quadruple Table

Figure 4: Mapping multiple relational tables into one
quadruple table

columnID, rowID, data). Subsequently, we could keep this quadruple
table on the quantum circuit in the way of QCOS.

As shown in Figure 4, given two tables (Table0 and Table1 in
Figure 4 (a)), we map them into our designed quadruple table, i.e.,
Figure 4 (b). For example, the value in the first row and in the second
column of Table0 is 0. To map it into QuadrupleTable, we set
𝑡𝑎𝑏𝑙𝑒𝐼𝐷 = 0, 𝑐𝑜𝑙𝑢𝑚𝑛𝐼𝐷 = 0, 𝑟𝑜𝑤𝐼𝐷 = 0, and 𝑑𝑎𝑡𝑎 = 0. This is, we
preserve it as a tuple in QuadrupleTable.

After gettingQuadrupleTable, it is essential to create a quantum
circuit structure corresponding to the QuadrupleTable schema.
Consequently, the following format is our proposed quantum re-
lational schema for relational tables, which requires five quantum
registers: a𝑇𝑎𝑏𝑙𝑒𝐼𝐷 register, a𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝐷 register, a𝑅𝑜𝑤𝐼𝐷 register,
a 𝐷𝑎𝑡𝑎 register, and an 𝐴𝑛𝑐𝑖𝑙𝑙𝑎 register.

|𝐴𝑛𝑐𝑖𝑙𝑙𝑎⟩|𝐷𝑎𝑡𝑎⟩|𝑅𝑜𝑤𝐼𝐷⟩|𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝐷⟩|𝑇𝑎𝑏𝑙𝑒𝐼𝐷⟩.
To obtain the necessary amount of qubits for the above quantum

registers, we define a function 𝑓 :

𝑓 (𝑥) = max (⌈𝑙𝑜𝑔2 (𝑥)⌉, 1) , 𝑥 ∈ 𝑁 + (1)



Note that each quantum register must minimally comprise a
single quantum bit, and the definition of 𝑓 can ensure this when
𝑥 = 1. With the function 𝑓 (𝑥), we could get the required number
of qubits in each quantum register for QCOS in Table 3.

Since the primary key of QuadrupleTable is comprised of
𝑡𝑎𝑏𝑙𝑒𝐼𝐷 , 𝑐𝑜𝑙𝑢𝑚𝑛𝐼𝐷 , and 𝑟𝑜𝑤𝐼𝐷 , in order to prepare the value of
the primary key, the first step is to prepare the quantum state of
𝑡𝑎𝑏𝑙𝑒𝐼𝐷 register, and the second step is to use the state of 𝑡𝑎𝑏𝑙𝑒𝐼𝐷
register as conditions to prepare the states of 𝑐𝑜𝑙𝑢𝑚𝑛𝐼𝐷 and 𝑟𝑜𝑤𝐼𝐷
registers. And finally, the state of𝑑𝑎𝑡𝑎 register can be set by 𝑡𝑎𝑏𝑙𝑒𝐼𝐷 ,
𝑐𝑜𝑙𝑢𝑚𝑛𝐼𝐷 , and 𝑟𝑜𝑤𝐼𝐷 registers.

For instance, if we want to store the QuadrupleTable (Figure 4
(b)) in the previous five registers, we need to apply for 𝑓 (2) = 1
qubit for𝑇𝑎𝑏𝑙𝑒𝐼𝐷 register. Similarly, the required number of qubits
for 𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝐷 , 𝑅𝑜𝑤𝐼𝐷 , and 𝐷𝑎𝑡𝑎 are 1, 1, and 1, respectively (see
Figure 5). Next, we apply the𝐻 gate to the qubit𝑇𝑎𝑏𝑙𝑒𝐼𝐷 [0]. Based
on the superposition state of 𝑇𝑎𝑏𝑙𝑒𝐼𝐷 [0] (i.e., 1√

2
|0⟩ + 1√

2
|1⟩), we

prepare the states of 𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝐷 and 𝑅𝑜𝑤𝐼𝐷 registers. Lastly, the
𝑀𝐶𝑇 gates are applied to 𝐷𝑎𝑡𝑎 register conditioned on the value
of the primary key. Since each basic state in the QCOS circuit
represents a column data (i.e., one record in QuadrupleTable), we
call this storage structure as Quantum Column-oriented Store.

4 COST ANALYSIS
The cost of QCOS and QROS is mainly divided into two parts: the
number of qubits and the number of MCT gates. In this section,
we show the Qubits cost and MCT gate cost of QCOS and QROS
circuits.

4.1 Qubit Cost
Table 3 and Table 2 show the required number of qubits for the
quantum registers of QCOS and QROS circuits. Naturally, the total
number of qubits for QCOS and QROS is the sum of the quantities
of qubits in each quantum register. Based on Table 3 and Table 2,
the total number can be obtained as follows:

𝐶𝑄𝑄𝐶𝑂𝑆 = 𝑓 (𝑛) + 𝑓 (𝑚𝑐) + 𝑓 (𝑚𝑟 ) +𝑚𝑑 + 1

𝐶𝑄𝑄𝑅𝑂𝑆 =

𝑛−1∑︁
𝑖=0

(𝑓 (𝑟𝑖 ) +
𝑐𝑖−1∑︁
𝑗=0

𝑑𝑖 𝑗 ) + 1

4.1.1 Qubit Cost of QCOS. In the QCOS circuit, generally, the
number of qubits is logarithmic to most schema parameters, such
as 𝑛, 𝑚𝑟 , and𝑚𝑐 . Although the qubit quantity is linear with the
𝑚𝑑 , considering QCOS needs only one data register and the qubits
count of it will not change as the number of tables escalates and
the dimensions of these tables expand, the amount of qubits in a
QCOS circuit is still roughly logarithmic to data quantity.

4.1.2 Qubit Cost of QROS. Combining with the definition of 𝑓 , in
most cases, 𝐶𝑄𝑄𝑅𝑂𝑆 can be expressed as:

𝑛−1∑︁
𝑖=0

(⌈𝑙𝑜𝑔2 (𝑟𝑖 )⌉ + 𝑎𝑑𝑖 × 𝑐𝑖 )

The 𝑎𝑑𝑖 is the average of 𝑑𝑖 𝑗 for all columns in 𝑖𝑡ℎ table.
Continuing to use average values to convert accumulation into

multiplication, we can get 𝐶𝑄𝑄𝑅𝑂𝑆 as:

𝑛−1∑︁
𝑖=0

(⌈𝑙𝑜𝑔2 (𝑟𝑖 )⌉) + 𝑎𝑑 × 𝑎𝑐 × 𝑛

If we define:

⌈𝑙𝑜𝑔2 (𝑟𝑖 )⌉ = 𝛼𝑖 × 𝑙𝑜𝑔2 (𝑟𝑖 ) (𝛼𝑖 ∈ [1, 2])

Then we can get:

𝑛−1∑︁
𝑖=0

(⌈𝑙𝑜𝑔2 (𝑟𝑖 )⌉) =
(
𝑛−1∏
𝑖=0

𝛼𝑖

)
𝑙𝑜𝑔2

(
𝑛−1∏
𝑖=0

𝑟𝑖

)
Obviously,

∏𝑛−1
𝑖=0 𝑟𝑖 can be expressed as:𝑎𝑟𝑛

And if we define:
∏𝑛−1

𝑖=0 𝛼𝑖 = 𝛼 , we get:

𝑛−1∑︁
𝑖=0

(⌈𝑙𝑜𝑔2 (𝑒𝑖 )⌉) = 𝛼 × 𝑛 × 𝑙𝑜𝑔2 (𝑎𝑟 )

To sum up, the number of qubits for QROS circuit is:

𝐶𝑄𝑄𝑅𝑂𝑆 = 𝛼 × 𝑛 × 𝑙𝑜𝑔2 (𝑎𝑟 ) + 𝑎𝑑 × 𝑎𝑐 × 𝑛

Please note that 𝑎𝑟 is just a value between the maximum and
minimum values of 𝑟𝑖 , not an average in the mathematical sense.
However, it is still related to the number of rows in each table.
From the above formula, it is obvious that the number of qubits
in the QROS circuit has a linear relationship with 𝑛, and the value
distributions of 𝑐𝑖 and 𝑑𝑖 𝑗 (As said in Table 1, 𝑎𝑑 and 𝑎𝑐 are values be-
tween the maximum and minimum of 𝑑𝑖 𝑗 and 𝑐𝑖 ), and a logarithmic
relationship with 𝑎𝑟 .

4.2 MCT Gate Cost
Although the quantity of𝑀𝐶𝑇 gates is influenced by the value of
the primary key and data [28], it remains feasible to analyze the
mathematical expectation of the number of 𝑀𝐶𝑇 gates under a
given circumstance.

Given 𝑛𝑐 qubits acting as candidate control qubits, implying a
range of 0 to 𝑛𝑐 control qubits for the 𝑀𝐶𝑇 gates, total potential
occurrences of𝑀𝐶𝑇 gates in this circuit can be expressed as:

𝑁 =

𝑛𝑐∑︁
𝑖=0

𝐶𝑖𝑛𝑐 = 2𝑛𝑐

The𝑀𝐶𝑇 gate that appears in the final circuit optimized by the
method mentioned in [28] must be a combination of these 𝑁 gates,
and each gate appears at most once because two identical 𝑀𝐶𝑇
gates will cancel out. So the number of possible sets of𝑀𝐶𝑇 gates
in final circuit is:

∑𝑁
𝑖=0𝐶

𝑖
𝑁

= 2𝑁 . And the probability of the set with

𝑀 𝑀𝐶𝑇 gates is: 𝐶
𝑀
𝑁

2𝑁 . So the mathematical expectation of𝑀 is:

𝐸 (𝑀) =
∑𝑁
𝑚=0𝑚𝐶

𝑚
𝑁

2𝑁
=

2𝑁−1 × 𝑁
2𝑁

= 2𝑛𝑐−1
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Figure 5: Quantum circuit for QCOS. The top qubit represents the least significant bit, and the bottom qubit represents the
most significant bit. Note that Prepare ColumnID register only apply𝑀𝐶𝑇 gates to 𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝐷 register, and Prepare RowID
register only apply𝑀𝐶𝑇 gates to 𝑅𝑜𝑤𝐼𝐷 register. And both of them use 𝐴𝑛𝑐𝑖𝑙𝑙𝑎 register as controlled qubit of𝑀𝐶𝑇 gates

4.2.1 MCT Gate Cost of QCOS. In the QCOS circuit, the 𝑛𝑐 con-
trol qubits are composed of 𝑇𝑎𝑏𝑙𝑒𝐼𝐷 register, 𝐶𝑜𝑙𝑢𝑚𝑛𝐼𝐷 regis-
ter, and 𝑅𝑜𝑤𝐼𝐷 register. As shown before, in the QCOS circuit,
𝑛𝑐 = 𝐶𝑄𝑄𝐶𝑂𝑆 −𝑚𝑑 . So combining the definition of 𝑓 , we can get
the number of𝑀𝐶𝑇 gates for one target qubit:

𝑂
(
2⌈𝑙𝑜𝑔2 (𝑛) ⌉ × 2⌈𝑙𝑜𝑔2 (𝑚𝑟 ) ⌉ × 2⌈𝑙𝑜𝑔2 (𝑚𝑐 ) ⌉ )

Similar to QROS, the formula above can be written as:

𝑂 (𝛽 × 𝛾 × 𝜂 × 𝑛 ×𝑚𝑟 ×𝑚𝑐)

The 𝛽 , 𝛾 and 𝜂 are analogous to 𝛼 .
The best case is when all tables share an identical number of

rows and columns, and in that case, the number of𝑀𝐶𝑇 gates is:

𝑂 (𝛽 × 𝛾 × 𝜂 × 𝑑𝑞 ×𝑚𝑑)

And the worst case is when the data quantity of most tables is
much smaller than the largest table, and then the number of𝑀𝐶𝑇
gates is:

𝑂 (𝛽 × 𝛾 × 𝜂 × 𝑛 × 𝑑𝑞 ×𝑚𝑑)

4.2.2 MCT Gate Cost of QROS. In the 𝑖𝑡ℎ table of the QROS circuit,
𝑛′ is the number of qubits in 𝑅𝑜𝑤𝐼𝐷𝑖 register, and in most cases
𝑛𝑐𝑖 = ⌈𝑙𝑜𝑔2 (𝑟𝑖 )⌉. So 2𝑛𝑐𝑖−1 , in big O notation, can be denoted as
𝑂 (2⌈𝑙𝑜𝑔2 (𝑟𝑖 ) ⌉ ). At the same time, for a table, there are

∑𝑐𝑖−1
𝑗=0 𝑑𝑖 𝑗

target qubits, i.e., qubits in the data registers. So, for the total QROS
circuit, the number of𝑀𝐶𝑇 gates is:

𝑂 (
𝑛−1∑︁
𝑖=0

2⌈𝑙𝑜𝑔2 (𝑟𝑖 ) ⌉ × 𝑐𝑖 × 𝑎𝑑𝑖 )

.
The 𝑎𝑑𝑖 , in the 𝑖𝑡ℎ table, is a number between the maximum of

𝑑𝑖 𝑗 and the minimum, which can satisfy:
𝑐𝑖−1∑︁
𝑗=0

𝑑𝑖 𝑗 = 𝑐𝑖 × 𝑎𝑑𝑖

It is readily inferred through mathematical deduction that:

2⌈𝑙𝑜𝑔2 (𝑟𝑖 ) ⌉ = 𝛼𝑖 × 𝑟𝑖 (𝛼𝑖 ∈ [1, 2])

Then, the number of 𝑀𝐶𝑇 gates for a QROS circuit can be de-
noted as:

𝑂 (
𝑛−1∑︁
𝑖=0

𝛼𝑖 × 𝑟𝑖 × 𝑐𝑖 × 𝑎𝑑𝑖 )

And if we define:

𝑑𝑞 =

𝑛−1∑︁
𝑖=0

𝑟𝑖 × 𝑐𝑖

The number of𝑀𝐶𝑇 gates in a QROS circuit is:

𝑂 (𝑑𝑞 × 𝑎𝑑 × 𝛼)

The 𝑎𝑑 and 𝛼 satisfy:

𝑑𝑞 × 𝑎𝑑 × 𝛼 =

𝑛−1∑︁
𝑖=0

𝑒𝑖 × 𝑐𝑖 × 𝑎𝑑𝑖 × 𝛼𝑖

Please note that in both QROS and QCOS, because of the defini-
tion of 𝑓 , The impact of 𝑟𝑖 , 𝑛,𝑚𝑟 , and𝑚𝑐 on the number of 𝑀𝐶𝑇
gates has stage characteristics. For example, when𝑚𝑟 ∈ (9, 16], the
value of ⌈𝑙𝑜𝑔2 (𝑚𝑟 )⌉ is always 4.

5 EXPERIMENTAL EVALUATION
In this section, we begin by conducting the simulations of the
qubit andMCT gate cost; next, we implement our quantum storage
methods on qiskit simulators (i.e., noiseless and noisy simulators)
and real quantum computers to verify their performances.

5.1 Experimental Setup
Datasets. For cost simulation, we randomly generate datasets so
that the 𝑑𝑞 of these datasets increases within a range, and then
calculate the number of qubits and𝑀𝐶𝑇 gates required for these
datasets. To store data on simulators and real devices, considering
the limitations of the current hardware, we designed some very
simple datasets with only 0 and 1 values. We use the form (𝑟0 ×
𝑐0, 𝑟1 × 𝑐1, ..., 𝑟𝑛−1 × 𝑐𝑛−1) to represent them.
Metrics. For cost simulation, the metrics of cost are the number
of qubits and the number of𝑀𝐶𝑇 gates. And we use Data Quan-
tity (i.e., 𝑑𝑞) to evaluate the size of the dataset. To store data on
simulators and real devices, we introduce Valid Ratio to evaluate
the performance of the storage. Valid Ratio means the proportion
of correct records of measurement results on quantum circuits. To
get Valid Ratio, the state of QCOS and QROS circuits are prepared
repeatedly, and measurements are made on circuits. The measure-
ment results are then converted into the form of relational table
records. If the converted relational table records exist in the orig-
inal relational tables, the measurement results are called correct
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Figure 6: QCOS Qubits. The red curve represents the number
of bits required to store relational tables on a classical
computer. The number of bits is on the right y-axis. The
other three curves represent the number of qubits required
when the same tables are stored using the QCOS method.
The number of qubits is on the left y-axis. The legend
illustrates the number of bits or qubits required for each
data in the relational tables corresponding to each curve.

measurement results. The formula is as follows:

𝑉𝑎𝑙𝑖𝑑 𝑅𝑎𝑡𝑖𝑜 =
# 𝑜 𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 𝑟𝑒𝑠𝑢𝑙𝑡𝑠

# 𝑜 𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

5.2 Cost Simulation
In this subsection, building upon the preceding theoretical analysis,
we will conduct numerical simulation experiments centered on the
schema parameters influencing the costs of QCOS and QROS to
validate our theoretical findings.

5.2.1 Qubit cost. Figure 6 depicts the qubit cost in QCOS. By regu-
lating the number and dimensions of tables within a defined range,
we observe the qubit cost across various Data Quantity. It is evi-
dent that when Data Quantity reaches a specific value, the trend
in qubit cost exhibits a distinct logarithmic pattern. In addition, for
the same Data Quantity, the bit cost of classical storage is much
higher than the qubit cost of QCOS.

Figure 7 illustrates the variation in the number of qubits within
the QROS circuit across different schema parameters. When hold-
ing other schema parameters constant and only modifying 𝑎𝑟 , the
alteration in the number of qubits exhibits distinct phased and
logarithmic characteristics. Conversely, adjustments in 𝑎𝑐 result
in an evident linear trend in the number of qubits. Furthermore,
increases in the number of tables and qubits required of data types
do not influence the trend of qubit count variation(still logarithmic
or linear); however, they do lead to an increase in qubit cost under
equivalentData Quantity. Classical storage has far higher bit costs
than QROS in all cases.

5.2.2 MCT Gate Cost. For QCOS circuits, our theoretical analysis
indicates that the impact of schema parameters varies with changes
in the overall schema structure. As illustrated in Figure 8, when
comparing the best case (where all tables are of identical size) and
the worst case (with one larger table while the others have only
one row and one column), it is observed that, under the same Data
Quantity, the best case incurs significantly lower𝑀𝐶𝑇 gate cost
compared to the worst one. Moreover, in the latter case, an increase
in the number of tables leads to a proportional increase in cost. In
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Figure 7: QROS Qubits. 𝑎𝑟 or 𝑎𝑐 means that other schema
parameters are constant, and the 𝑎𝑟 or 𝑎𝑐 is modified. 2 or 4
Tables mean that the number of tables is 2 or 4. The red
curve represents the number of bits required to store
relational tables on a classical computer. The number of bits
is on the right y-axis. The other three curves represent the
number of qubits required when the same relational tables
are stored using the QCOS method. The number of qubits is
on the left y-axis. The legend illustrates the number of bits
or qubits required for each data in the relational tables
corresponding to each curve.

random cases, where the number and dimensions of tables assume
random values within a specified range, QCOS exhibits significant
fluctuations and abrupt increases in𝑀𝐶𝑇 gate consumption. This
aligns with the phased characteristics outlined in our theoretical
analysis.

The𝑀𝐶𝑇 gate cost for QROS exhibits a simpler behavior than
that of QCOS. This is evident in Figure 9, where the 𝑀𝐶𝑇 gate
cost for QROS generally demonstrates a linear increase with the
growing Data Quantity. Given that the schema parameters are
subject to randomness, they exhibit fluctuations over time.

5.3 Storage on Simulators and Real Devices

Table 4: Dataset Description. (2 × 2) means there is only one
relational table with 2 rows and 2 columns in this dataset.
(1 × 2, 2 × 1) means that this dataset includes two tables. The
size of the first table is one row and two columns, and the
size of the second table is two rows and one column.

Symbol Description

dataset_0 (2 × 2)
dataset_3 (1 × 2, 2 × 1)
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Figure 8: QCOS MCT Gates. The best case means that tables
in the dataset hold the same number of rows and columns.
The worst case means that except for one table that has
multiple rows and columns, the other tables have only one
row and one column. Random case means that the numbers
of rows and columns for tables are generated randomly. 2 or
4 Tables means that the number of tables is 2 or 4. The
legend illustrates the number of qubits required for each
data in the relational tables corresponding to each curve.
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Figure 9: QROS MCT Gates. The legend illustrates the
number of qubits required for each data in the relational

tables corresponding to each curve.

Table 4 shows two datasets we use in this subsection. (2 × 2)
means there is only one relational table with 2 rows and 2 columns
in this dataset. (1 × 2, 2 × 1) means that this dataset includes two
tables. The size of the first table is one row and two columns, and
the size of the second table is two rows and one column. More
datasets and experiments can be found in appendix A.

To explore the performance of storing relational tables in sim-
ulators and existing universal quantum computers, we execute
experiments on two datasets. The results are shown in Figure 10.
Using the QROS method, the Valid Ratios of real quantum devices
are consistent with the noisy simulator on the simple dataset. But
when the size of the dataset set grows, the Valid Ratios of real
quantum devices are almost 0. Although the Valid Ratios obtained
by running the QCOS circuit on real devices are more stable than
QROS, it is still far behind the noisy simulator. This means that
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Figure 10: Results on simulators and real devices. The
results of real devices on the latter dataset are invisible in
the left picture because the Valid Ratios are almost 0. To
calculate Valid Ratios, states are repeatedly prepared and
measured, and the measurement results are compared with
records in relational tables.

existing quantum computers not only have errors in quantum gates
but also have other unstable factors, which will further reduce the
accuracy of relational table storage, especially when the relational
table is large and complex.

6 DISCUSSION
The difference between real devices and simulators. Exper-
imental results show that there is still a huge gap between the
simulator results and the real devices. This may be because cur-
rent devices still have technical limitations, such as quantum de-
coherence and measurement errors. However, the results of the
simulators show that if the real hardware can control errors within
a certain range, our method can store relational tables effectively.
This opens the way to using quantum circuits to process relational
tables.
QCOS vs. QROS. From a cost perspective, the MCT gate costs of
QCOS and QROS both increase linearly, but the qubit cost of QCOS
increases logarithmically, so QCOS seems to be a more resource-
saving storage method. In terms of accuracy, there is not much
difference between QCOS and QROS on the simulators, but on
real devices, QCOS’s performance is relatively stable. Therefore,
considering only the cost and effect of storage, QCOS is better than
QROS. However, considering the complex circuit design of QCOS,
QROS may be a simpler way to implement relational table storage.
Errors in quantum storage. Quantum gate errors are inevitable
in existing quantum circuits. However, considering that classical
database management systems often need to verify query results
because of some errors, the verification process can also be added
to the quantum storage of relational tables [8].
Inevitable Superposition State Destroying. It is inevitable that
measuring quantum circuits representing relational tables will lead
to superposition state destruction. In order to improve the uti-
lization of quantum superposition states, several operations that
require measurement (such as several query operations) can be com-
pressed together firstly, and then the results of these operations can
be obtained through one measurement. In addition, it is possible
to specifically perform operations on quantum circuits for which



quantum algorithms have advantages (that is, some operations that
cannot be processed well by classical computers). It is also possible
to learn from theQRAM[25] architecture to alternately perform uni-
tary transformation and measurement to prevent blocking caused
by superposition state destroying.
Relational Operations on Quantum circuits. Considering that
gate-based quantum computers are a form of Turing machines, all
relational operations can theoretically be implemented by quantum
gate circuits. Specific to our circuit design, for example, we can use
the quantum search algorithm to implement the join operation on
QROS circuit. The basic idea is constructing an oracle(using 𝑋𝑁𝑂𝑅
gate) to judge whether multiple data registers from multiple tables
are the same. For example, a basic join statement like this: SELECT
t1.c1 FROM t1 JOIN t2 ON t2.c2 = t1.c1, its oracle can be constructed
by using 𝑋𝑁𝑂𝑅 gate on corresponding two data registers. Such
a quantum join operation will benefit from the advantages of the
quantum search algorithm (i.e., the time complexity is 𝑂

(
𝑙𝑜𝑔2 (𝑛)

)
),

achieving acceleration over classical databases. We leave it as one
of our future works.

7 CONCLUSION
In this paper, we present two novel techniques, QCOS and QROS,
for mapping relational tables of RDBMSs into quantum states on
universal quantum computers. Our cost simulations show that both
methods can use limited qubits to keep large datasets. Besides, the
𝑀𝐶𝑇 gate cost changes linearly with the data quantity. Finally,
based on experimental results on simulators and real devices, our
method can convert relational tables to quantum state well in an
ideal environment or with some noise. In summary, our findings of-
fer valuable insights and serve as essential references for developing
quantum storage methods of databases.
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Table 5: Results of simulators and real universal quantum computers

Storage
Structure Schema dataQuantity Backend Noise Qubits Depth Gates

(MCT)
Valid
Ratio

Integrity
Ratio

QROS

(2×2) 4 qasm_simulator No 4 5 7(3) 1.00 1.00

(3×1,3×2) 9 qasm_simulator No 14 30 53(36) 1.00 1.00

(2×1,3×1,2×3) 11 qasm_simulator No 15 16 36(18) 1.00 1.00

(2×2) 4 aer_simulator Yes 4 5 7(3) 0.94 1.00

(3×1,3×2) 9 aer_simulator Yes 14 30 53(36) 0.82 1.00

(2×1,3×1,2×3) 11 aer_simulator Yes 15 16 36(18) 0.78 1.00

(2×2) 4 ibm_brisbane Yes 127 14 7(3) 0.96 1.00

(3×1,3×2) 9 ibm_brisbane Yes 127 534 53(36) 0.00 0.00

(2×2,3×2,3×4) 22 ibm_brisbane Yes 127 654 68(42) 0.00 0.00

(2×1,1×2) 4 ibm_brisbane Yes 127 6 8(2) 0.00 1.00

(2×1,1×2) 4 ibm_lagos Yes 7 5 8(2) 0.00 0.00

(2×1,1×2) 4 ibm_nairobi Yes 7 5 8(2) 0.001 0.50

(2×1,1×2) 4 ibm_perth Yes 7 5 8(2) 0.00025 0.50

(2×2) 4 ibm_lagos Yes 7 7 7(3) 0.96 1.00

(2×2) 4 ibm_nairobi Yes 7 7 7(3) 0.91 1.00

(2×2) 4 ibm_perth Yes 7 7 7(3) 0.91 1.00

QCOS

(2×2) 4 qasm_simulator No 5 13 14(8) 1.00 1.00

(3×1,3×2) 9 qasm_simulator No 8 160 50(38) 1.00 1.00

(2×1,3×1,2×3) 11 qasm_simulator No 9 357 146(104) 1.00 1.00

(2×2) 4 aer_simulator Yes 5 13 14(8) 0.89 1.00

(3×1,3×2) 9 aer_simulator Yes 8 160 50(38) 0.90 1.00

(2×1,3×1,2×3) 11 aer_simulator Yes 9 357 146(104) 0.87 1.00

(2×2) 4 ibm_brisbane Yes 127 370 14(8) 0.49 1.00

(3×1,3×2) 9 ibm_brisbane Yes 127 6814 52(40) 0.07 1.00

(2×2,3×2,3×4) 22 ibm_brisbane Yes 127 85164 202(144) 0.08 1.00

(2×1,1×2) 4 ibm_brisbane Yes 127 390 15(6) 0.35 1.00

(2×1,1×2) 4 ibm_lagos Yes 7 153 15(6) 0.34 1.00

(2×1,1×2) 4 ibm_nairobi Yes 7 151 15(6) 0.30 1.00

(2×1,1×2) 4 ibm_perth Yes 7 153 15(6) 0.29 1.00

(2×2) 4 ibm_lagos Yes 7 173 14(8) 0.67 1.00

(2×2) 4 ibm_nairobi Yes 7 173 14(8) 0.56 1.00

(2×2) 4 ibm_perth Yes 7 173 14(8) 0.50 1.00

results account for the proportion of the total number of relation-
ship table records. To be specific, assume that the measurement
results of the quantum circuit have 190 records, 95 of which are
records in the original relational table. The original relational table
has 100 records, then Valid Ratio is 50% and Integrity Ratio is
95%.

A.1 Simulator Result
Table 5 presents the outcomes on the simulators provided by IBM
Qiskit. As the schema complexity and Data Quantity increase,
QCOS consumes fewer qubits compared to QROS. However, the
cost associated with quantum gates and𝑀𝐶𝑇 gates for QCOS sig-
nificantly surpasses that of QROS. Moreover, the circuit depth of



QCOS substantially exceeds that of QROS, implying that the imple-
mentation of QCOSmay employ a more intricate circuit topology. It
calls for further optimization. From the perspective of theValid Ra-
tio (i.e., a ratio of correct data to the total data in the measurement
results), QCOS is always better than QROS in the presence of noise,
especially as Data Quantity increases. This phenomenon may be
attributed to the higher qubit cost of QROS, which increases the
probability of noisy basic states. Finally, the Integrity Ratio (i.e.,
the proportion of measurement results belonging to the dataset out
of the dataset) of both QCOS and QROS is 1, indicating that their
measurement results contain all information about the datasets.

A.2 Real Device Result
As shown in Table 5, the circuit depth and the number of quantum
gates on real devices are much higher than those on simulators for
the same datasets. This difference may be caused by the physical
topology of the device. The results show that the dataset with a
smaller Data Quantity has a higher accuracy, while larger and
more complex data sets are more susceptible to noise. Besides, the
accuracy of QROS is much higher than that of QCOS for the dataset
with a smaller Data Quantity. As for larger datasets, although
QCOS has some valid data and QROS has none, the Valid Ratio
for QCOS is very low.

We conducted experiments on three 7-qubit and one 127-qubit
IBM real machines with two smaller datasets. The data in Table 5
shows that machines with the same number of qubits exhibit the
same circuit depth and gate cost. Performance metrics such as the
Valid Ratio demonstrate similar trends. Although a 127-qubit ma-
chine could handle greater depth, its performance is still the same as
that of a 7-qubit machine. When the same Data Quantity is stored
in two separate tables instead of a single table, employing QCOS
and QROS to process that data demonstrates significantly poorer
performance, especially for QROS. Finally, the gap between the out-
comes of aer_simulator and ibm_brisbane reveals the limitations of
current-stage quantum hardware.
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