
I. Introduction

The information age has brought along an explosion of 
Big Data [1], from multiple sources in every aspect of 
our lives: human activity signals from wearable sensors 
and personal devices, experiments in particle discovery 

research and stock market data systems are few examples. Big 
social data analysis [2] is the area of research focusing on collect-
ing, examining and processing large multi-modal and multi-
source datasets in order to discover patterns/correlations and 
extract information from the Social Web. This is usually accom-
plished through the use of computationally expensive super-
vised and unsupervised machine learning algorithms that learn 
from the available data (e.g., Support Vector Machines-SVMs 
[3], Artificial Neural Networks-ANNs, [4], k-Nearest Neigh-
bors-kNN [5], and Random Forests-RF [6]) that are not able to 
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Abstract—The science of opinion analysis based on data 
from social networks and other forms of mass media has 
garnered the interest of the scientific community and the 
business world. Dealing with the increasing amount of 
information present on the Web is a critical task and requires 
efficient models developed by the emerging field of sentiment 
analysis. To this end, current research proposes an efficient 
approach to support emotion recognition and polarity 
detection in natural language text. In this paper, we show how 
to exploit the most recent technological tools and advances in 
Statistical Learning Theory (SLT) in order to efficiently build an 
Extreme Learning Machine (ELM) and assess the resultant 
model’s performance when applied to big social data analysis. ELM 
represents a powerful learning tool, developed to overcome some 
issues in back-propagation networks. The main problem with ELM 
is in training them to work in the event of a large number of 
available samples, where the generalization performance has to be 
carefully assessed. For this reason, we propose an ELM implementation 
that exploits the Spark distributed in memory technology and show 
how to take advantage of the most recent advances in SLT in order to 
address the issue of selecting ELM hyperparameters that give the best 
generalization performance.
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handle current data volumes [7]. Parallel approaches have been 
proposed in order to boost processing speeds [8] but this clearly 
requires technologies that support distributed computations.

Extreme learning machine (ELM) [9] is an emerging learn-
ing paradigm, presenting an efficient unified solution to gener-
alized feed-forward neural networks. Unlike ANNs, however, 
ELM cannot be easily parallelized, due to the presence of a 
pseudo-inverse calculation [10]. Therefore, this paper aims to 
find a reliable method to realize a parallel implementation of 
ELM that can be applied to large datasets typical of Big Data 
problems. An example of parallel ELM implementation for 
regression based on the MapReduce framework can be found 
in [11], while [12] provides a parallel ensemble method for an 
Online Sequential ELM variant.

Several technologies that exploit multiple levels of parallelism 
(e.g., multi-core, many-core, GPU, cluster, etc.) are currently avail-
able [13]–[16]. Spark [17] in combination with cloud computing 
[18], [19] is a state-of-the-art framework for high performance 
parallel computing designed to efficiently deal with iterative com-
putational procedures that recursively perform operations over the 
same data, such as supervised machine learning algorithms.

Apart from building supervised learning models efficiently 
and with scalable algorithms, another important issue in Big 
Data is how to effectively and efficiently assess the performance 
of a predictive model. Data-driven models exploit non-para-
metric inference, where it is expected that an effective model 
would stem directly from the data, without any assumption on 
the model family nor any other information that is external to 
the dataset itself [20]. With the advent of the Big Data era, this 
approach has increasingly gained popularity, with the belief that 
effective predictive models, with the desired accuracy, can be 
generated by simply collecting larger volumes of data (see, as an 
example, [21] for some insights on this provocative and inexact 
but, unfortunately, widespread belief).

Statistical Learning Theory (SLT) addresses the problem of 
assessing the performance of a predictive model, by trying to 
find necessary and sufficient conditions for non-parametric 
inference to build predictive models from data [22]–[26] or, in 
the language of SLT, learn an optimal model from data. For a 
long time, SLT was considered only a theoretical, albeit very 
sound and deep, statistical framework, without any real applica-
bility to practical problems [27]. With important advances in 
this field over the last decade [28], it has been shown that SLT 
can provide practical answers, at least when targeting the infer-
ence of data-driven models for classification purposes [29], [30].

II. Related Work
In recent years, opinions and sentiments of the masses have 
increasingly been publicly conveyed through social networks, 
web communities, blogs, wikis, and other online collaborative 
media. This has deeply changed the way people share knowl-
edge and communicate experiences. As a result, the distillation 
of useful information from the massive amount of opinions is a 
key tool for marketers trying to create a product, brand, or 
organization image or identity in the minds of their customers. 

This has led to an in-depth development of the field of senti-
ment analysis, which deals with information retrieval and 
knowledge discovery from text using data mining and natural 
language processing (NLP) techniques [31].

Main approaches to big social data analysis can be broadly 
grouped into two categories: knowledge-based techniques [32] 
and statistical methods [33]. While the former mainly leverage 
on ontologies [34], lexicons [35], semantic networks [36], or 
patterns [37], the latter are gradually shifting to the adoption of 
ELM, deep learning and convolutional neural network (CNN).

In particular, Tang et al. [38] developed a CNN-based 
approach to obtain word embeddings for words popularly used 
in tweets, then fed them into the network for sentiment analy-
sis. A deep CNN for sentiment detection in short text was also 
proposed by Santos et al. [39]. The approach based on Senti-
ment Specific Word Embeddings [40] considers word embed-
dings based on a sentiment corpora: this means including more 
affective clues than regular word vectors, thus producing a bet-
ter result. The importance of studying the granularity of emo-
tions in social networks is underlined by the new project 
‘Reactions’, developed by Facebook: instead of only the Like 
button, a more complete choice of emotions is proposed (e.g., 
‘love’, ‘fun’, ‘anger’, ‘surprise’, ‘sadness’). A similar approach was 
adopted by Poria et al. [41], which extracted features from short 
texts, based on the activation values of an inner layer of a deep 
CNN, and used these for multimodal sentiment analysis.

III. Preliminary Definitions
Let us first focus on the binary classification problem [4], [22], 
[42]. Let RX d!  and { }1Y !!  be, respectively, the input 
and the output spaces. We consider a set of labeled independent 
and identically distributed (i.i.d.) data , ,z zDn n1 f= " , of size 
n, where ( , )xz y, ,i n i i1 =f! " ,  with x Xi !  and ,y Yi !  sampled 
from an unknown distribution μ. As we are targeting at Big 
Data problems [7], [43], [44], we will focus on the case where n 
is very large. For later use we also define two modified training 
sets: , , , , ,z z z zDn

i
i i n1 1 1f f= - +" ,  and { , , ,z zDn

i
i1 1f= -  

,, , , }z z zi i n1 f+l  where, respectively, the i-th element is 
removed or replaced by another sample [25].

A learning algorithm ,AH  characterized by a set of hyper-
parameters H  that must be tuned, maps Dn  into a function 
:  f A( , )D Hn  from X  to .Y  In particular, AH  allows designing 
f FH!  and the class of functions ,FH  which is generally 

unknown (and depends on )H  [26], [28], [30]. The accuracy 
of a function :  f A( , )D Hn  in representing the hidden relation-
ship μ is measured with reference to a loss function 
( , ): ( ) [ , ]zf 0 1F X YH "# #,  [25]. In particular, since we are 

dealing with binary classification problems, the loss function 
(called the hard loss) simply counts the number of misclassified 
examples [22], [45]: ( , ) [ ( ) ] , .xzf yf 0 0 1H, # != " ,

The quantity which we are interested in is the generaliza-
tion error [22], [30], namely the error that a model will per-
form on new data generated by n  and previously unseen 
( ) ( , zL f f ) .Ez,=  Unfortunately, since n  is unknown, ( )L f  

cannot be computed and, consequently, must be estimated. 
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Two common empir ical estimators are the empir ical 
( ) / ( , )zL f n f1

zemp Dn
,=

!
t /  [22] and leave-one-out ( )L floo =t  
/ ( , )zn1 A( , )z iD HD{ , , }

n
i

i n n1
,

!f!
/ [46] errors.

IV. Extreme Learning Machines
The ELM approach [9], [47], [48] was introduced to overcome 
problems posed by the back-propagation training algorithm 
[49]; specifically, potentially slow convergence rates, the criti-
cal tuning of optimization parameters, and the presence of 
local minima that call for multi-start and re-training strategies. 
In this section, we recall conventional ELM and then adapt it 
to the Big Data framework. ELM was originally developed for 
the single hidden layer feedforward neural networks [50], [51] 
and then generalized in order to cope with cases where ELM 
is not neuron alike:

	 ( ) ( ),x w xf gj
j

h

j
1

=
=

/ � (1)

where : , { , , }g j h1R Rj
d " f!  is the hidden layer output 

corresponding to the input sample x and w is the output 
weight vector between the hidden layer and the output layer.

In our case, the input layer has d neurons and connects to 
the hidden layer (having h neurons) through a set of weights

	 , { , , },v j h1Rj
d f! ! � (2)

the j-th hidden neuron embeds a bias term,

	 , { , , },v j h1j
0 f! � (3)

and a nonlinear activation function, : .R R"{  Thus the neu-
ron’s response to an input stimulus, ,x  is:

	 ( ), { , , } .v x v j h1j j
0 f!{ +· � (4)

Note that Eq. (4) can be further generalized to include a 
wider class of functions [50], [51], [52]; therefore, the 
response of a neuron to an input stimulus x can be generical-
ly represented by any nonlinear piecewise continuous func-
tion characterized by a set of parameters. In ELM, these 
parameters v( j  and )v j0  are set randomly. A vector of weighted 
links, ,w Rh!  connects the hidden neurons to the output 
neuron without any bias. The overall output function, ( ),xf  
of the network is:

	 ( ) ( ).x w v xf vj j jj

h 0
1

{= +
= ·/ � (5)

It is convenient to define an activation matrix, ,V Rn h! #  
such that the entry V ,i j  is the activation value of the j-th hid-
den neuron for the i-th input pattern. The V matrix is:
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In the ELM model, the quantities { , }v vj j
0  in Eq. (4) are set 

randomly and are not subject to any adjustment, and the quan-
tity w in Eq. (5) is the only degree of freedom. Hence, the 
training problem reduces to minimization of the convex cost:

	 ) .w w yargmin V 2
w

= - � (7)

A matrix pseudo-inversion yields the unique L2 solution, as 
proven in [51], [53]:

	 ) .w yV= + � (8)

The simple, efficient procedure to train the ELM therefore 
involves the following steps:
1)	Randomly generate hidden node parameters (in or case 

v i  and bias )vi0  for each hidden neuron;
2)	Compute the activation matrix V, of Eq. (6);
3)	Compute the output weights by solving the pseudo-

inverse problem of Eq. (8).
Despite the apparent simplicity of the ELM approach, the 

crucial result is that even random weights in the hidden layer 
endow a network with notable representation ability. Moreover, 
the theory derived in [53] proves that regularization strategies 
can further improve the approach’s generalization performance. 
As a result, the cost function of Eq. (7) is augmented by a regu-
larization factor as follows:

	 ) ,w w y wargmin V and2
w

= - � (9)

where w  can be any suitable norm of the output weights 
[53]. A common approach is then to use the L2 regularizer

	 ) ,w w y wargmin V 2 2
w

m= - + � (10)

and consequently the vector of weights )w  is then obtained as follows:

	 ) ( ) ,w yV V I VT T1
m= + - � (11)

where I Rh h! #  is an identity matrix.

V. ELM for Big Data on Spark
Spark [17] is a state-of-the-art framework for high perfor-
mance memory parallel computing designed to efficiently 
deal with iterative computational procedures that recursively 
perform operations over the same data [14], [17], [54]. One 
recent solution for Big Data analytics is the use of cloud com-
puting [19], [55], [56], which makes available hundreds or 
thousands of machines to provide services such as computing 
and storage.

Various cluster management options are available for run-
ning Spark [57]. In this work, we chose to deploy Spark in a 
Hadoop cluster. The selected Hadoop architecture was com-
posed of NM slave machines and two additional machines that 
run as masters: one for controlling HDFS and the other for 
resource management.
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The software packages installed on each machine were 
Hadoop 2.7.1 and Spark 1.5.1. In order to exploit this archi-
tecture, we had to modify the ELM formulation to cope with 
the main computational issues of ELM:
(I)		computing the matrix V of Eq. (6);
(II)	finding the solution of )w  of Eq. (11).

The main idea behind the Spark technology is that we have 
to reduce access to the disk as much as possible and make as 
much computation as possible in memory. Moreover, since 
Spark is designed to efficiently deal with iterative computation-
al procedures that recursively perform operations over the same 
data, it may not be efficient to compute the solution in the 
form of Eq. (11).

Hence, let us start from issue (II). Instead of solving the 
problem of Eq. (9) with the approach of Eq. (11), let us adopt a 
Stochastic Gradient Descent (SGD) algorithm. The SGD algo-
rithm is a very general optimization algorithm, which is able to 
solve a problem efficiently in the following form:

	 ( , ( ), ) ( ),w wxmin C y R,w b
i

n

i i
1

z m+
=

/ � (12)

where ( )wR  is a regularizer [58]–[61] and ( , ( ), )w xC yi iz  is a 
convex relaxation of the Hard Loss Function [45]. m balances the 
tradeoff between the over- and underfitting tendency of the 
algorithm. Based on the choice of ( )wR  and ( , ( ), )w xC yi iz ,  
we can retrieve different algorithms. If ( )wR 0=  and 
( , ,( ), ) ( ( ) )w wx xC y yi i

T
i i

2
z z= -  we get the ELM formulation 

of Eq. (7) while if ( )w wR 2
2=  and ( , ( ), )w xC yi iz = 

,( ( ) )w x yT
i i

2
z -  we get the ELM formulation of Eq. (9). Other 

possible choices are: SVM [62], Regularized Least Squares [63], 
Least Squares SVM [64], Logistic Regression [65], Lasso [60], 
Elastic Net [61], etc. In Table 1 we report a series of possible 
choices of ( )wR  and ( , ( ), ) .w xC yi iz  The SGD algorithm for 
optimizing Problem (12) is reported in Algorithm 1 [44]. In 
Algorithm 1, x and ern it  are parameters related with the speed of 
the optimization algorithms. Therefore, usually x and ern it  are set 
based on the experience of the user. In any case x and ern it  can 
be seen as other regularization terms as m since they are connect-
ed with the early stopping regularization technique [66], [67].

Algorithm 1 is well-suited for implementation in Spark and 
many of these tools are already available in MLib [68]. Basically, 
the implementation of Algorithm 1 reported in Algorithm 2 is 
an application of three functions: a filter (for the gradients that 
require an IF condition in Table 1), a map for the computation 
of the gradient and a reduction function for the sum of each 
single gradient.

The main problem of Algorithm 2 is the computation and 
storage of V. If h d%  it means that V Rn h! #  will be much 
smaller than the dataset which belongs to .Rn d#  In this case, it 
is more appropriate to compute it before the SGD algorithms 

Table 1 Possible Regularizers and Convex Approximations 
of the Hard Loss Function.

(a) Regularizers

w( )R w( )w R
j2
2

R1 0 0 

R2 w 1 ( )wsign j

R3 w 2
w
w j

2

R4 w w( )
( , )
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0 1

2 1
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h h

h
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w
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w1 signj
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2
h h+ -

R5 w , [ , ),p
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0
1 convex

p
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(b) Convex Approximations of the Hard Loss Function

w x( , ( ), )C yi iz w x( , ( ), )w C y
j

i i2
2 z

L1 w x( ) yT
i iz - w( ( ) )x y xsign ,

T
i i i jz -

L2 w x( ( ) )yT
i i

2z - w( ( ) )x y x2 ,
T

i i i jz -

L3 w x[ , ( )]max y0 1 i
T

iz- w ( )xy x y
0

1if
otherwise

,i i j i
T

i #z-'

L4 w x{ [ , ( )]}max y0 1 i
T

i
2z-

0 otherwise
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Algorithm 1 SGD for Eq. (12).

    Input: er, , ,nDn itm x

    Output: w
1 Read Dn ;
2 Compute V (Eq. (6));
3 w ;0=
4 for t 1!  to ern it  do

5    w
w

w w( , ;( ), ) ( )w
t

C x y R
i

n
i i12

2x z m= - +
=

8 B/
6 return ( , );w b

Algorithm 2 SGD for Eq. (12) on Spark.

    Input: er, , ,nDn itm x

    Output: w
1  Read ;Dn

2  Compute V (Eq. (6))
   /* �Compute all the projection  

defined by z                          */
3  w ;0=
4  for t 1!  to ern it  do
5      g y( , )V= .filter(GradientCondition(w))
       /* �Apply the IF statement if  

required (Table 1)              */
6       .map(Gradient())
       /* Compute the gradient             */
7       .reduce(Sum())
       /* Sum all the gradients             */
8      w w g;

t
x= -

9  return w;
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start the iterative process and keep it in memory (note that the 
computation of V is fully parallel). In this way all the data Rn d#  
projected by z into matrix V Rn h! #  can be largely kept in 
volatile memory (RAM) instead of reading from the disk. If 
instead ,h d&  we risk that V Rn h! #  does not fit into the 
RAM and the consequent risk is to make too many accesses to 
the disk employing Algorithm 2. For this reason, we adopt two 
different strategies:

❏❏ if h is approximately the same magnitude or smaller than d, 
we use Algorithm 2 and we compute the matrix V at the 
beginning;

❏❏ if ,h d&  we adopt Algorithm 3 where ( )x iz  is computed 
online in order to avoid to read the data from the disk.
Quite obviously, the limit is given by the size of the RAM 

of each node and the number of nodes. Until the algorithm is 
able to keep most of the data in memory, it is better to use 
Algorithm 2. Algorithm 3 allows us to partially reduce the 
effect of having to access the data on the disk by paying the 
price of computing ( )x iz  online. In fact, Algorithm 3 does not 
precompute V Rn h! #  at the beginning but it keeps in memo-
ry the data Dn  and, at every iteration of the SGD algorithm, it 
computes online both the projection induced by z  and the 
gradient. Consequently, there is no need to store .V Rn h! #

VI. Performance Assessment  
and Uncertainty Quantification
The selection of the optimal hyperparameters of a predictive 
model is the fundamental problem of STL, which is still the 
target of current research [28], [30], [69]–[72]. The approaches 
can be divided in two large families: Resampling methods; like 
Hold Out, Cross Validation, and the Non-parametric Bootstrap 
[30], [71], [73], [74], and more recent In-Sample methods; like 
the class of function-based methods [30] (based on the VC-
Dimension [62], Rademacher Complexity (RC) [23], [24], 
[75], [76], PAC-Bayes Theory [77], [78]), and algorithm-based 
methods [26] (based on Compression Bounds [79], and Algo-
rithmic Stability (AS) Theory [25], [80]).

Resampling methods [30], [81] are favored by practitioners 
because they work well in many situations and allow the appli-
cation of simple statistical techniques for estimating the quanti-
ties of interest. Some examples of resampling methods are the 
well-known k-Fold Cross Validation (KCV), the Leave-One-
Out (LOO), and the Non-parametric Bootstrap (BTS) [71], 
[74], [82].

In-Sample methods [30], [81], instead, allow the exploita-
tion of a whole set of available data for both training the model 
and estimating its generalization error, thanks to the application 
of rigorous statistical procedures [25], [28], [78].

For more details about the advantages and disadvantages of 
the different methods one can refer to [26], [29], [30].

A. Resampling Methods
These techniques rely on a similar idea: the original dataset Dn  
is resampled once or many (nr) times, with or without replace-
ment, to build three independent datasets called training, 

validation, and test sets respectively, ,,L Vlr v
r  and ,T t

r  with 
{ , , } .r n1 rf!  Note that , ,L V L Tl

r
v
r

l
r

t
r+ 8 + 8= =  and 

.V Tv
r

t
r+ 8=  Then, in order to select the best set of hyperpa-

rameters H  in a set of possible ones { , , }H HK 1 2 f=  for the 
algorithm AH  or, in other words, to perform the Model 
Selection (MS), we have to apply the following procedure:

	 : ( , ).min n L1H A V( , )
r r

n

v
r

1
empH L HK

r

l
r)

!

=

t/ � (13)

Since the data in L l
r  are i.i.d. from the one in Vv

r  the idea is 
that H)  should be the set of hyperparameters which allows 
one to achieve a small error on a dataset that is independent 
from the training set.

The uncertainty quantification, instead, is performed as follows:

	 n) )( ) ( , ) ,L L t
x1
2A A T( , ) ( , )

r
t
r

r

n

1
empD H L V Hn l

r
v
r

r

# +,

=

t/ � (14)

where the bound holds with probability ( ).e1 x- -  Note that 
after the best set of hyperparameters is found, one can select 
the best model by training the algorithm with the whole data-
set )A( , )D Hn  [30], [69], [83]. Moreover, since the data in 
L Vl

r
v
r,  are i.i.d. with respect to T t

r  we have that 
)( , )L TA( , ) t

r
emp L V Hl

r
v
r,

t  is an unbiased estimator of )( )L A( , )D Hn . 
Then, we can use any concentration result, like the Hoeffding 
inequality [84], for bounding the bias between the expected 
value and its empirical estimator.

Note, also, that we get the hold-out method [30] if nr = 1, if 
l, v, and t are set a priori such that n l v t= + +  and if the resa-
mple procedure is performed without replacement. For imp
lementing the complete KCV, instead, we have to set 

k
, ( ) ( , ,/ ) /n

k
n l k n k v n k2r k

n

# = - =
n -` cj m  and /t n k=  and 

the resampling must be done without replacement [30], [69], 
[71]. Finally, for implementing the Non-parametric Bootstrap,  
l = n and L l

r  must be sampled with replacement from ,Dn  
while Vv

r  and T t
r  are sampled without replacement from the 

Algorithm 3 SGD for Eq. (12) on Spark.

   Input: er, , ,nDn itm x

   Output: w
1 Read ;Dn

2 w ;0=
3 for t 1!  to ern it  do
4      g Dn= .filter(GradientCondition(w))

         /* �the IF statement if required 
(see Table 1)                    */

5      .map(z  & Gradient())
         /* Compute z and the gradient     */

6      .reduce(Sum())
         /* Sum all the gradients          */

7      w w g;
t
x= -

8 return w;
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sample of Dn  that has not been sampled in L l
r  [30], [74]. 

Note that for the Non-parametric Bootstrap procedure 
.n

nn 2 1
r #

-` j
It is worthwhile noting that the only hypothesis needed in 

order to rigorously apply the resampling technique is the i.i.d. 
hypothesis on the data in Dn  and that all these techniques 
work for any deterministic algorithm.

B. In-Sample Methods
For the In-Sample methods, two subfamilies of techniques are 
identified: the class of function-based ones and algorithm-based 
ones [26]. The difference between the two classes is that the 
function-based techniques require the knowledge of FH  and 
thus, cannot be applied to some algorithms (e.g., the kNN 
algorithm), while the algorithm-based techniques can be 
applied to any deterministic algorithm without any additional 
knowledge. Both subfamilies, like the resampling methods, 
require the i.i.d. hypothesis.

One of the most powerful techniques in the class of func-
tion-based techniques is based on the Rademacher Complexi-
ty [23], [30]. In particular, for any bounded loss function 
( , ) [ , ]zf 0 1b, !  it is possible to prove that the following bound 

holds with probability ( )e1 2 x- -  [85]:

	 ( ) ( , ) ( ) ,L f L f R n
x f3 2D F Fn nemp H H6# !+ +t t � (15)

where

	 ( ) ( , ),supR n f z2EFn f i
i

n

b i
1

H FH ,v= !v

=

t / � (16)

{ }, { } { } .1 1 1 2
1P P{ , , }i n i i1 !!v v v=+ = =- =f!

Therefore, based on the Structural Risk Minimization princi-
ple [22], one can design a series of function classes of increas-
ing size, { , , }F FF H H1 2 f=  with ,F F 2H H1 g3 3  so to 
compute at the same time both the MS and the uncertainty 
quantification:

	 ) ), : ( ) ( , ) ( ) .minf L f L f R n
x
2
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!
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Unfortunately, the quantity of Eq. (16) cannot be computed 
if we do not know .FH  Moreover, for many algorithms it is 
impossible to define FH  [26]. Algorithm-based techniques cir-
cumvent this problem through the concept of Algorithmic Sta-
bility [25], [26], [86]. In particular, for any bounded loss 
function b,  it is possible to prove that the following bounds 
hold with probability ( )1 d-  [25]:
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The bounds of Eqns. (18) and (19) are polynomial bounds in n 
(not very tight indeed when n is small) while empb  and loob  are 
two versions of Hypothesis Stability which are able to take into 
account both the properties of the algorithm and the property 
of the distribution that has generated the data Dn  [25], [26]. It 
is possible to improve the bounds of Eqns. (18) and (19) by 
exploiting a stronger notion of algorithmic stability, known as 
the Uniform Stability. In particular, the following bounds hold 
with probability ( ):1 d-
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where :  f A( , )D Hn  and
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i

H D H D Hn n
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Unfortunately, the Uniform Stability ( i
b  or )ib  is not able to take 

into account the properties of the distribution that has generated 
the data Dn  and is sometimes unable to capture the properties of 
the algorithm because it deals with a worst-case learning scenario 
[26]. Nevertheless, all the four stability-based bounds of Eqns. (18), 
(19), (20), and (21) can be used to select the best set of hyperpa-
rameters H  in a set of possible one { , , }H HH 1 2 f=  for the 
algorithm .AH  In particular, all the bounds are expressed in the 
form: ( ) ( , , , ).AL n pA D( , ) nD H H Hn # de  Thus, in order to per-
form the MS procedure and uncertainty quantification, we have to 
aprioristically assign to each set of hyperparameters a probability 
pH  (where )p 1

i 1 Hi =
g

=
/  of being chosen during the MS pro-

cedure. The algorithmic stability-based MS and uncertainty quan-
tification procedure can then be summarized as follows:

	 )
) ) ), : ( ) ( , , , ).A minL n pH A A D( , ) ( , ) nD H D H H Hn n

H H
# de

!
� (24)

The procedure of Eq. (24) can be exploited with any algorithm for 
which it is possible to compute one of the notions of stability.

VII. Computational Issues for Big Data Analytics
Both naive resampling and In-Sample methods are computa-
tionally expensive when the number of samples is large [30], 
[72]. For this reason, we will focus on adapting these tech-
niques to the Big Data context.

A. Bag of Little Bootstraps
The standard Non-parametric Bootstrap procedure requires, 

{ , , },H H H1 26 f!  to train many (nr) models, and is compu-
tationally very expensive if n is large. For this reason the Bag of 
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Little Bootstraps approach [87]–[90] represents an alternative to 
standard Non-parametric Bootstrap; it considers only b n= c  data, 
with [ / , ],1 2 1!c  in place of the whole dataset during the cre-
ation of the train, validation and test sets. Note that [ / , ]1 2 1!c  
is necessary to maintain the statistical property of the procedure. 
In particular, the Bag of Little Bootstraps [87] consists in sampling 
nrno-rep  times from Dn  without replacement, several datasets Bb

i  
with { , , }i n1 r

no-repf! , consisting of [ , ]b n n!  samples. Then, 
each Bb

i  is sampled with replacement nryes-rep  times, in order to 
derive L ,

n
i j  datasets with { , , }j n1 r

yes-repf! , each consisting of n 
samples. All the samples of Dn , or parts of them, that have not 
been sampled in L ,

n
i j  are used as validation set and test set 

,V D L T D L, , , ,
v
i j

n n
i j

t
i j

n n
i j3 3  and .V T, ,

v
i j

t
i j+ 8=  Finally, 

the models are trained on the sets L ,
n
i j  and tested on the corre-

sponding V ,
v
i j ; thus we define the following MS procedure:
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Note that in order to find )H  with the procedure of Eq. (25), 
we have to train a series of models over sets composed by a 
maximum of nc  distinct samples. This means that the MS strat-
egy, if n is large with respect to ,n nr r

no-rep yes-rep  scales with .nc  
Therefore, the procedure scales sub-linearly with respect to n, 
and in the best case scenario, scales with ( ) .O n  Analogous to 
the usual Non-parametric Bootstrap procedure, the uncertainty 
quantification is performed as follows:
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where the best model is obtained by training the algorithm 
with the whole dataset [83]: ))  f A( , )D Hn= .

Finally, we would like to underline that c  balances the 
tradeoff between accuracy and computational requirements of 
the statistical procedure [88], [90]. The more ,1"c  the better 
the MS strategy will perform. Since we deal with Big Data in 
this paper, we set / .1 2c =  The application of this approach to 
ELM is straightforward by noting that the hyperparameters of 
ELM are [ , )0 3!m  and { , , }h 1 2 f! .

B. Simplified Rademacher Complexity
Now, we show that the Rademacher Complexity of ELM 
(which employs the general regularization schema of Eq. (12)) 
can be easily upper bounded. In particular, let us truncate the 
loss functions such that ( , ) [ , ( , ( ), )] .z w xminf C y1T i i, z=  It is 
easy to see that ( , ) ( , ) .z zf fH T, ,#  Consequently, the general-
ization error computed with ( , )zfH,  is equal to or less than 
the one computed with ( , )zfT, . By exploiting the bound of 
Eq. (15) for ( , )zfT,  the computation of the empirical error is 
straightforward and it is possible to prove that the Rademacher 
Complexity can be upper bounded as follows [85]:
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where L is the Lipschitz constant characterizing ( , )zfT,  and 
( )w ,h
)
m  is the solution to the ELM problem of Eq. (10) (or more 

generally Eq. (12)) for a given h and .m  ( , ( ), )w xC yi iz  and 
( )wR  can be any of the ones reported in Table 1. Note that h 

and m  define the size of the class of functions in ELM [30] and 
thus, we can plug this result in the procedure of Eq. (17) and 
obtain a computationally efficient way of assessing the perfor-
mance and quantifying the uncertainty of ELM. In fact, in 
order to exploit the procedure of Eq. (17), it is only necessary 
to train, for each values of h and ,m  the ELM model and to 
compute the quantity of Eq. (27) which is computationally 
inexpensive once the ELM has been trained.

C. Simplified Uniform Stability
In this section, we show how to apply the bound based on the 
Uniform Stability in the Big Data scenario. The bound of Eq. 
(21), which takes into account the leave-one-out error, is too 
computationally expensive to compute. Instead, we employ that of 
Eq. (20). As in Section (VII-B), we use the truncated loss function 
since for the hard loss function we have trivially that 
( , ) .n 1Ai Hb =  Consequently, once the ELM has been trained 

we can compute the empirical error with the truncated loss. 
Computing ( , )nAi Hb  is not easy but, thanks to the result of [25], 
it is possible to upper bound it in the case of ELM as follows:
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where L is the Lipschitz constant characterizing ( , ) .zfT,  In 
this case, ( )wR  must be w 2  since the bound does not hold 
for all the ( )wR  reported in Table 1. Then the application of 
the procedure of Eq. (24) to ELM becomes straightforward and 
computationally inexpensive. From Eq. (28) it seems that the 
Uniform Stability takes into account only the property of ELM 
through m  and h through ,z  and not the distribution of the 
data. In other words, the Uniform Stability upper bound of Eq. 
(28) is not able to capture the effect of changing the loss.

D. Bag of Little Hypothesis Stabilities
In order to overcome the issues of the Uniform Stability, we 
exploit the proposal of [26] to estimate the Hypothesis Stability 
instead. As we will see, this proposal is also well suited for Big 
Data applications. As for the Uniform Stability, we do not con-
sider the bound of Eq. (19) since it is too computationally 
expensive. Consequently, we take into account the bound of 
Eq. (18). In this case, we do not need to exploit the truncated 
loss function, but can use the hard loss function directly once 
the ELM model has been trained with a fixed value of .m  In 
order to compute the bound of Eq. (18) and perform the pro-
cedure of Eq. (28), we need to compute ( , ).nAemp Hb  We start 
by making an assumption on the learning algorithm AH . In 
particular, we suppose that the Hypothesis Stability does not 
increase with the cardinality of the training set:

	 ( , ) ( , ) .n n 1A Aemp empH H#b b - � (29)
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We point out that this property is a desirable requirement for 
any learning algorithm, because in order to be able to prove 
the learnability in the stability framework, we need that:

	 ( , ) ,lim n 0An emp Hb ="3 � (30)

or, in other words, that the impact on the learning procedure of 
removing or replacing one sample from Dn  should decrease, on 
average, as n grows. Numerous researchers have already studied 
this property in the past. In particular, it is related to the consisten-
cy concept [46]. However, connections can also be identified with 
the trend of the learning curves of an algorithm [91]. Moreover, 
such quantity is also strictly linked to the concept of Smart Rule 
[46]. It is worth underlining that, in many of the above-referenced 
works, the property of Eq. (29) is proved to be satisfied by many 
well known algorithms (SVM, Regularized Least Squares and 
consequently ELM, k-Local Rule with k > 1, etc.).

Let us define ( , , )n DA nemp Hbt  which is an unbiased esti-
mator of ( , ):nAemp Hb
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where , , .i n1 1f! -" ,  Moreover:
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By construction we have that ( , , )n 1 DA nemp Hb -t  is an 
unbiased estimator of ( , ):n 1Aemp Hb -

	 ( , , ) ( , ) .n n1 1E DA Anemp empD H Hn bb - = -t � (34)

Since all the quantities in the summations of Eq. (31) are { }1!  
valued i.i.d. random variables (since they are computed over 
different sets of data) extracted from a Bernoulli distribution of 
mean ( , ),n 1Aemp Hb -  we have that the following bound 
holds [84] with probability ( ):e1 x- -

 ( , ) ( , , ) .n n
n
x1 1

2
DA A nemp empH H#b b- - +t � (35)

Note that plugging Eq. (35) into the bound of Eq. (18) gives a 
fully empirical bound where all the quantities can be comput-
ed from the data [26]. In particular, once the ELM has been 
trained for a given h and ,m  the empirical error, computed 

with the hard loss function, is trivially com-
putable, while ( , , )n 1 DA nemp Hb -t  requires 
the training of many ELMs on a small subset 
of the data ,n^ h  which is computationally 
inexpensive. Moreover, all these ELMs can be 
trained in parallel (see Eq. (31)). The applica-
tion of the procedure of Eq. (24) to ELM 
then becomes straightforward. Note that, 

from Eq. (31), the hypothesis stability is able to capture both 
the property of the algorithm and the property of the distribu-
tion that has generated the data [26].

VIII. Affective Analogical Reasoning Dataset
The proposed approach has been tested on two affective ana-
logical reasoning datasets. Affective analogical reasoning can 
be defined as the intrinsically human capacity to interpret the 
cognitive and affective information associated with natural 
language [92]. In particular, we employed two benchmarks, 
each one composed by 21743 common-sense concepts; each 
concept is represented according to the AffectiveSpace model 
[93] and the AffectiveSpace 2 model [94]. Both models are 
obtained as a vector space representation of the AffectNet net-
work, a semantic network in which common-sense concepts 
(e.g., ‘read book’, ‘payment’, ‘play music’) are linked to a hier-
archy of affective domain labels (e.g., ‘joy’, ‘amazement’, ‘fear’, 
‘admiration’). In this way, concepts conveying similar semantic 
and affective information, e.g., ‘enjoy conversation’ and ‘chat 
with friends’, tend to fall near each other in the multi-dimen-
sional space. Both AffectNet and AffectiveSpace are publicly 
available at http://sentic.net. The difference between the two 
models is the following:

❏❏ AffectiveSpace is obtained applying principal component 
analysis (PCA) on the matrix representation of AffectNet 
[93].

❏❏ AffectiveSpace 2 is obtained applying a refined projection 
on the matrix representation of AffectNet [94].
In both cases, common-sense concepts are eventually 

represented by vectors of M coordinates. This number indi-
cates the dimensionality of the AffectiveSpace and represents 
the trade-off between efficiency and precision: the bigger is 
M, the more precisely AffectiveSpace represents AffectNet’s 
knowledge, but generating the vector space is slower, while 
the smaller is M, the more efficiently AffectiveSpace can be 
obtained. As already mentioned, concepts with the same 
affective orientation are likely to have similar features; i.e., 
concepts conveying the same emotion tend to fall near each 
other in AffectiveSpace. Concept similarity does not depend 
on their absolute positions in the vector space, but rather on 
the angle they make with the origin [95].

The Hourglass of Emotions [95] is employed to reason on 
the disposition of concepts in AffectiveSpace. In the model, affec-
tive states are represented by four concomitant but independent 
dimensions (Pleasantness, Attention, Sensitivity and Aptitude), 
which determine the intensity of the expressed/perceived emo-
tion. Therefore, a four-dimensional vector can potentially 

Affective analogical reasoning can be defined as  
the intrinsically human capacity to interpret the 
cognitive and affective information associated  
with natural language.
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synthesize the level of activation of each affective 
dimension of a concept. Beyond emotion detection, 
the Hourglass model is also used for polarity detec-
tion tasks. Polarity is defined in terms of the four 
affective dimensions, according to the formula:

	
( ) | ( )| | ( )| ( )
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1
=

+ - +
=
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where P is the pleasantness, At the attention, S 
the sensitivity, Ap the aptitude, ci an input con-
cept, N the total number of concepts, and 3 the 
normalization factor (as the Hourglass dimen-
sions are defined as f loats [ , ]1 1! - ). In the equa-
tion, Attention is taken as absolute value since 
both its positive and negative intensity values 
correspond to positive polarity values (e.g., ‘sur-
prise’ is negative in the sense of lack of Attention, 
but positive from a polarity point of view). Simi-
larly, Sensitivity is taken as negative absolute 
value since both its positive and negative intensity 
values correspond to negative polarity values 
(e.g., ‘anger’ is positive in the sense of level of 
activation of Sensitivity, but negative in terms of 
polarity). The publicly available Sentic API (on 
http://sentic.net/api) was used to obtain for each 
concept the level of each affective dimension.

According to the Hourglass model, the Sentic 
API expresses the levels as numbers [ , ],1 1! -  
which are eventually mapped into the associated 
polarity according to Eq. (36). In order to perform 
a binary classification task for each affective dimen-
sion and polarity, the values are then discretized: +1 
for positive values and –1 for negative ones.

The experiments eventually involve two tasks:
❏❏ Classification of each affective dimension level 
and polarity detection for concepts expressed 
according to AffectiveSpace 1 [93];

❏❏ Classification of each affective dimension level 
and polarity detection for concepts expressed 
according to AffectiveSpace 2 [94];
In both cases, the dimension of the space M has been set 

equal to 100.

IX. Experimental Results
In this section1, we show the results of applying the ELMs 
models described in Section V to the Affective Analogical 
Reasoning datasets described in Section VIII, where the per-
formance of the models has been assessed by using the MS 
strategies described in Section VII.

In Tables 2 and 3 we have reported, respectively for Affec-
tiveSpace 1 and AffectiveSpace 2 and for the Pleasantness, the 

error on the reference set of the ELMs model selected by 
exploiting regularizer w 2 , different losses (L1,  ,f  L5 in 
Table 1), and different MS strategies (Bag of Little Boot-
straps-BLB, Simplified Rademacher Complexity-SRC, Sim-
plified Uniform Stability-SUS, and Bag of Little Hypothesis 
Stabilities-BLHS). In Table 4, for AffectiveSpace 1, we have 
reported the time required to build the ELMs model selected 
by exploiting different losses and different MS strategies. In 
particular, we reported only the time required for the Pleas-
antness task.

From Tables 2, 3, and 4 we can state that:
❏❏ AffectiveSpace 2 is able to better predict the affective 
dimensions and polarity with respect to AffectiveSpace 1.

❏❏ BLHS is the best method to perform MS since it is the one 
that more often selects the most accurate model according 

1We do not report all the details and experiments because of space constraints, all the 
details can be found in the technical report available at http://sentic.net/slt-based-
elm-for-big-social-data-analysis.pdf.

Table 2 Error (in percentage) on the reference set exploiting different 
losses and different MS strategies on AffectiveSpace 1.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .5 32 0 16! . .5 95 0 18! . .5 96 0 19! 4.76 !  0.14

L2 . .5 85 0 18! . .6 59 0 21! . .6 57 0 21! 5.30 !  0.17

L3 . .4 75 0 14! . .5 21 0 17! . .5 31 0 16! 4.16 !  0.13

L4 . .5 28 0 16! . .5 92 0 18! . .5 92 0 19! 4.75 !  0.15

L5 . .5 36 0 17! . .5 88 0 19! . .5 89 0 19! 4.77 !  0.14

Table 4 Training time (in minutes) when different losses and different 
MS strategies are exploited on AffectiveSpace 1.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .15 08 1 09! 10.01 ! 0.76 . .10 04 0 71! . .18 03 1 27!

L2 . .15 10 1 10! 10.01 ! 0.77 . .10 07 0 73! . .18 10 1 22!

L3 . .15 04 1 09! 10.06 ! 0.77 10.05 ! 0.70 . .18 10 1 31!

L4 . .15 07 1 08! 10.05 ! 0.73 10.05 ! 0.71 . .18 08 1 20!

L5 . .15 03 1 00! 10.01 ! 0.76 . .10 05 0 72! . .18 11 1 20!

Table 3 Error (in percentage) on the reference set exploiting different 
losses and different MS strategies on AffectiveSpace 2.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .3 53 0 11! . .3 93 0 12! . .3 89 0 12! 3.14 !  0.10

L2 . .3 82 0 12! . .4 33 0 14! . .4 32 0 13! 3.48 !  0.10

L3 . .3 11 0 10! . .3 46 0 11! . .3 47 0 11! 2.74 !  0.09

L4 . .3 45 0 11! . .3 90 0 12! . .3 93 0 13! 3.13 !  0.10

L5 . .3 54 0 11! . .3 83 0 12! . .3 92 0 12! 3.14 !  0.09
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to the reference set. BLB performs well, while SRC and 
SUS offer the poorest performance.

❏❏ SRC and SUS are the most computationally saving meth-
ods, while the method that is more computational demand-
ing is BLB (which in return, however, is also the most 
accurate one).

❏❏ The L3 loss function results to be the best loss for this task.
Note that all the methods perform quite well in practice and 
reach similar performance when n is large and, at the same 
time, are almost equally computationally expensive.

Finally, we compare the execution time between Algorithm 
2 and 3. In particular, for ELMs with regularizer w 2 , loss L2 
and :1m =

❏❏ Figure 1(a) reports for h 100=  and for Algorithms 2 and 3 
on the time needed to execute the first iteration (similarly to 
what has been done in [17], [18]) and the time of the next 
iterations (results are averaged over 30 different realizations).

❏❏ Figure 1(b) reports on the same information for , .h 1 000=

❏❏ Figure 1(c) reports on the same information for 
, .h 10 000=

From Figures 1(a), 1(b) and 1(c) it is possible to state that:
❏❏ As expected, when h is smaller or comparable to d, we have 
that Algorithm 2 is the one with the best performance.

❏❏ When h becomes larger than d, the data stop to fit into 
memory; this increases the number of accesses to the disk 
for Algorithm 2 and consequently, the time needed to exe-
cute each iteration. Subsequently, Algorithm 3 becomes 
more efficient.

X. Conclusion
In this paper, we proposed an efficient implementation of the 
ELMs on Spark, in order to exploit the benefits of the Spark 
framework, in the context of big social data analysis. In particular, 
an approach to support emotion recognition and polarity detec-
tion in natural language text has been proposed and evaluated.

We also showed how to carefully assess the performance with 
the use of the most recent results from SLT. Unlike other statisti-
cal inference frameworks, SLT implements a worst-case approach 
to these problems, which allows for the obtaining of rigorous and 
consistent generalization bounds that can be exploited 

for assessing the performance of the ELMs. Thanks to recent 
advances, as presented in this paper, the computational require-
ments of these methods have been improved to allow for the scal-
ing to large datasets, which are typical of Big Data applications.

Additional work in this direction is needed. In particular, 
other big data architectures are available with higher efficiency 
but lower fault tolerance (e.g., the one based on MPI and 
OpenMP [18]). It will also be interesting to extend these 
approaches to a semi-supervised setting since in Big Social 
Data Analysis more and more data are becoming available but 
just a small amount is supervised [96].
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