
TowardsQuantum Data Structures for Enhanced Database
Performance

Tim Littau
Technische Universiteit Delft

Delft, Netherlands
info@tmlittau.com

Ziyu Li
Technische Universiteit Delft

Delft, Netherlands
Z.Li-14@tudelft.nl

Rihan Hai
Technische Universiteit Delft

Delft, Netherlands
R.Hai@tudelft.nl

ABSTRACT
Quantum computing holds the promise of expanding the capa-
bilities of data management by introducing fundamentally new
ways to interact with data, going beyond simple enhancements
in processing speed and efficiency. This paper proposes the devel-
opment of innovative quantum data structures designed to opti-
mise database search and manipulation operations by leveraging
the unique capabilities of quantum mechanics, such as superpo-
sition and entanglement. We introduce the Quantum Partitioned
Database (QPD) utilising a modified Grover’s Algorithm for data
retrieval of multiple elements in a database, and demonstrate the
practical implementation of circuit-based quantum data structures.
Building on foundational concepts like Quantum Random Access
Memory (QRAM) and Quantum Random Access Gates (QRAG), our
approach bridges the gap between theoretical advancements and
real-world applications. This research aims to catalyse the adoption
of quantum technologies in data management, providing a robust
framework for future innovations, performance enhancements, and
a new paradigm in database search and manipulation.

VLDBWorkshop Reference Format:
Tim Littau, Ziyu Li, and Rihan Hai. Towards Quantum Data Structures for
Enhanced Database Performance. VLDB 2024 Workshop: The Second
International Workshop on Quantum Data Science and Management
(QDSM’24).

1 INTRODUCTION
Quantum computing, representing a pivotal shift from traditional
computing paradigms, holds the promise of transforming various
scientific and technological fields through both its computational
power and its novel approach to data interaction. Just as classical
computing began as a theoretical concept in the 19th century [9]
and only became practical around the 1960s [2], quantum com-
puting started as a theoretical idea around the 1980s [17] and
has only recently become a reality with advancements in quan-
tum computers [6]. Despite significant advancements in quantum
hardware [12, 16], the application of quantum computing in real-
world scenarios remains challenging, necessitating a crucial effort
to bridge the gap between theory and practice.

Over the past 25 years, foundational work such as Grover’s Algo-
rithm [19] has demonstrated the potential of quantum computing

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment. ISSN 2150-8097.

to exponentially speed up search problems, which are central to
many data management applications. While existing quantum com-
puters are still in their early stages, they provide an opportunity
to explore the first practical applications of quantum computing in
data management systems. Recent research has explored optimisa-
tion of quantum query processes [34, 35, 37], join ordering [32, 33],
and data manipulation in superposed states [21, 40]. However, the
development of more general quantum data structures for data
management on a circuit level has been largely overlooked, leav-
ing a significant gap in the practical implementation of quantum
algorithms in data management.

Classical computing has heavily relied on data structures like
B-trees [13] and hash maps [14] to enhance data retrieval and
manipulation efficiency. These structures leverage the properties
of the represented data to improve performance, though often at
the cost of increased memory requirements. In contrast, quantum
computing presents unique properties such as superposition and
entanglement, which, if harnessed effectively, can lead to the de-
velopment of quantum data structures that process information in
fundamentally novel ways. Integrating quantum computing into
data management pipelines not only promises speed-ups without
the need for traditional indexing but also holds the potential to
reduce memory demands.

This paper proposes the development of innovative quantum
data structures designed to optimise database search and manipula-
tion operations by leveraging the unique capabilities of quantum
mechanics. We propose the Quantum Partitioned Database (QPD),
utilising Grover’s Algorithm for retrieving multiple elements in a
database. This approach demonstrates the practical application of
circuit-based quantum data structures, bridging the gap between
theoretical advancements and real-world applications. While our
research draws inspiration from foundational concepts such as
Quantum Random Access Memory (QRAM) [18] and Quantum
Random Access Gates (QRAG) [1], it does not directly implement
these structures. Instead, we demonstrate a basic form of circuit-
based quantum memory, laying the groundwork for the develop-
ment of more sophisticated quantum data structures used in data
management.

We foresee not only performance enhancements in database
operations through the practical implementation of quantum data
structures, but also a fundamental shift on how we are able to
interact with data. By addressing existing bottlenecks in classi-
cal database systems and proposing concrete solutions for data
translation and hardware limitations, our work sets the stage for
leveraging quantum computing’s full potential in data management
scenarios.

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org

Quantum data structures like QPD will act as a link between
classical and quantum data and present the first step towards the
development of a quantum database. This ultimate goal does not
only promise enhanced performance, but a whole new paradigm for
data management, offering novel ways to interact with data such
as dynamic resource allocation using transactions in superposed
states [31].

Our contributions go as follows:
• Opportunities and Challenges(Sec. 2): We discuss the

potential benefits and challenges faced in applying quantum
computing in data management.

• Proposed Approach (Sec. 3): Design of a proposed quan-
tum data structure to practically apply a modified Grover’s
Algorithm for retrieving multiple elements.

• Our Vision (Sec. 4): Presents our overall vision and a
possible outlook for future research.

• Related Concepts (Sec. 5): Presents foundational work
on QRAM and QRAG, providing a general framework for
circuit-based quantum data structures.

2 CHALLENGES
In this section we address current challenges faced in data man-
agement and the paradigm shift offered by quantum computing
promising to tackle them. Furthermore, we present how practical
applications in quantum computing are currently implemented and
finally the consequent idea of designing circuit-based quantum data
structures for the practical application of quantum algorithms to
combat classical limitations.

Classical vs Quantum Data Management. While classical data man-
agement heavily relies on index data structures, such as B-trees
and hash maps, to enhance data retrieval and manipulation, they
typically come with downsides, such as increased memory require-
ments and complex management overheads when the index needs
to be updated. As databases grow, maintaining and optimising these
indices becomes increasingly challenging and resource-intensive.

Quantum computing introduces a fundamentally different para-
digm that can potentially eliminate the need for traditional indices.
Quantum mechanical principles like superposition and entangle-
ment allow for fundamentally new ways to interact with data. Fur-
thermore, quantum algorithms already show a quadratic speedup
for unstructured search problems [19]. This efficiency can reduce
the complexity of tasks that are infeasible with classical algorithms,
enabling faster and more scalable data processing [39].

Practical Implementation of Quantum Algorithms. Currently for
practical applications, quantum algorithms are typically imple-
mented using quantum circuits. Software development kits like
Qiskit [24] allow for the design and execution of the circuits on
current quantum hardware. The implementation of quantum algo-
rithms in the form of quantum circuits is a crucial step in bridging
the gap between theoretical advancements and real-world applica-
tions.

In classical computing, algorithms are designed to interact with
and manipulate data structures efficiently. The choice and design
of a data structure can significantly influence the performance and
complexity of an algorithm. Data structures provide the necessary

organisation and storage mechanisms for data, while algorithms
define the procedures for data processing tasks such as searching,
sorting, and updating.

In the context of quantum computing, this interdependence sug-
gests that to implement quantum algorithms effectively, we should
design corresponding quantum data structures. These structures
should leverage quantum mechanical properties to enhance data
processing capabilities. One example of such quantum algorithm
would be the modified Grover’s Algorithm for multiple item re-
trieval, which requires a quantum data structure that supports
parallel searches on multiple datasets [20].

Practical Challenges
Designing effective and practical circuit-based quantum data struc-
tures comes with its own challenges. In the following, we address
some of these challenges and offer an outlook on possible solutions.

Data Translation Overhead. Efficiently loading classical data into
quantum systems presents a significant bottleneck in practical ap-
plications of quantum algorithms. To overcome this bottleneck,
optimising the encoding of classical into quantum data is required
when designing circuit-based quantum data structures [3]. Other-
wise, the speed-up through quantum algorithms could, in the worst
case, be nullified.

Hardware Limitations and Scalability. Current quantum hardware,
while advancing rapidly, still faces limitations in terms of qubit
count [12], coherence time [29], and error rates [25]. Developing
robust and efficient error correction techniques and improving
qubit coherence times are critical for overcoming these limitations.
To mitigate these hardware limitations in the short term, hybrid
quantum-classical approaches, where classical systems handle task
scheduling and tasks requiring high reliability, offer a viable solu-
tion while quantum processors only tackle the problems benefiting
from quantum speed-up. For these hybrid quantum-classical archi-
tectures, middleware layers and APIs that facilitate communication
between classical and quantum components are crucial to guarantee
a seamless integration [7].

3 QPD: A QUANTUM DATA STRUCTURE FOR
SEARCH

In this section, we present the circuit design of what we refer to as
the Quantum Partitioned Database (QPD) using Grover’s Algorithm
to retrieve multiple elements from a database [20]. This approach
leverages the principles of quantum parallelism and is inspired by
the capabilities of QRAG.

Given a large database 𝐷 with 𝑁 elements, our goal is to retrieve
𝑘 marked elements efficiently. To achieve this as described in [20],
the database is split into 𝑑 subsets, such that the condition 𝑘 ≤

√
𝑑

is satisfied. Each subset’s indices are stored in separate quantum
registers, allowing us to perform parallel searches on each register
using Grover’s Algorithm.

Differences between QPD and Grover and Radhakrishnan’s Work [20].
While the theoretical framework proposed by [20] provides foun-
dational principles for parallel quantum search algorithms, our
QPD extends this work by focusing on practical implementation.

QPD is designed with current quantum hardware limitations in
mind, including considerations for qubit count, coherence times,
and error rates, which are not addressed in [20] purely theoret-
ical algorithm. Additionally, we integrate a middleware layer to
facilitate seamless interaction between classical and quantum sys-
tems, ensuring efficient resource usage and practical applicability.
This hybrid approach ensures efficient resource usage and prac-
tical applicability, bridging the gap between theoretical quantum
algorithms and practical data management systems.

The additional qubits required to store the indices of different
subsets in parallel are a trade-off for the speed-up we can achieve
through parallelisation.

In Figure 1 we show the architecture of the proposed implementa-
tion of QPD. Assuming an incoming query to a classical database we
require some sort of interface to the quantum system such that the
splitted database can be encoded as shown in Figure 2. In contrast
to a classical table of data pairs (𝑖 𝑗 , 𝑥𝑖 𝑗), in the quantum version the
qubits in the index register are effectively entangled with the qubits
in the data register, such that they create the mapping described in
Equation 1. Equally the QPD operation can be expressed as shown
in Equation 2.

��𝑖 𝑗 〉 |0⟩ ↦→ ��𝑖 𝑗 〉 ��𝑥𝑖 𝑗 〉 (1)

𝑈𝑄𝑃𝐷

��𝑖 𝑗 〉 |0⟩ = ��𝑖 𝑗 〉 ��𝑥𝑖 𝑗 〉 (2)

To decrease qubit requirement there is no need to split the whole
database, instead the queried properties or columns are extracted
in the classical-quantum interface, followed by the actual split. The
extracted columns are then provided to the quantum system to be
encoded.
Once the indices of the searched items are retrieved by the quantum
algorithm they are returned to the interface to properly translate
them back to the unsplitted database.

In the following, the steps to process the translated classical data
received by the quantum interface are described in more detail.

Steps of QPD Implementation.

(1) Database Initialization
• Randomly splitting the database 𝐷 of size 𝑁 into 𝑑

subsets, 𝐷 = {𝐷1, 𝐷2, ..., 𝐷𝑑 }, each containing 𝑁
𝑑
ele-

ments.
• Storing the indices of each subset 𝐷𝑖 in a separate

quantum register
��𝑖 𝑗 〉.

(2) QPD Configuration
• Each subset 𝐷𝑖 is configured with quantum registers

to store data pairs (𝑖 𝑗 , 𝑥𝑖 𝑗), where 𝑖 𝑗 is the 𝑗-th index
of subset register 𝑖 and 𝑥𝑖 𝑗 is the corresponding data
element.

• The QPD maps quantum state
��𝑖 𝑗 〉 |0⟩ to |𝑖⟩

��𝑥𝑖 𝑗 〉, en-
abling data retrieval in superposition.

• The circuit implementation is shown in Figure 2.
(3) Parallel Query Processing

• Initialize the index registers in superposition and en-
tangle these with the data register across all subsets
as described in step 2.

• UseGrover’s Algorithm [19] to perform parallel searches.
This involves:

– Applying the oracle function to mark the ele-
ments that match the search criteria𝑈𝜔

��𝑥𝑖 𝑗 〉.
– Applying the diffusion operator to amplify the

probability amplitude of the indices of marked
states
𝑈𝐷

��𝑖 𝑗 〉.
(4) Measurement

• Measure the index registers to retrieve the indices of
the marked elements from the corresponding subsets.

This implementation is inspired by unary encoding in conjunc-
tion with parallel QRAM. These are further explained in the Section
5. Even though we require more qubits to store each subset of in-
dices into separate quantum registers, it enables the whole system
to be easily adapted for parallel implementation like in a distributed
quantum system [8].

The QPD is implemented using the Qiskit SDK [24]. In Figure 3
the circuit design of the algorithm as it is implemented in Qiskit is
shown. The Oracle operation simply flips the probability amplitude
of all searched states, effectively performing a rotation about |0⟩.
The Diffusion operation flips the indices of their corresponding
marked states back by rotating them 90◦ about the original index
state |𝑠⟩. This results in the operator for marking the states𝑈𝜔 and
the operator for amplifying their amplitudes𝑈𝐷 :

𝑈𝜔 = 𝐼 − 2
∑︁
𝑙

|𝜔𝑙 ⟩ ⟨𝜔𝑙 | (3)

𝑈𝐷 = 2 |𝑠⟩ ⟨𝑠 | − 𝐼 (4)

Where 𝐼 is the Identity Matrix and |𝜔𝑙 ⟩ is one of the searched
states.

A benchmark comparison between QPD and classical search
methods would involve evaluating the execution time for retriev-
ing multiple elements from a database. For classical searches, we
consider both unindexed linear searches with a time complexity of
𝑂 (𝑁) and indexed searches with a complexity of𝑂 (log(𝑁)). In con-
trast, the QPD utilises Grover’s Algorithm, providing a quadratic
speedup in comparison to unindexed search with a time complexity
of 𝑂 (

√︁
(𝑁)).

Addressing the Challenges
Following the challenges presented in Section 2, we discuss how
the proposed implementation of QPD and quantum data structures
designed and implemented in a similar way overcome these chal-
lenges in the short and long term.

Data Translation Overhead. To tackle the overhead of encoding clas-
sical data into quantum data, QPD offers a solution by leveraging its
partitioned structure. Instead of encoding the entire database, QPD
partitions it and encodes 𝑁

𝑑
entries in parallel, effectively reducing

the circuit depth through parallelisation. However, parallelisation is
just one approach to optimise the encoding step. There are already

 Classical System

User Interface

 Quantum System

Quantum Interface
Quantum Registers

Index
Registers

Data
RegistersDatabase

Subset
Translation

Query

2.Diffusion

1.Oracle

Index
Measurement

QPD Load

Index
ResponseResponse

Table

Indices Values

Figure 1: Architecture of the proposed implementation using QPD for Database Searches. The Quantum Interface and Quantum
System can be adjusted to implement other operations, algorithms and data structures

|𝑖0⟩ : H • •
|𝑖1⟩ : H • • •
|𝑖2⟩ : H •
|𝑖3⟩ : H
|𝑥0⟩ :
|𝑥1⟩ :
|𝑥2⟩ :

Figure 2: QPD circuit design of a split into four subsets, {(5, 6),
(2, 7), (1, 4), (3, 0)}. The first column of Hadamard-gates su-
perposes all index registers into |0⟩+|1⟩√

2

|𝑖0⟩ : H

QPD

0

QPD

0

Diffusion

0

|𝑖1⟩ : H 1 1 1

|𝑖2⟩ : H 2 2 2

|𝑖3⟩ : H 3 3 3

|𝑥0⟩ :
4

Oracle

0 4

|𝑥1⟩ :
5 1 5

|𝑥2⟩ :
6 2 6

𝑐𝑡𝑟𝑙 :
3

c0 : /1 0
��

c1 : /1 0
��

c2 : /1 0
��

c3 : /1 0
��

Figure 3: Algorithm circuit design as implemented in Qiskit.
The columns with custom gates QPD, Oracle and Diffusion

represent one iteration and are repeated
√︃

𝑁
𝑑
times. In this

example 𝑁 = 8 and 𝑑 = 4, which results in just one iteration.

QRAM implementations that reduce linear gate-cost to encode data
to logarithmic cost by [23]. Furthermore, if the encoded data is
sparse, an even further reduction is possible [15]. Depending on
the requirements, either solution can be chosen.

Hardware Limitations and Scalability. Addressing the limitations
of current quantum hardware, our proposed architecture adopts
a hybrid quantum-classical approach that optimises resource us-
age. The partitioning of the database reduces circuit depth which
is crucial with respect to coherence times. By initially filtering
the database, the qubit count is kept minimal, only providing the

relevant data to the quantum system. Automated optimisation of
quantum circuits using machine learning methods to reduce error
seems promising [22]. Furthermore, limited coherence times can
also be handled using temporal-planners to reduce the duration of
quantum circuits [38]. Applying methods like this circumvents the
current limitations of quantum hardware, while coherence times,
error rates and qubit counts improve over the coming years.

Scalability Analysis of QPD. The scalabiliy of QPD hinges on bal-
ancing the theoretical speedup with practical limitations of cur-
rent quantum hardware. QPD offers a quadratic speedup with its
𝑂 (

√︃
𝑁
𝑑
) scaling compared to classical 𝑂 (𝑁) algorithms, but this

advantage is tempered by increased qubit requirements and circuit
depth. Specifically, 𝑑 log(𝑁

𝑑
) qubits are needed for partitioned in-

dices, possibly posing a challenge for near-term quantum hardware.
Additionally, the circuit depth, mainly determined by 𝑂 (

√︃
𝑁
𝑑
)

Grover iterations [20], can strain systems with limited coherence
times.While partitioning reduces iterations, it increases qubit count,
necessitating a careful balance based on hardware capabilities. Scal-
ability is further constrained by data loading times, error accumu-
lation in deeper circuits, and computationally intensive classical
pre-processing. Future advancements in quantum error correction
and memory architectures will be essential to fully leverage QPD’s
potential for large-scale databases, but for now, its practical appli-
cability is limited by current hardware constraints.

4 VISION FOR QUANTUM DATA
MANAGEMENT

The vision we propose for quantum data management is to first de-
velop robust, versatile quantum data structures that are connected
to classical systems, transforming how data is stored, accessed
and manipulated. Followed by the development of quantum data
structures that can be applied in fully quantum-based systems, this,
in the near future, could involve the application of quantum data
structures in distributed systems using the quantum internet, en-
abling quantum computations with increased performance by using
shared resources. Ultimately, these data structures will build the

foundation of a quantum database offering entirely new ways to
store and handle data.

Hence, in the following are some of the key aspects of our vision.

QuantumData Structures. We envision creating quantum data struc-
tures that are not only analogous to classical ones but leverage the
unique advantages of quantum computing. These structures should
be capable of handling a wide range of data management tasks, from
simple retrievals to complex queries and optimisations. While there
have already been efforts in developing quantum data structures
for specific applications as shown in section 5. Future data struc-
tures should be versatile, scalable, and efficient, enabling quantum
computing to be easier applied in data management applications.

Hybrid Quantum-Classical Systems. The near-term future of quan-
tum computing lies in hybrid systems that combine the strengths
of classical and quantum processors. The proposed data structures
aim to bridge the translational gap between classical and quantum
data, representing one step further into transforming data as we
know it. To achieve practical and scalable quantum data manage-
ment, integrating quantum data structures with classical systems
is crucial. Our proposed vision includes middleware layers that
bridge classical and quantum components, facilitating efficient data
transfer and processing between these systems.

Middleware Layers and APIs: The middleware layer, or Quan-
tum Interface, comprises several key APIs and protocols to ensure
seamless communication and data transfer between classical and
quantum components. These include:

(1) Data Translation Layer: This layer converts classical
data structures and queries into quantum states suitable
for processing by quantum algorithms, ensuring efficient
data encoding and maintaining query integrity. This pro-
cess involves mapping database indices to qubit states and
preparing the quantum register accordingly.

(2) Task Scheduling API: This API manages the distribu-
tion of computational tasks between classical and quantum
processors, scheduling queries based on system load and
hardware status to ensure optimal resource utilization and
minimal latency.

(3) Result Aggregation Layer: This layer collects and pro-
cesses the results from quantum computations, translating
them back into a format understandable by classical sys-
tems. This layer handles the post-processing of quantum
data, including subsequent error correction and result veri-
fication. Besides subsequent error correction, a variety of
integrations for quantum error correction (QEC) already
exists, such as Boulder Opal by Q-CTRL [11] or Deltaflow
by Riverlane [5, 36].

Similar to the architecture described in Section 3 a more general
description for hybrid systems looks like this:

(1) Query Reception: The classical system receives the query
and performs initial preprocessing to determine relevant
data subsets. During this stage, the system analyzes the
query to identify which parts of the database are relevant.
It filters and preprocesses the data, ensuring that only the
necessary information is prepared for quantum processing.
This step helps to reduce the amount of data that needs

to be encoded into quantum states, optimizing the overall
process.

(2) Data Encoding: The Data Translation Layer encodes the
identified data subsets into quantum states. This involves
transforming classical data, such as database indices or
values, into qubits. The encoding process uses efficient
schemes to map the data accurately onto the quantum reg-
ister, ensuring that the quantum algorithm can process it
effectively. The goal is to represent the data in a way that
leverages quantum parallelism and interference.

(3) Quantum Execution: The encoded data is sent to the
Quantum System, where quantum algorithms (e.g., Grover’s
Algorithm) are executed. The quantum processor performs
the necessary computations on the encoded data, utilising
the inherent advantages of quantum mechanics, such as
superposition and entanglement, to search or analyze the
data more efficiently than classical algorithms could. This
step is the core of the quantum enhancement, providing
potential speedups and performance improvements.

(4) Result Decoding: The results from the quantum compu-
tation are decoded and processed by the Result Aggrega-
tion Layer. After the quantum computation is complete,
the results are measured and translated back into classical
information. The Result Aggregation Layer applies error
correction protocols to mitigate any quantum errors that
may have occurred during computation. It then verifies
the accuracy of the results, ensuring they are valid before
passing them back to the classical system.

(5) Final Output: The processed results are returned to the
classical system, which formats and presents them to the
user. The classical system takes the validated results from
the Result Aggregation Layer and formats them into a user-
friendly output, such as a report or visualization. This final
step ensures that the end user receives accurate and action-
able information derived from the quantum-enhanced data
processing.

Scalable Quantum Data Management Solutions. As quantum hard-
ware continues to evolve, scalable solutions will be essential for
practical deployment. We aim to develop quantum data structures
that can grow with advancements in quantum technology, ensuring
they remain relevant and efficient as qubit counts and coherence
times improve.

Real-World Applications. Our goal is to bridge the gap between
theoretical research and real-world applications. By focusing on
practical implementation, we aim to demonstrate the tangible ben-
efits of quantum data structures in the field of data management.

Quantum Databases. Quantum data structures promise not only
computational speed-ups but also a fundamental transformation
in how data is interacted with. Current efforts in practically im-
plementing quantum approaches are just the beginning and will
pave the way for more sophisticated applications, such as quantum
databases.

While classical computing is adept at managing our everyday
tasks, the inherent uncertainty in human nature presents a unique
opportunity for quantum computing to excel in handling complex

and probabilistic data more efficiently. Quantum data structures lay
the groundwork for a fully functional quantum database, leveraging
the principles of quantum mechanics. Existing efforts in research-
ing quantum databases mainly focus on the integration of classical
data into quantum systems [30]. However, foundational research
for fully quantum databases is lacking, despite their potential ad-
vantages beyond classical paradigms. Rather than entirely replacing
classical computing, quantum computing aims to complement and
enhance it, particularly in areas where its unique properties offer
significant advantages. Efficiently managing probabilistic data will
be a crucial application of such a quantum database, demonstrating
its potential to transform data management practices.

Future research should focus on refining these quantum data
structures, and developing efficient quantum-classical interfaces,
while quantum hardware improves. Real-world applications in ar-
eas such as dynamic resource allocation, probabilistic data manage-
ment, and database optimisation will serve as testbeds for these
advancements.

5 RELATEDWORK
In this section, we review the existing work on circuit-based quan-
tum data structures, namely the concept of QRAM and the more
generalised QRAG.

While the QPD concept leverages principles from Grover’s Al-
gorithm, it distinguishes itself through practical implementation
which necessitates robust data structures. This practical aspect is
notably absent in Grover and Radhakrishnan’s method [20]. Here,
the ideas of QRAM and QRAG are particularly relevant. QRAM
provides a foundational framework for storing and retrieving data
efficiently in quantum states, enabling the simultaneous querying
of multiple data entries, which is crucial for the parallelism inherent
in QPD. QRAG extends this by incorporating in-memory quantum
operations, facilitating data manipulation during retrieval, thus
optimizing the efficiency of quantum algorithms. Although QPD
is not a direct implementation of QRAM or QRAG, these concepts
are fundamental inspirations for developing practical quantum
data structures. They demonstrate how classical data can be effec-
tively represented and encoded within quantum circuits, laying the
groundwork for QPD’s architecture and its ability to perform data
retrieval operations.

5.1 Quantum Random Access Memory
QRAM is an analogous concept to classical RAM in the realm of
quantum data structures, providing a bridge between classical and
quantum information for quantum computing. QRAM is designed
to enable efficient access of data stored in quantum states.

At its core, QRAM allows for the storage and retrieval of data
where the pair of address and data (𝑖, 𝑥𝑖) can exist in superposition.
This means that QRAM can query and process multiple data en-
tries simultaneously, which is the foundation for most quantum
algorithms [18].

The relevance of QRAM to our vision lies in its role as a basic idea
to developmore advanced circuit-based quantum data structures. By
understanding QRAM, we can built upon its fundamental principles
in acting as a translational layer between classical and quantum

data. This translational layer is required to power the speed-up
promised by quantum algorithms.

Circuit-based QRAM currently encompasses four different types
of implementations as described in [23] and shown in Table 1.

Unary Encoding: The optimised version of this approach uses
an efficient recursive structure for QRAM control [4]. In the base
case of a one-element controlled look-up is just a CNOT gate, which
simplifies the implementation. It is characterised by its low qubit
count and simplicity, making it an attractive option to start with.
However, it requires auxiliary qubits for address comparison, which
adds complexity.While it is efficient in terms of qubit count and gate
usage, the need for auxiliary qubits for each address comparison can
become cumbersome as the memory size increases. The recursive
structure ensures logarithmic depth, but the overall complexity
increases linearly with the size of the memory.

Bucket-Brigade: This approach employs a binary tree structure
for memory access, using controlled-SWAP gates along with CNOT
and Toffoli gates [18]. It is known for its favorable error scaling
with logarithmic depth and efficient memory access routing. How-
ever, it also involves significant complexity in uncomputation and
managing ancillary qubits. Additionally, it requires a large number
of ancilla qubits for the routing tree. Despite these challenges, the
scalability of the Bucket-Brigade method is high. It scales well with
logarithmic depth, making it efficient for large memory sizes. The
logarithmic error scaling further enhances its suitability for large-
scale QRAM implementations, although practical challenges arise
from its complexity.

Select-Swap: This method reduces the LOAD-count using a pag-
ing analogy similar to classical memory paging. This involves first
accessing a larger segment of memory and then performing a sec-
ondary, more detailed access within this segment. Specifically, this
method uses a combination of CNOT, SWAP, and Toffoli gates. By
reducing the number of LOAD-gates required, this approach makes
the overall quantum circuit more efficient in terms of gate opera-
tions. However, it increases the number of ancillary qubits needed
and adds complexity in managing these qubits and the paging pro-
cess. Scalability is moderate to high, offering a balance between
efficiency and complexity for medium to large implementations,
though the ancillary qubit requirements and paging complexity
grow significantly with larger memory sizes.

Parallel: Parallel QRAM implements parallel circuits to allow
simultaneous memory access, using various quantum gates in par-
allel. This parallel access significantly reduces overall access time,
potentially enhancing performance. However, it introduces com-
plexity in managing parallel circuits and requires sophisticated
control mechanisms to handle these operations. It is designed to
handle large-scale implementations by efficiently managing very
large memory sizes through parallel processing. Despite the chal-
lenges in managing parallel circuits and the need for sophisticated
control mechanisms, its parallel nature makes it highly scalable.

Quantum Data Centers with QRAM. Recent research has introduced
the concept of Quantum Data Centers (QDCs), which integrate
QRAM with quantum networks [26, 27]. QDCs provide a versatile
platform for applications ranging from multiparty private quantum
communication to distributed sensing through data compression.

Implementation Scalability Advantages Challenges
Unary Encoding [4] 𝑂 (𝑁) low Qbit count, simple address comparison
Bucket-Brigade [18] 𝑂 (log(𝑁)) favorable error scaling complex uncomputation

log depth ancilla management
Select-Swap [28] reduced LOAD-count efficient ancilla Qbit requirements
Parallel [8] scales well in terms of access time reduced access time circuit management

Table 1: Comparison of circuit-based QRAM Implementations.

5.2 Quantum Random Access Gate
QRAGs extend the concept of QRAM by integrating quantum com-
putational capabilities directly into the memory access process.
While QRAM facilitates the storage and retrieval of classical or
quantum data using addresses in superposition, QRAGs elevate this
functionality by enabling in-memory quantum operations. This in-
tegration allows for quantum data manipulation and computation
to occur during the memory access phase, optimizing the efficiency
and scope of quantum algorithms.

QRAGs are designed to address the need for more sophisticated
data structures that not only fetch quantum data efficiently but also
perform computational tasks as part of the retrieval process. This
is particularly beneficial in quantum algorithms that require tight
integration between data access and processing, such as quantum
search algorithms and quantum machine learning applications. By
embedding quantum gate operations within the memory access
architecture, QRAGs reduce the overhead associated with separate
computation and data retrieval steps, thus enhancing the overall
performance of the quantum system [10].

Despite the increased complexity, QRAGs offer significant ad-
vantages in terms of computational capabilities and operational
efficiency, making them a foundational concept in the development
of quantum data structures.

Definition and Operation. QRAG typically operates on three key
inputs:

• Index Register (|𝑖⟩): Identifies the memory location or
address.

• Data Register (|𝑥⟩): Holds the actual data or a portion of
it.

• Swap qubit (|𝑏⟩): Acts as an intermediate qubit to manipu-
late an accessed data qubit |𝑥𝑖 ⟩.

The gate operation then executes the mapping:

|𝑖, 𝑏, 𝑥⟩ → |𝑖, 𝑥𝑖 , 𝑥1 · · · 𝑥𝑖−1, 𝑏, 𝑥𝑖+1 · · · 𝑥𝑚⟩

In this mapping, the value at the indexed position (𝑥𝑖) is accessed
and potentially modified based on the swap qubit |𝑏⟩, while the rest
of the data register remains unaffected except at position 𝑖 .

Formally, by this definition the presented QRAM and also our
proposed QPD are QRAG implementations for a specific |𝑏⟩.

Beyond Classical Data Structures. QRAGs present a more dynamic
alternative to simple QRAM, with the possibility to integrate com-
bined properties of classical data structures into quantum comput-
ing. This has already been shown for a hybrid implementation of a
QRAG that acts as a hash table and a skip list in combination [1].

Probabilistic data structures like skip lists can benefit signifi-
cantly from the inherent properties of quantum computing. Com-
bining a skip list with a hash table in a quantum implementation
does not necessarily offer advantages over a classical hash table by
default. However, with larger datasets, classical hash tables tend
to become less efficient due to increased collision handling and
rehashing overheads. These inefficiencies can be significantly miti-
gated in a quantum implementation, where quantum parallelism
and superposition can enhance data retrieval and management.

This is just one example of how QRAGs can offer the concep-
tual foundation for data structures that are tightly integrated with
quantum algorithms.

6 CONCLUSION
In this paper, we have explored the promising frontier of quantum
data structures for enhanced database performance, leveraging the
unique properties of quantum mechanics, such as superposition
and entanglement. By developing novel quantum data structures
like the Quantum Partitioned Database (QPD), we demonstrate the
practical application of quantum computing in database search.

Our work is inspired by foundational concepts such as QRAM
and QRAG, providing a first starting point for practical implementa-
tion of quantum algorithms in data management. The proposed hy-
brid quantum-classical systems serve as an immediate step towards
realising quantum computing’s benefits, bridging the gap between
current technological capabilities and future advancements.

In summary, bridging the gap between theoretical research and
practical implementation will be essential for leveraging quantum
computing technologies effectively. While quantum computing
may not replace classical computing, it promises to revolutionise
data interaction and expand our computational capabilities through
innovative, not just performance-driven, approaches.

ACKNOWLEDGMENTS
We thank Georgios Christodoulou for contributing by providing
valuable feedback with his extensive knowledge in the field of Data
Indexing.

REFERENCES
[1] Andris Ambainis. 2014. Quantum walk algorithm for element distinctness.

arXiv:quant-ph/0311001 [quant-ph]
[2] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks. 1964. Architecture of the IBM

System/360. IBM Journal of Research and Development 8, 2 (1964), 87–101. https:
//doi.org/10.1147/rd.82.0087

[3] Sahel Ashhab. 2022. Quantum state preparation protocol for encoding classical
data into the amplitudes of a quantum information processing register’s wave
function. Physical Review Research 4, 1 (Feb. 2022). https://doi.org/10.1103/
physrevresearch.4.013091

[4] Ryan Babbush, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean,
Alexandru Paler, Austin Fowler, and Hartmut Neven. 2018. Encoding Electronic
Spectra in Quantum Circuits with Linear T Complexity. Physical Review X 8, 4
(Oct. 2018). https://doi.org/10.1103/physrevx.8.041015

[5] Ben Barber, Kenton M. Barnes, Tomasz Bialas, Okan Buğdaycı, Earl T. Camp-
bell, Neil I. Gillespie, Kauser Johar, Ram Rajan, Adam W. Richardson, Luka
Skoric, Canberk Topal, Mark L. Turner, and Abbas B. Ziad. 2023. A real-time,
scalable, fast and highly resource efficient decoder for a quantum computer.
arXiv:2309.05558 [quant-ph] https://arxiv.org/abs/2309.05558

[6] R. Barends, L. Lamata, J. Kelly, L. García-Álvarez, A. G. Fowler, A. Megrant,
E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen,
B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O’Malley, C. Quintana, P.
Roushan, A. Vainsencher, J.Wenner, E. Solano, and JohnM.Martinis. 2015. Digital
quantum simulation of fermionic models with a superconducting circuit. Nature
Communications 6, 1 (08 Jul 2015), 7654. https://doi.org/10.1038/ncomms8654

[7] Kenton Barnes, Anton Buyskikh, Nicholas Chen, Gabriel Gallardo, Marco
Ghibaudi, Matthew Ruszala, Daniel Underwood, Abhishek Agarwal, Deep Lall,
Ivan Rungger, and Nikolaos Schoinas. 2023. Optimising the quantum/classical
interface for efficiency and portability with a multi-level hardware abstrac-
tion layer for quantum computers. EPJ Quantum Technology 10 (09 2023).
https://doi.org/10.1140/epjqt/s40507-023-00192-z

[8] Robert Beals, Stephen Brierley, Oliver Gray, Aram W. Harrow, Samuel Kutin,
Noah Linden, Dan Shepherd, and Mark Stather. 2013. Efficient distributed quan-
tum computing. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 469, 2153 (May 2013), 20120686. https://doi.org/10.1098/
rspa.2012.0686

[9] A.G. Bromley. 1998. Charles Babbage’s Analytical Engine, 1838. IEEE Annals of
the History of Computing 20, 4 (1998), 29–45. https://doi.org/10.1109/85.728228

[10] Harry Buhrman, Bruno Loff, Subhasree Patro, and Florian Speelman. 2022. Mem-
ory Compression with Quantum Random-Access Gates. In Theory of Quantum
Computation, Communication, and Cryptography. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. https://doi.org/10.4230/LIPICS.TQC.2022.10

[11] Andre R. R. Carvalho, Harrison Ball, Michael J. Biercuk, Michael R. Hush, and
Felix Thomsen. 2021. Error-Robust Quantum Logic Optimization Using a Cloud
Quantum Computer Interface. Phys. Rev. Appl. 15 (Jun 2021), 064054. Issue 6.
https://doi.org/10.1103/PhysRevApplied.15.064054

[12] Charles Q. Choi. 2023. IBM’s Quantum Leap: The Company Will Take Quantum
Tech Past the 1,000-Qubit Mark in 2023. IEEE Spectrum 60, 1 (2023), 46–47.
https://doi.org/10.1109/MSPEC.2023.10006669

[13] Douglas Comer. 1979. Ubiquitous B-Tree. ACM Comput. Surv. 11, 2 (jun 1979),
121–137. https://doi.org/10.1145/356770.356776

[14] Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and Clifford Seth
Stein. 2009. Introduction to Algorithms (third ed.). MIT Press. 221–252 pages.
https://mitpress.mit.edu/books/introduction-algorithms-third-edition

[15] Tiago M. L. de Veras, Leon D. da Silva, and Adenilton J. da Silva. 2022. Double
sparse quantum state preparation. Quantum Information Processing 21, 6 (June
2022). https://doi.org/10.1007/s11128-022-03549-y

[16] Simon J. Devitt. 2016. Performing quantum computing experiments in the cloud.
Phys. Rev. A 94 (Sep 2016), 032329. Issue 3. https://doi.org/10.1103/PhysRevA.94.
032329

[17] Richard P Feynman. 1982. Simulating physics with computers. International
journal of theoretical physics 21, 6/7 (1982), 467–488.

[18] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. 2008. Quantum Random
Access Memory. Physical Review Letters 100, 16 (April 2008). https://doi.org/10.
1103/physrevlett.100.160501

[19] Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search.
arXiv:quant-ph/9605043 [quant-ph]

[20] Lov K. Grover and Jaikumar Radhakrishnan. 2004. Quantum search for multiple
items using parallel queries. arXiv:quant-ph/0407217 [quant-ph]

[21] A. Gueddana, R. Chatta, and M. Attia. 2014. CNOT-based design and query
management in quantum relational databases. International Journal of Quantum
Information 12 (2014), 1450023. https://doi.org/10.1142/S0219749914500233

[22] Gavin S. Hartnett, Aaron Barbosa, Pranav S. Mundada, Michael Hush, Michael J.
Biercuk, and Yuval Baum. 2024. Learning to rank quantum circuits for hardware-
optimized performance enhancement. arXiv:2404.06535 [quant-ph]

[23] Samuel Jaques and Arthur G. Rattew. 2023. QRAM: A Survey and Critique.
arXiv:2305.10310 [quant-ph]

[24] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J. Wood, Jake
Lishman, Julien Gacon, Simon Martiel, Paul D. Nation, Lev S. Bishop, Andrew W.
Cross, Blake R. Johnson, and Jay M. Gambetta. 2024. Quantum computing with
Qiskit. https://doi.org/10.48550/arXiv.2405.08810 arXiv:2405.08810 [quant-ph]

[25] Md Khalik khan and Dr. Sapna Jain. 2023. ERROR CORRECTION USING QUAN-
TUM COMPUTING. International Journal of Engineering Applied Sciences and
Technology (2023). https://doi.org/10.33564/ijeast.2023.v08i01.014

[26] Junyu Liu, Connor T. Hann, and Liang Jiang. 2023. Data centers with quantum
random access memory and quantum networks. Phys. Rev. A 108 (Sep 2023),
032610. Issue 3. https://doi.org/10.1103/PhysRevA.108.032610

[27] Junyu Liu and Liang Jiang. 2024. Quantum Data Center: Perspectives. IEEE
Network (2024), 1–1. https://doi.org/10.1109/mnet.2024.3397836

[28] Guang Hao Low, Vadym Kliuchnikov, and Luke Schaeffer. 2018. Trad-
ing T-gates for dirty qubits in state preparation and unitary synthesis.
arXiv:1812.00954 [quant-ph]

[29] Ofir Milul, Barkay Guttel, Uri Goldblatt, Sergey Hazanov, Lalit M. Joshi, Daniel
Chausovsky, Nitzan Kahn, Engin Çiftyürek, Fabien Lafont, and Serge Rosenblum.
2023. Superconducting Cavity Qubit with Tens of Milliseconds Single-Photon
Coherence Time. PRX Quantum 4 (Sep 2023), 030336. Issue 3. https://doi.org/10.
1103/PRXQuantum.4.030336

[30] Carla Rieger, Michele Grossi, Gian Giacomo Guerreschi, Sofia Vallecorsa, and
Martin Werner. 2024. Operational Framework for a Quantum Database.
arXiv:2405.14947 [quant-ph]

[31] Sudip Roy, Lucja Kot, and Christoph E. Koch. 2013. Quantum Databases. In
Conference on Innovative Data Systems Research. https://api.semanticscholar.org/
CorpusID:16242503

[32] Manuel Schönberger, Stefanie Scherzinger, andWolfgangMauerer. 2023. Ready to
Leap (by Co-Design)? Join Order Optimisation onQuantumHardware. Proc. ACM
Manag. Data 1, 1, Article 92 (may 2023), 27 pages. https://doi.org/10.1145/3588946

[33] Manuel Schönberger, Immanuel Trummer, and Wolfgang Mauerer. 2023.
Quantum-Inspired Digital Annealing for Join Ordering. Proc. VLDB Endow.
17, 3 (nov 2023), 511–524. https://doi.org/10.14778/3632093.3632112

[34] Xie Shi-man and ShangXin-zhi. 2012. The Building andOptimization of Quantum
Database. Physics Procedia 25 (2012), 1602–1609. https://doi.org/10.1016/j.phpro.
2012.03.282 International Conference on Solid State Devices and Materials
Science, April 1-2, 2012, Macao.

[35] Xie Shi-man and ShangXin-zhi. 2012. The Building andOptimization of Quantum
Database. Physics Procedia 25 (2012), 1602–1609.

[36] Luka Skoric, Dan E. Browne, Kenton M. Barnes, Neil I. Gillespie, and Earl T.
Campbell. 2023. Parallel window decoding enables scalable fault tolerant
quantum computation. Nature Communications 14, 1 (03 Nov 2023), 7040.
https://doi.org/10.1038/s41467-023-42482-1

[37] Immanuel Trummer and Christoph Koch. 2015. Multiple Query Optimization on
the D-Wave 2X Adiabatic Quantum Computer. arXiv:1510.06437 [cs.DB]

[38] Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. 2018. Compiling
quantum circuits to realistic hardware architectures using temporal planners.
Quantum Science and Technology 3, 2 (Feb. 2018), 025004. https://doi.org/10.
1088/2058-9565/aaa331

[39] Zhiyao Wang. 2023. Comparison of Quantum and Classical Algorithm in Search-
ing a Number in a Database Case. Highlights in Science, Engineering and Technol-
ogy 38 (03 2023), 370–376. https://doi.org/10.54097/hset.v38i.5831

[40] A. Younes. 2013. Database Manipulation Operations on Quantum Systems. 1
(2013), 9–17. https://doi.org/10.12785/QIR/010102

https://arxiv.org/abs/quant-ph/0311001
https://doi.org/10.1147/rd.82.0087
https://doi.org/10.1147/rd.82.0087
https://doi.org/10.1103/physrevresearch.4.013091
https://doi.org/10.1103/physrevresearch.4.013091
https://doi.org/10.1103/physrevx.8.041015
https://arxiv.org/abs/2309.05558
https://arxiv.org/abs/2309.05558
https://doi.org/10.1038/ncomms8654
https://doi.org/10.1140/epjqt/s40507-023-00192-z
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1098/rspa.2012.0686
https://doi.org/10.1109/85.728228
https://doi.org/10.4230/LIPICS.TQC.2022.10
https://doi.org/10.1103/PhysRevApplied.15.064054
https://doi.org/10.1109/MSPEC.2023.10006669
https://doi.org/10.1145/356770.356776
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://doi.org/10.1007/s11128-022-03549-y
https://doi.org/10.1103/PhysRevA.94.032329
https://doi.org/10.1103/PhysRevA.94.032329
https://doi.org/10.1103/physrevlett.100.160501
https://doi.org/10.1103/physrevlett.100.160501
https://arxiv.org/abs/quant-ph/9605043
https://arxiv.org/abs/quant-ph/0407217
https://doi.org/10.1142/S0219749914500233
https://arxiv.org/abs/2404.06535
https://arxiv.org/abs/2305.10310
https://doi.org/10.48550/arXiv.2405.08810
https://arxiv.org/abs/2405.08810
https://doi.org/10.33564/ijeast.2023.v08i01.014
https://doi.org/10.1103/PhysRevA.108.032610
https://doi.org/10.1109/mnet.2024.3397836
https://arxiv.org/abs/1812.00954
https://doi.org/10.1103/PRXQuantum.4.030336
https://doi.org/10.1103/PRXQuantum.4.030336
https://arxiv.org/abs/2405.14947
https://api.semanticscholar.org/CorpusID:16242503
https://api.semanticscholar.org/CorpusID:16242503
https://doi.org/10.1145/3588946
https://doi.org/10.14778/3632093.3632112
https://doi.org/10.1016/j.phpro.2012.03.282
https://doi.org/10.1016/j.phpro.2012.03.282
https://doi.org/10.1038/s41467-023-42482-1
https://arxiv.org/abs/1510.06437
https://doi.org/10.1088/2058-9565/aaa331
https://doi.org/10.1088/2058-9565/aaa331
https://doi.org/10.54097/hset.v38i.5831
https://doi.org/10.12785/QIR/010102

	Abstract
	1 Introduction
	2 Challenges
	3 QPD: A Quantum Data Structure for Search
	4 Vision for Quantum Data Management
	5 Related Work
	5.1 Quantum Random Access Memory
	5.2 Quantum Random Access Gate

	6 Conclusion
	Acknowledgments
	References

