
I. Introduction

The information age has brought along an explosion of
Big Data [1], from multiple sources in every aspect of
our lives: human activity signals from wearable sensors
and personal devices, experiments in particle discovery

research and stock market data systems are few examples. Big
social data analysis [2] is the area of research focusing on collect-
ing, examining and processing large multi-modal and multi-
source datasets in order to discover patterns/correlations and
extract information from the Social Web. This is usually accom-
plished through the use of computationally expensive super-
vised and unsupervised machine learning algorithms that learn
from the available data (e.g., Support Vector Machines-SVMs
[3], Artificial Neural Networks-ANNs, [4], k-Nearest Neigh-
bors-kNN [5], and Random Forests-RF [6]) that are not able to

Luca Oneto
DIBRIS, University of Genoa, Italy

Federica Bisio
DITEN, University of Genoa, Italy

Erik Cambria
School of Computer Science and Engineering,
Nanyang Technological University, Singapore

Davide Anguita
DIBRIS, University of Genoa, Italy

Statistical Learning
Theory and ELM for
Big Social Data Analysis

Digital Object Identifier 10.1109/MCI.2016.2572540
Date of publication: 18 July 2016 Corresponding Author: Erik Cambria (Email: cambria@ntu.edu.sg).

Abstract—The science of opinion analysis based on data
from social networks and other forms of mass media has
garnered the interest of the scientific community and the
business world. Dealing with the increasing amount of
information present on the Web is a critical task and requires
efficient models developed by the emerging field of sentiment
analysis. To this end, current research proposes an efficient
approach to support emotion recognition and polarity
detection in natural language text. In this paper, we show how
to exploit the most recent technological tools and advances in
Statistical Learning Theory (SLT) in order to efficiently build an
Extreme Learning Machine (ELM) and assess the resultant
model’s performance when applied to big social data analysis. ELM
represents a powerful learning tool, developed to overcome some
issues in back-propagation networks. The main problem with ELM
is in training them to work in the event of a large number of
available samples, where the generalization performance has to be
carefully assessed. For this reason, we propose an ELM implementation
that exploits the Spark distributed in memory technology and show
how to take advantage of the most recent advances in SLT in order to
address the issue of selecting ELM hyperparameters that give the best
generalization performance.

im
a

g
e

 l
ic

e
n

s
e

d
 b

y
 in

g
r

AM

 P
U

BLIS

H

ING

1556-603x/16©2016ieee	 AUGUST 2016 | IEEE Computational intelligence magazine 45

46 IEEE Computational intelligence magazine | AUGUST 2016

handle current data volumes [7]. Parallel approaches have been
proposed in order to boost processing speeds [8] but this clearly
requires technologies that support distributed computations.

Extreme learning machine (ELM) [9] is an emerging learn-
ing paradigm, presenting an efficient unified solution to gener-
alized feed-forward neural networks. Unlike ANNs, however,
ELM cannot be easily parallelized, due to the presence of a
pseudo-inverse calculation [10]. Therefore, this paper aims to
find a reliable method to realize a parallel implementation of
ELM that can be applied to large datasets typical of Big Data
problems. An example of parallel ELM implementation for
regression based on the MapReduce framework can be found
in [11], while [12] provides a parallel ensemble method for an
Online Sequential ELM variant.

Several technologies that exploit multiple levels of parallelism
(e.g., multi-core, many-core, GPU, cluster, etc.) are currently avail-
able [13]–[16]. Spark [17] in combination with cloud computing
[18], [19] is a state-of-the-art framework for high performance
parallel computing designed to efficiently deal with iterative com-
putational procedures that recursively perform operations over the
same data, such as supervised machine learning algorithms.

Apart from building supervised learning models efficiently
and with scalable algorithms, another important issue in Big
Data is how to effectively and efficiently assess the performance
of a predictive model. Data-driven models exploit non-para-
metric inference, where it is expected that an effective model
would stem directly from the data, without any assumption on
the model family nor any other information that is external to
the dataset itself [20]. With the advent of the Big Data era, this
approach has increasingly gained popularity, with the belief that
effective predictive models, with the desired accuracy, can be
generated by simply collecting larger volumes of data (see, as an
example, [21] for some insights on this provocative and inexact
but, unfortunately, widespread belief).

Statistical Learning Theory (SLT) addresses the problem of
assessing the performance of a predictive model, by trying to
find necessary and sufficient conditions for non-parametric
inference to build predictive models from data [22]–[26] or, in
the language of SLT, learn an optimal model from data. For a
long time, SLT was considered only a theoretical, albeit very
sound and deep, statistical framework, without any real applica-
bility to practical problems [27]. With important advances in
this field over the last decade [28], it has been shown that SLT
can provide practical answers, at least when targeting the infer-
ence of data-driven models for classification purposes [29], [30].

II. Related Work
In recent years, opinions and sentiments of the masses have
increasingly been publicly conveyed through social networks,
web communities, blogs, wikis, and other online collaborative
media. This has deeply changed the way people share knowl-
edge and communicate experiences. As a result, the distillation
of useful information from the massive amount of opinions is a
key tool for marketers trying to create a product, brand, or
organization image or identity in the minds of their customers.

This has led to an in-depth development of the field of senti-
ment analysis, which deals with information retrieval and
knowledge discovery from text using data mining and natural
language processing (NLP) techniques [31].

Main approaches to big social data analysis can be broadly
grouped into two categories: knowledge-based techniques [32]
and statistical methods [33]. While the former mainly leverage
on ontologies [34], lexicons [35], semantic networks [36], or
patterns [37], the latter are gradually shifting to the adoption of
ELM, deep learning and convolutional neural network (CNN).

In particular, Tang et al. [38] developed a CNN-based
approach to obtain word embeddings for words popularly used
in tweets, then fed them into the network for sentiment analy-
sis. A deep CNN for sentiment detection in short text was also
proposed by Santos et al. [39]. The approach based on Senti-
ment Specific Word Embeddings [40] considers word embed-
dings based on a sentiment corpora: this means including more
affective clues than regular word vectors, thus producing a bet-
ter result. The importance of studying the granularity of emo-
tions in social networks is underlined by the new project
‘Reactions’, developed by Facebook: instead of only the Like
button, a more complete choice of emotions is proposed (e.g.,
‘love’, ‘fun’, ‘anger’, ‘surprise’, ‘sadness’). A similar approach was
adopted by Poria et al. [41], which extracted features from short
texts, based on the activation values of an inner layer of a deep
CNN, and used these for multimodal sentiment analysis.

III. Preliminary Definitions
Let us first focus on the binary classification problem [4], [22],
[42]. Let RX d! and { }1Y !! be, respectively, the input
and the output spaces. We consider a set of labeled independent
and identically distributed (i.i.d.) data , ,z zDn n1 f= " , of size
n, where (,)xz y, ,i n i i1 =f! " , with x Xi ! and ,y Yi ! sampled
from an unknown distribution μ. As we are targeting at Big
Data problems [7], [43], [44], we will focus on the case where n
is very large. For later use we also define two modified training
sets: , , , , ,z z z zDn

i
i i n1 1 1f f= - +" , and { , , ,z zDn

i
i1 1f= -

,, , , }z z zi i n1 f+l where, respectively, the i-th element is
removed or replaced by another sample [25].

A learning algorithm ,AH characterized by a set of hyper-
parameters H that must be tuned, maps Dn into a function
: f A(,)D Hn from X to .Y In particular, AH allows designing
f FH! and the class of functions ,FH which is generally

unknown (and depends on)H [26], [28], [30]. The accuracy
of a function : f A(,)D Hn in representing the hidden relation-
ship μ is measured with reference to a loss function
(,): () [,]zf 0 1F X YH "# #, [25]. In particular, since we are

dealing with binary classification problems, the loss function
(called the hard loss) simply counts the number of misclassified
examples [22], [45]: (,) [()] , .xzf yf 0 0 1H, # != " ,

The quantity which we are interested in is the generaliza-
tion error [22], [30], namely the error that a model will per-
form on new data generated by n and previously unseen
() (, zL f f) .Ez,= Unfortunately, since n is unknown, ()L f

cannot be computed and, consequently, must be estimated.

AUGUST 2016 | IEEE Computational intelligence magazine 47

Two common empir ical estimators are the empir ical
() / (,)zL f n f1

zemp Dn
,=

!
t / [22] and leave-one-out ()L floo =t
/ (,)zn1 A(,)z iD HD{ , , }

n
i

i n n1
,

!f!
/ [46] errors.

IV. Extreme Learning Machines
The ELM approach [9], [47], [48] was introduced to overcome
problems posed by the back-propagation training algorithm
[49]; specifically, potentially slow convergence rates, the criti-
cal tuning of optimization parameters, and the presence of
local minima that call for multi-start and re-training strategies.
In this section, we recall conventional ELM and then adapt it
to the Big Data framework. ELM was originally developed for
the single hidden layer feedforward neural networks [50], [51]
and then generalized in order to cope with cases where ELM
is not neuron alike:

	 () (),x w xf gj
j

h

j
1

=
=

/ � (1)

where : , { , , }g j h1R Rj
d " f! is the hidden layer output

corresponding to the input sample x and w is the output
weight vector between the hidden layer and the output layer.

In our case, the input layer has d neurons and connects to
the hidden layer (having h neurons) through a set of weights

	 , { , , },v j h1Rj
d f! ! � (2)

the j-th hidden neuron embeds a bias term,

	 , { , , },v j h1j
0 f! � (3)

and a nonlinear activation function, : .R R"{ Thus the neu-
ron’s response to an input stimulus, ,x is:

	 (), { , , } .v x v j h1j j
0 f!{ +· � (4)

Note that Eq. (4) can be further generalized to include a
wider class of functions [50], [51], [52]; therefore, the
response of a neuron to an input stimulus x can be generical-
ly represented by any nonlinear piecewise continuous func-
tion characterized by a set of parameters. In ELM, these
parameters v(j and)v j0 are set randomly. A vector of weighted
links, ,w Rh! connects the hidden neurons to the output
neuron without any bias. The overall output function, (),xf
of the network is:

	 () ().x w v xf vj j jj

h 0
1

{= +
= ·/ � (5)

It is convenient to define an activation matrix, ,V Rn h! #
such that the entry V ,i j is the activation value of the j-th hid-
den neuron for the i-th input pattern. The V matrix is:

	
()

()

()

() ()
.

()v x

v x

v x

v x

x

x
V

v

v

v

vn

h h

h n h

T

T
n

1 1 1
0

1 1
0

1
0

0

1

h

g

j

g

h h

{

{

{

{

z

z

=

+

+

+

+

=
·

·

·

·
> >H H � (6)

In the ELM model, the quantities { , }v vj j
0 in Eq. (4) are set

randomly and are not subject to any adjustment, and the quan-
tity w in Eq. (5) is the only degree of freedom. Hence, the
training problem reduces to minimization of the convex cost:

) .w w yargmin V 2
w

= - � (7)

A matrix pseudo-inversion yields the unique L2 solution, as
proven in [51], [53]:

) .w yV= + � (8)

The simple, efficient procedure to train the ELM therefore
involves the following steps:
1)	Randomly generate hidden node parameters (in or case

v i and bias)vi0 for each hidden neuron;
2)	Compute the activation matrix V, of Eq. (6);
3)	Compute the output weights by solving the pseudo-

inverse problem of Eq. (8).
Despite the apparent simplicity of the ELM approach, the

crucial result is that even random weights in the hidden layer
endow a network with notable representation ability. Moreover,
the theory derived in [53] proves that regularization strategies
can further improve the approach’s generalization performance.
As a result, the cost function of Eq. (7) is augmented by a regu-
larization factor as follows:

) ,w w y wargmin V and2
w

= - � (9)

where w can be any suitable norm of the output weights
[53]. A common approach is then to use the L2 regularizer

) ,w w y wargmin V 2 2
w

m= - + � (10)

and consequently the vector of weights)w is then obtained as follows:

) () ,w yV V I VT T1
m= + - � (11)

where I Rh h! # is an identity matrix.

V. ELM for Big Data on Spark
Spark [17] is a state-of-the-art framework for high perfor-
mance memory parallel computing designed to efficiently
deal with iterative computational procedures that recursively
perform operations over the same data [14], [17], [54]. One
recent solution for Big Data analytics is the use of cloud com-
puting [19], [55], [56], which makes available hundreds or
thousands of machines to provide services such as computing
and storage.

Various cluster management options are available for run-
ning Spark [57]. In this work, we chose to deploy Spark in a
Hadoop cluster. The selected Hadoop architecture was com-
posed of NM slave machines and two additional machines that
run as masters: one for controlling HDFS and the other for
resource management.

48 IEEE Computational intelligence magazine | AUGUST 2016

The software packages installed on each machine were
Hadoop 2.7.1 and Spark 1.5.1. In order to exploit this archi-
tecture, we had to modify the ELM formulation to cope with
the main computational issues of ELM:
(I)		computing the matrix V of Eq. (6);
(II)	finding the solution of)w of Eq. (11).

The main idea behind the Spark technology is that we have
to reduce access to the disk as much as possible and make as
much computation as possible in memory. Moreover, since
Spark is designed to efficiently deal with iterative computation-
al procedures that recursively perform operations over the same
data, it may not be efficient to compute the solution in the
form of Eq. (11).

Hence, let us start from issue (II). Instead of solving the
problem of Eq. (9) with the approach of Eq. (11), let us adopt a
Stochastic Gradient Descent (SGD) algorithm. The SGD algo-
rithm is a very general optimization algorithm, which is able to
solve a problem efficiently in the following form:

	 (, (),) (),w wxmin C y R,w b
i

n

i i
1

z m+
=

/ � (12)

where ()wR is a regularizer [58]–[61] and (, (),)w xC yi iz is a
convex relaxation of the Hard Loss Function [45]. m balances the
tradeoff between the over- and underfitting tendency of the
algorithm. Based on the choice of ()wR and (, (),)w xC yi iz ,
we can retrieve different algorithms. If ()wR 0= and
(, ,(),) (())w wx xC y yi i

T
i i

2
z z= - we get the ELM formulation

of Eq. (7) while if ()w wR 2
2= and (, (),)w xC yi iz =

,(())w x yT
i i

2
z - we get the ELM formulation of Eq. (9). Other

possible choices are: SVM [62], Regularized Least Squares [63],
Least Squares SVM [64], Logistic Regression [65], Lasso [60],
Elastic Net [61], etc. In Table 1 we report a series of possible
choices of ()wR and (, (),) .w xC yi iz The SGD algorithm for
optimizing Problem (12) is reported in Algorithm 1 [44]. In
Algorithm 1, x and ern it are parameters related with the speed of
the optimization algorithms. Therefore, usually x and ern it are set
based on the experience of the user. In any case x and ern it can
be seen as other regularization terms as m since they are connect-
ed with the early stopping regularization technique [66], [67].

Algorithm 1 is well-suited for implementation in Spark and
many of these tools are already available in MLib [68]. Basically,
the implementation of Algorithm 1 reported in Algorithm 2 is
an application of three functions: a filter (for the gradients that
require an IF condition in Table 1), a map for the computation
of the gradient and a reduction function for the sum of each
single gradient.

The main problem of Algorithm 2 is the computation and
storage of V. If h d% it means that V Rn h! # will be much
smaller than the dataset which belongs to .Rn d# In this case, it
is more appropriate to compute it before the SGD algorithms

Table 1 Possible Regularizers and Convex Approximations
of the Hard Loss Function.

(a) Regularizers

w()R w()w R
j2
2

R1 0 0

R2 w 1 ()wsign j

R3 w 2
w
w j

2

R4 w w()
(,)

1
0 1

2 1

!

h h

h

+ -
w

() ()
w

w1 signj
j

2
h h+ -

R5 w , [,),p
p

0
1 convex

p

"

3

2

!

w
w w

p
p

j j
p

1

2

-

-

(b) Convex Approximations of the Hard Loss Function

w x(, (),)C yi iz w x(, (),)w C y
j

i i2
2 z

L1 w x() yT
i iz - w(())x y xsign ,

T
i i i jz -

L2 w x(())yT
i i

2z - w(())x y x2 ,
T

i i i jz -

L3 w x[, ()]max y0 1 i
T

iz- w ()xy x y
0

1if
otherwise

,i i j i
T

i #z-'

L4 w x{ [, ()]}max y0 1 i
T

i
2z-

0 otherwise

w x
w x

[
()

()]y y x
y

2 1
1if

,i i
T

i i j

i
T

i #

z

z

- -

*

L5 w
()

{ [()]}
ln

ln exp xy
2

1 i
T

iz+ -

w

[()exp x
y

y
x1

1
1

,i
i

T
i

i j
z

- -
+ -

; E

Algorithm 1 SGD for Eq. (12).

   Input: er, , ,nDn itm x

   Output: w
1 Read Dn ;
2 Compute V (Eq. (6));
3 w ;0=
4 for t 1! to ern it do

5   w
w

w w(, ;(),) ()w
t

C x y R
i

n
i i12

2x z m= - +
=

8 B/
6 return (,);w b

Algorithm 2 SGD for Eq. (12) on Spark.

   Input: er, , ,nDn itm x

   Output: w
1  Read ;Dn

2  Compute V (Eq. (6))
   /* �Compute all the projection

defined by z                */
3  w ;0=
4  for t 1! to ern it do
5    g y(,)V= .filter(GradientCondition(w))
     /* �Apply the IF statement if

required (Table 1)          */
6     .map(Gradient())
     /* Compute the gradient        */
7     .reduce(Sum())
     /* Sum all the gradients        */
8    w w g;

t
x= -

9  return w;

AUGUST 2016 | IEEE Computational intelligence magazine 49

start the iterative process and keep it in memory (note that the
computation of V is fully parallel). In this way all the data Rn d#
projected by z into matrix V Rn h! # can be largely kept in
volatile memory (RAM) instead of reading from the disk. If
instead ,h d& we risk that V Rn h! # does not fit into the
RAM and the consequent risk is to make too many accesses to
the disk employing Algorithm 2. For this reason, we adopt two
different strategies:

❏❏ if h is approximately the same magnitude or smaller than d,
we use Algorithm 2 and we compute the matrix V at the
beginning;

❏❏ if ,h d& we adopt Algorithm 3 where ()x iz is computed
online in order to avoid to read the data from the disk.
Quite obviously, the limit is given by the size of the RAM

of each node and the number of nodes. Until the algorithm is
able to keep most of the data in memory, it is better to use
Algorithm 2. Algorithm 3 allows us to partially reduce the
effect of having to access the data on the disk by paying the
price of computing ()x iz online. In fact, Algorithm 3 does not
precompute V Rn h! # at the beginning but it keeps in memo-
ry the data Dn and, at every iteration of the SGD algorithm, it
computes online both the projection induced by z and the
gradient. Consequently, there is no need to store .V Rn h! #

VI. Performance Assessment
and Uncertainty Quantification
The selection of the optimal hyperparameters of a predictive
model is the fundamental problem of STL, which is still the
target of current research [28], [30], [69]–[72]. The approaches
can be divided in two large families: Resampling methods; like
Hold Out, Cross Validation, and the Non-parametric Bootstrap
[30], [71], [73], [74], and more recent In-Sample methods; like
the class of function-based methods [30] (based on the VC-
Dimension [62], Rademacher Complexity (RC) [23], [24],
[75], [76], PAC-Bayes Theory [77], [78]), and algorithm-based
methods [26] (based on Compression Bounds [79], and Algo-
rithmic Stability (AS) Theory [25], [80]).

Resampling methods [30], [81] are favored by practitioners
because they work well in many situations and allow the appli-
cation of simple statistical techniques for estimating the quanti-
ties of interest. Some examples of resampling methods are the
well-known k-Fold Cross Validation (KCV), the Leave-One-
Out (LOO), and the Non-parametric Bootstrap (BTS) [71],
[74], [82].

In-Sample methods [30], [81], instead, allow the exploita-
tion of a whole set of available data for both training the model
and estimating its generalization error, thanks to the application
of rigorous statistical procedures [25], [28], [78].

For more details about the advantages and disadvantages of
the different methods one can refer to [26], [29], [30].

A. Resampling Methods
These techniques rely on a similar idea: the original dataset Dn
is resampled once or many (nr) times, with or without replace-
ment, to build three independent datasets called training,

validation, and test sets respectively, ,,L Vlr v
r and ,T t

r with
{ , , } .r n1 rf! Note that , ,L V L Tl

r
v
r

l
r

t
r+ 8 + 8= = and

.V Tv
r

t
r+ 8= Then, in order to select the best set of hyperpa-

rameters H in a set of possible ones { , , }H HK 1 2 f= for the
algorithm AH or, in other words, to perform the Model
Selection (MS), we have to apply the following procedure:

	 : (,).min n L1H A V(,)
r r

n

v
r

1
empH L HK

r

l
r)

!

=

t/ � (13)

Since the data in L l
r are i.i.d. from the one in Vv

r the idea is
that H) should be the set of hyperparameters which allows
one to achieve a small error on a dataset that is independent
from the training set.

The uncertainty quantification, instead, is performed as follows:

	 n))() (,) ,L L t
x1
2A A T(,) (,)

r
t
r

r

n

1
empD H L V Hn l

r
v
r

r

+,

=

t/ � (14)

where the bound holds with probability ().e1 x- - Note that
after the best set of hyperparameters is found, one can select
the best model by training the algorithm with the whole data-
set)A(,)D Hn [30], [69], [83]. Moreover, since the data in
L Vl

r
v
r, are i.i.d. with respect to T t

r we have that
)(,)L TA(,) t

r
emp L V Hl

r
v
r,

t is an unbiased estimator of)()L A(,)D Hn .
Then, we can use any concentration result, like the Hoeffding
inequality [84], for bounding the bias between the expected
value and its empirical estimator.

Note, also, that we get the hold-out method [30] if nr = 1, if
l, v, and t are set a priori such that n l v t= + + and if the resa-
mple procedure is performed without replacement. For imp
lementing the complete KCV, instead, we have to set

k
, () (, ,/) /n

k
n l k n k v n k2r k

n

= - =
n -` cj m and /t n k= and

the resampling must be done without replacement [30], [69],
[71]. Finally, for implementing the Non-parametric Bootstrap,
l = n and L l

r must be sampled with replacement from ,Dn
while Vv

r and T t
r are sampled without replacement from the

Algorithm 3 SGD for Eq. (12) on Spark.

   Input: er, , ,nDn itm x

   Output: w
1 Read ;Dn

2 w ;0=
3 for t 1! to ern it do
4    g Dn= .filter(GradientCondition(w))

      /* �the IF statement if required
(see Table 1)           */

5    .map(z & Gradient())
      /* Compute z and the gradient    */

6    .reduce(Sum())
      /* Sum all the gradients        */

7    w w g;
t
x= -

8 return w;

50 IEEE Computational intelligence magazine | AUGUST 2016

sample of Dn that has not been sampled in L l
r [30], [74].

Note that for the Non-parametric Bootstrap procedure
.n

nn 2 1
r #

-` j
It is worthwhile noting that the only hypothesis needed in

order to rigorously apply the resampling technique is the i.i.d.
hypothesis on the data in Dn and that all these techniques
work for any deterministic algorithm.

B. In-Sample Methods
For the In-Sample methods, two subfamilies of techniques are
identified: the class of function-based ones and algorithm-based
ones [26]. The difference between the two classes is that the
function-based techniques require the knowledge of FH and
thus, cannot be applied to some algorithms (e.g., the kNN
algorithm), while the algorithm-based techniques can be
applied to any deterministic algorithm without any additional
knowledge. Both subfamilies, like the resampling methods,
require the i.i.d. hypothesis.

One of the most powerful techniques in the class of func-
tion-based techniques is based on the Rademacher Complexi-
ty [23], [30]. In particular, for any bounded loss function
(,) [,]zf 0 1b, ! it is possible to prove that the following bound

holds with probability ()e1 2 x- - [85]:

	 () (,) () ,L f L f R n
x f3 2D F Fn nemp H H6# !+ +t t � (15)

where

	 () (,),supR n f z2EFn f i
i

n

b i
1

H FH ,v= !v

=

t / � (16)

{ }, { } { } .1 1 1 2
1P P{ , , }i n i i1 !!v v v=+ = =- =f!

Therefore, based on the Structural Risk Minimization princi-
ple [22], one can design a series of function classes of increas-
ing size, { , , }F FF H H1 2 f= with ,F F 2H H1 g3 3 so to
compute at the same time both the MS and the uncertainty
quantification:

)), : () (,) () .minf L f L f R n
x
2
9F D Fn nempH H*

F FH
+ +

!

t t; E �(17)

Unfortunately, the quantity of Eq. (16) cannot be computed
if we do not know .FH Moreover, for many algorithms it is
impossible to define FH [26]. Algorithm-based techniques cir-
cumvent this problem through the concept of Algorithmic Sta-
bility [25], [26], [86]. In particular, for any bounded loss
function b, it is possible to prove that the following bounds
hold with probability ()1 d- [25]:

	 () (,) ,L f L f n2
1 3

Dnemp
emp

#
d d

b
+ +t � (18)

	 () (,) ,L f L f n2
1 3

Dnloo
loo

#
d d

b
+ +t � (19)

where : f A(,)D Hn and

(

(,) (,) (,) .

,) (,) (,) ,z z

z z

n A A

n A AE

E

A

A

, (,) (,)

, (,) (,)z

z

b i b i

b b

emp

loo H D D H D H

H D D H D Hn i n n
i

n n n
i, ,

, ,b

b = -

= -l

The bounds of Eqns. (18) and (19) are polynomial bounds in n
(not very tight indeed when n is small) while empb and loob are
two versions of Hypothesis Stability which are able to take into
account both the properties of the algorithm and the property
of the distribution that has generated the data Dn [25], [26]. It
is possible to improve the bounds of Eqns. (18) and (19) by
exploiting a stronger notion of algorithmic stability, known as
the Uniform Stability. In particular, the following bounds hold
with probability ():1 d-

	 () (,) () ,
ln

L f L f n n2 4 1 2

1

Dn
i i

emp# b b
d+ + +t
` j

� (20)

	 () (,) () ,
ln

L f L f n n4 1 2

1

Dn
i i

loo# b b
d+ + +t
` j

� (21)

where : f A(,)D Hn and

	 () (,) (,) ,A , n A A(,) (,)
i

H D H D Hn n
i$ $, ,b = - 3 � (22)

	 () (,) (,) .A , n A A(,) (,)
i

H D H D Hn n
i$ $, ,b = - 3 � (23)

Unfortunately, the Uniform Stability (i
b or)ib is not able to take

into account the properties of the distribution that has generated
the data Dn and is sometimes unable to capture the properties of
the algorithm because it deals with a worst-case learning scenario
[26]. Nevertheless, all the four stability-based bounds of Eqns. (18),
(19), (20), and (21) can be used to select the best set of hyperpa-
rameters H in a set of possible one { , , }H HH 1 2 f= for the
algorithm .AH In particular, all the bounds are expressed in the
form: () (, , ,).AL n pA D(,) nD H H Hn # de Thus, in order to per-
form the MS procedure and uncertainty quantification, we have to
aprioristically assign to each set of hyperparameters a probability
pH (where)p 1

i 1 Hi =
g

=
/ of being chosen during the MS pro-

cedure. The algorithmic stability-based MS and uncertainty quan-
tification procedure can then be summarized as follows:

)
))), : () (, , ,).A minL n pH A A D(,) (,) nD H D H H Hn n

H H
de

!
� (24)

The procedure of Eq. (24) can be exploited with any algorithm for
which it is possible to compute one of the notions of stability.

VII. Computational Issues for Big Data Analytics
Both naive resampling and In-Sample methods are computa-
tionally expensive when the number of samples is large [30],
[72]. For this reason, we will focus on adapting these tech-
niques to the Big Data context.

A. Bag of Little Bootstraps
The standard Non-parametric Bootstrap procedure requires,

{ , , },H H H1 26 f! to train many (nr) models, and is compu-
tationally very expensive if n is large. For this reason the Bag of

AUGUST 2016 | IEEE Computational intelligence magazine 51

Little Bootstraps approach [87]–[90] represents an alternative to
standard Non-parametric Bootstrap; it considers only b n= c data,
with [/ ,],1 2 1!c in place of the whole dataset during the cre-
ation of the train, validation and test sets. Note that [/ ,]1 2 1!c
is necessary to maintain the statistical property of the procedure.
In particular, the Bag of Little Bootstraps [87] consists in sampling
nrno-rep times from Dn without replacement, several datasets Bb

i
with { , , }i n1 r

no-repf! , consisting of [,]b n n! samples. Then,
each Bb

i is sampled with replacement nryes-rep times, in order to
derive L ,

n
i j datasets with { , , }j n1 r

yes-repf! , each consisting of n
samples. All the samples of Dn , or parts of them, that have not
been sampled in L ,

n
i j are used as validation set and test set

,V D L T D L, , , ,
v
i j

n n
i j

t
i j

n n
i j3 3 and .V T, ,

v
i j

t
i j+ 8= Finally,

the models are trained on the sets L ,
n
i j and tested on the corre-

sponding V ,
v
i j ; thus we define the following MS procedure:

): (,) .min
n n

L1 1H A V(,)
,

r r i

n

j

n

v
i j

1 1
no-rep yes-rep emp L H,

r r

n
i j

no-rep yes-rep

H H
= =

!

t/ / � (25)

Note that in order to find)H with the procedure of Eq. (25),
we have to train a series of models over sets composed by a
maximum of nc distinct samples. This means that the MS strat-
egy, if n is large with respect to ,n nr r

no-rep yes-rep scales with .nc
Therefore, the procedure scales sub-linearly with respect to n,
and in the best case scenario, scales with () .O n Analogous to
the usual Non-parametric Bootstrap procedure, the uncertainty
quantification is performed as follows:

))() (,) ,L n L t
x1
2TA A(,) (,)

,

r r

n

t
i j

1
empD H L H,

n

r

n
i j# +

=

t/ � (26)

where the best model is obtained by training the algorithm
with the whole dataset [83]:)) f A(,)D Hn= .

Finally, we would like to underline that c balances the
tradeoff between accuracy and computational requirements of
the statistical procedure [88], [90]. The more ,1"c the better
the MS strategy will perform. Since we deal with Big Data in
this paper, we set / .1 2c = The application of this approach to
ELM is straightforward by noting that the hyperparameters of
ELM are [,)0 3!m and { , , }h 1 2 f! .

B. Simplified Rademacher Complexity
Now, we show that the Rademacher Complexity of ELM
(which employs the general regularization schema of Eq. (12))
can be easily upper bounded. In particular, let us truncate the
loss functions such that (,) [, (, (),)] .z w xminf C y1T i i, z= It is
easy to see that (,) (,) .z zf fH T, ,# Consequently, the general-
ization error computed with (,)zfH, is equal to or less than
the one computed with (,)zfT, . By exploiting the bound of
Eq. (15) for (,)zfT, the computation of the empirical error is
straightforward and it is possible to prove that the Rademacher
Complexity can be upper bounded as follows [85]:

	
n(

() ,

) (,)z

w x

supR f

n
L

2EF

,

n ii

n
T i

hi

n
i1

2 2

1H f FH ,

z

v=

)
m

v

=

=!
t /

/
�

(27)

where L is the Lipschitz constant characterizing (,)zfT, and
()w ,h
)
m is the solution to the ELM problem of Eq. (10) (or more

generally Eq. (12)) for a given h and .m (, (),)w xC yi iz and
()wR can be any of the ones reported in Table 1. Note that h

and m define the size of the class of functions in ELM [30] and
thus, we can plug this result in the procedure of Eq. (17) and
obtain a computationally efficient way of assessing the perfor-
mance and quantifying the uncertainty of ELM. In fact, in
order to exploit the procedure of Eq. (17), it is only necessary
to train, for each values of h and ,m the ELM model and to
compute the quantity of Eq. (27) which is computationally
inexpensive once the ELM has been trained.

C. Simplified Uniform Stability
In this section, we show how to apply the bound based on the
Uniform Stability in the Big Data scenario. The bound of Eq.
(21), which takes into account the leave-one-out error, is too
computationally expensive to compute. Instead, we employ that of
Eq. (20). As in Section (VII-B), we use the truncated loss function
since for the hard loss function we have trivially that
(,) .n 1Ai Hb = Consequently, once the ELM has been trained

we can compute the empirical error with the truncated loss.
Computing (,)nAi Hb is not easy but, thanks to the result of [25],
it is possible to upper bound it in the case of ELM as follows:

	
(,) (,) (,)

() , , ()
,

x x

A A A

max

n

n
L

(,) (,)
i

n1
2 2

H D H D Hn n
i

f

, ,

#

b

m

z z

= - 3$ $
" , � (28)

where L is the Lipschitz constant characterizing (,) .zfT, In
this case, ()wR must be w 2 since the bound does not hold
for all the ()wR reported in Table 1. Then the application of
the procedure of Eq. (24) to ELM becomes straightforward and
computationally inexpensive. From Eq. (28) it seems that the
Uniform Stability takes into account only the property of ELM
through m and h through ,z and not the distribution of the
data. In other words, the Uniform Stability upper bound of Eq.
(28) is not able to capture the effect of changing the loss.

D. Bag of Little Hypothesis Stabilities
In order to overcome the issues of the Uniform Stability, we
exploit the proposal of [26] to estimate the Hypothesis Stability
instead. As we will see, this proposal is also well suited for Big
Data applications. As for the Uniform Stability, we do not con-
sider the bound of Eq. (19) since it is too computationally
expensive. Consequently, we take into account the bound of
Eq. (18). In this case, we do not need to exploit the truncated
loss function, but can use the hard loss function directly once
the ELM model has been trained with a fixed value of .m In
order to compute the bound of Eq. (18) and perform the pro-
cedure of Eq. (28), we need to compute (,).nAemp Hb We start
by making an assumption on the learning algorithm AH . In
particular, we suppose that the Hypothesis Stability does not
increase with the cardinality of the training set:

	 (,) (,) .n n 1A Aemp empH H#b b - � (29)

52 IEEE Computational intelligence magazine | AUGUST 2016

We point out that this property is a desirable requirement for
any learning algorithm, because in order to be able to prove
the learnability in the stability framework, we need that:

	 (,) ,lim n 0An emp Hb ="3 � (30)

or, in other words, that the impact on the learning procedure of
removing or replacing one sample from Dn should decrease, on
average, as n grows. Numerous researchers have already studied
this property in the past. In particular, it is related to the consisten-
cy concept [46]. However, connections can also be identified with
the trend of the learning curves of an algorithm [91]. Moreover,
such quantity is also strictly linked to the concept of Smart Rule
[46]. It is worth underlining that, in many of the above-referenced
works, the property of Eq. (29) is proved to be satisfied by many
well known algorithms (SVM, Regularized Least Squares and
consequently ELM, k-Local Rule with k > 1, etc.).

Let us define (, ,)n DA nemp Hbt which is an unbiased esti-
mator of (,):nAemp Hb

(

(,) (,) ,

, ,)

z z

n

n
1

1

A A

A D

()

n

k k
k

n

1

emp

D D

H

n
k

n
k i

1 1
˘ ˘, ,

b =

-

-

= - -

t

{ {/ � (31)

where , , .i n1 1f! -" , Moreover:

	 : , , ,z zD () ()n
k

k n k n n1 1 1 1 1
˘

f- - + - + -" , � (32)

	 : .z z()
k

k n1-{ � (33)

By construction we have that (, ,)n 1 DA nemp Hb -t is an
unbiased estimator of (,):n 1Aemp Hb -

	 (, ,) (,) .n n1 1E DA Anemp empD H Hn bb - = -t � (34)

Since all the quantities in the summations of Eq. (31) are { }1!
valued i.i.d. random variables (since they are computed over
different sets of data) extracted from a Bernoulli distribution of
mean (,),n 1Aemp Hb - we have that the following bound
holds [84] with probability ():e1 x- -

 (,) (, ,) .n n
n
x1 1

2
DA A nemp empH H#b b- - +t � (35)

Note that plugging Eq. (35) into the bound of Eq. (18) gives a
fully empirical bound where all the quantities can be comput-
ed from the data [26]. In particular, once the ELM has been
trained for a given h and ,m the empirical error, computed

with the hard loss function, is trivially com-
putable, while (, ,)n 1 DA nemp Hb -t requires
the training of many ELMs on a small subset
of the data ,n^ h which is computationally
inexpensive. Moreover, all these ELMs can be
trained in parallel (see Eq. (31)). The applica-
tion of the procedure of Eq. (24) to ELM
then becomes straightforward. Note that,

from Eq. (31), the hypothesis stability is able to capture both
the property of the algorithm and the property of the distribu-
tion that has generated the data [26].

VIII. Affective Analogical Reasoning Dataset
The proposed approach has been tested on two affective ana-
logical reasoning datasets. Affective analogical reasoning can
be defined as the intrinsically human capacity to interpret the
cognitive and affective information associated with natural
language [92]. In particular, we employed two benchmarks,
each one composed by 21743 common-sense concepts; each
concept is represented according to the AffectiveSpace model
[93] and the AffectiveSpace 2 model [94]. Both models are
obtained as a vector space representation of the AffectNet net-
work, a semantic network in which common-sense concepts
(e.g., ‘read book’, ‘payment’, ‘play music’) are linked to a hier-
archy of affective domain labels (e.g., ‘joy’, ‘amazement’, ‘fear’,
‘admiration’). In this way, concepts conveying similar semantic
and affective information, e.g., ‘enjoy conversation’ and ‘chat
with friends’, tend to fall near each other in the multi-dimen-
sional space. Both AffectNet and AffectiveSpace are publicly
available at http://sentic.net. The difference between the two
models is the following:

❏❏ AffectiveSpace is obtained applying principal component
analysis (PCA) on the matrix representation of AffectNet
[93].

❏❏ AffectiveSpace 2 is obtained applying a refined projection
on the matrix representation of AffectNet [94].
In both cases, common-sense concepts are eventually

represented by vectors of M coordinates. This number indi-
cates the dimensionality of the AffectiveSpace and represents
the trade-off between efficiency and precision: the bigger is
M, the more precisely AffectiveSpace represents AffectNet’s
knowledge, but generating the vector space is slower, while
the smaller is M, the more efficiently AffectiveSpace can be
obtained. As already mentioned, concepts with the same
affective orientation are likely to have similar features; i.e.,
concepts conveying the same emotion tend to fall near each
other in AffectiveSpace. Concept similarity does not depend
on their absolute positions in the vector space, but rather on
the angle they make with the origin [95].

The Hourglass of Emotions [95] is employed to reason on
the disposition of concepts in AffectiveSpace. In the model, affec-
tive states are represented by four concomitant but independent
dimensions (Pleasantness, Attention, Sensitivity and Aptitude),
which determine the intensity of the expressed/perceived emo-
tion. Therefore, a four-dimensional vector can potentially

Affective analogical reasoning can be defined as
the intrinsically human capacity to interpret the
cognitive and affective information associated
with natural language.

AUGUST 2016 | IEEE Computational intelligence magazine 53

synthesize the level of activation of each affective
dimension of a concept. Beyond emotion detection,
the Hourglass model is also used for polarity detec-
tion tasks. Polarity is defined in terms of the four
affective dimensions, according to the formula:

	
() | ()| | ()| ()

p N
P c At c S c Ap c

3
i i i i

i
N

1
=

+ - +
=
/ � (36)

where P is the pleasantness, At the attention, S
the sensitivity, Ap the aptitude, ci an input con-
cept, N the total number of concepts, and 3 the
normalization factor (as the Hourglass dimen-
sions are defined as f loats [,]1 1! -). In the equa-
tion, Attention is taken as absolute value since
both its positive and negative intensity values
correspond to positive polarity values (e.g., ‘sur-
prise’ is negative in the sense of lack of Attention,
but positive from a polarity point of view). Simi-
larly, Sensitivity is taken as negative absolute
value since both its positive and negative intensity
values correspond to negative polarity values
(e.g., ‘anger’ is positive in the sense of level of
activation of Sensitivity, but negative in terms of
polarity). The publicly available Sentic API (on
http://sentic.net/api) was used to obtain for each
concept the level of each affective dimension.

According to the Hourglass model, the Sentic
API expresses the levels as numbers [,],1 1! -
which are eventually mapped into the associated
polarity according to Eq. (36). In order to perform
a binary classification task for each affective dimen-
sion and polarity, the values are then discretized: +1
for positive values and –1 for negative ones.

The experiments eventually involve two tasks:
❏❏ Classification of each affective dimension level
and polarity detection for concepts expressed
according to AffectiveSpace 1 [93];

❏❏ Classification of each affective dimension level
and polarity detection for concepts expressed
according to AffectiveSpace 2 [94];
In both cases, the dimension of the space M has been set

equal to 100.

IX. Experimental Results
In this section1, we show the results of applying the ELMs
models described in Section V to the Affective Analogical
Reasoning datasets described in Section VIII, where the per-
formance of the models has been assessed by using the MS
strategies described in Section VII.

In Tables 2 and 3 we have reported, respectively for Affec-
tiveSpace 1 and AffectiveSpace 2 and for the Pleasantness, the

error on the reference set of the ELMs model selected by
exploiting regularizer w 2 , different losses (L1,  ,f L5 in
Table 1), and different MS strategies (Bag of Little Boot-
straps-BLB, Simplified Rademacher Complexity-SRC, Sim-
plified Uniform Stability-SUS, and Bag of Little Hypothesis
Stabilities-BLHS). In Table 4, for AffectiveSpace 1, we have
reported the time required to build the ELMs model selected
by exploiting different losses and different MS strategies. In
particular, we reported only the time required for the Pleas-
antness task.

From Tables 2, 3, and 4 we can state that:
❏❏ AffectiveSpace 2 is able to better predict the affective
dimensions and polarity with respect to AffectiveSpace 1.

❏❏ BLHS is the best method to perform MS since it is the one
that more often selects the most accurate model according

1We do not report all the details and experiments because of space constraints, all the
details can be found in the technical report available at http://sentic.net/slt-based-
elm-for-big-social-data-analysis.pdf.

Table 2 Error (in percentage) on the reference set exploiting different
losses and different MS strategies on AffectiveSpace 1.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .5 32 0 16! . .5 95 0 18! . .5 96 0 19! 4.76 ! 0.14

L2 . .5 85 0 18! . .6 59 0 21! . .6 57 0 21! 5.30 ! 0.17

L3 . .4 75 0 14! . .5 21 0 17! . .5 31 0 16! 4.16 ! 0.13

L4 . .5 28 0 16! . .5 92 0 18! . .5 92 0 19! 4.75 ! 0.15

L5 . .5 36 0 17! . .5 88 0 19! . .5 89 0 19! 4.77 ! 0.14

Table 4 Training time (in minutes) when different losses and different
MS strategies are exploited on AffectiveSpace 1.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .15 08 1 09! 10.01 ! 0.76 . .10 04 0 71! . .18 03 1 27!

L2 . .15 10 1 10! 10.01 ! 0.77 . .10 07 0 73! . .18 10 1 22!

L3 . .15 04 1 09! 10.06 ! 0.77 10.05 ! 0.70 . .18 10 1 31!

L4 . .15 07 1 08! 10.05 ! 0.73 10.05 ! 0.71 . .18 08 1 20!

L5 . .15 03 1 00! 10.01 ! 0.76 . .10 05 0 72! . .18 11 1 20!

Table 3 Error (in percentage) on the reference set exploiting different
losses and different MS strategies on AffectiveSpace 2.

ELMs MS Method

Loss BLB SRC SUS BLHS

Pleasantness

L1 . .3 53 0 11! . .3 93 0 12! . .3 89 0 12! 3.14 ! 0.10

L2 . .3 82 0 12! . .4 33 0 14! . .4 32 0 13! 3.48 ! 0.10

L3 . .3 11 0 10! . .3 46 0 11! . .3 47 0 11! 2.74 ! 0.09

L4 . .3 45 0 11! . .3 90 0 12! . .3 93 0 13! 3.13 ! 0.10

L5 . .3 54 0 11! . .3 83 0 12! . .3 92 0 12! 3.14 ! 0.09

54 IEEE Computational intelligence magazine | AUGUST 2016

to the reference set. BLB performs well, while SRC and
SUS offer the poorest performance.

❏❏ SRC and SUS are the most computationally saving meth-
ods, while the method that is more computational demand-
ing is BLB (which in return, however, is also the most
accurate one).

❏❏ The L3 loss function results to be the best loss for this task.
Note that all the methods perform quite well in practice and
reach similar performance when n is large and, at the same
time, are almost equally computationally expensive.

Finally, we compare the execution time between Algorithm
2 and 3. In particular, for ELMs with regularizer w 2 , loss L2
and :1m =

❏❏ Figure 1(a) reports for h 100= and for Algorithms 2 and 3
on the time needed to execute the first iteration (similarly to
what has been done in [17], [18]) and the time of the next
iterations (results are averaged over 30 different realizations).

❏❏ Figure 1(b) reports on the same information for , .h 1 000=

❏❏ Figure 1(c) reports on the same information for
, .h 10 000=

From Figures 1(a), 1(b) and 1(c) it is possible to state that:
❏❏ As expected, when h is smaller or comparable to d, we have
that Algorithm 2 is the one with the best performance.

❏❏ When h becomes larger than d, the data stop to fit into
memory; this increases the number of accesses to the disk
for Algorithm 2 and consequently, the time needed to exe-
cute each iteration. Subsequently, Algorithm 3 becomes
more efficient.

X. Conclusion
In this paper, we proposed an efficient implementation of the
ELMs on Spark, in order to exploit the benefits of the Spark
framework, in the context of big social data analysis. In particular,
an approach to support emotion recognition and polarity detec-
tion in natural language text has been proposed and evaluated.

We also showed how to carefully assess the performance with
the use of the most recent results from SLT. Unlike other statisti-
cal inference frameworks, SLT implements a worst-case approach
to these problems, which allows for the obtaining of rigorous and
consistent generalization bounds that can be exploited

for assessing the performance of the ELMs. Thanks to recent
advances, as presented in this paper, the computational require-
ments of these methods have been improved to allow for the scal-
ing to large datasets, which are typical of Big Data applications.

Additional work in this direction is needed. In particular,
other big data architectures are available with higher efficiency
but lower fault tolerance (e.g., the one based on MPI and
OpenMP [18]). It will also be interesting to extend these
approaches to a semi-supervised setting since in Big Social
Data Analysis more and more data are becoming available but
just a small amount is supervised [96].

References
[1] S. Mills, S. Lucas, L. Irakliotis, M. Rappa, T. Carlson, and B. Perlowitz, (2012). Demystifying
big data: A practical guide to transforming the business of government. [Online]. Technical re-
port. Available: http://www. ibm. com/software/data/demystifying-big-data
[2] E. Cambria, H. Wang, and B. White, “Guest editorial: Big social data analysis,” Knowledge-
Based Syst., vol. 69, pp. 1–2, 2014.
[3] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learn., vol. 20, no. 3, pp.
273–297, 1995.
[4] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK: Clarendon Press, 1995.
[5] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE Trans. Inform. Theory,
vol. 13, no. 1, pp. 21–27, 1967.
[6] L. Breiman, “Random forests,” Machine Learn., vol. 45, no. 1, pp. 5–32, 2001.
[7] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 1, pp. 97–107, 2014.
[8] Y. You, S. L. Song, H. Fu, A. Marquez, M. M. Dehnavi, K. Barker, K. W. Cameron,
A. P. Randles, and G. Yang, “Mic-svm: Designing a highly efficient support vector machine
for advanced modern multi-core and many-core architectures,” in Proc. IEEE Int. Parallel and
Distributed Process. Symp., 2014.
[9] G. Huang, G. B. Huang, S. Song, and K. You, “Trends in extreme learning machines: A
review,” Neural Networks, vol. 61, pp. 32–48, 2015.
[10] J. Xin, Z. Wang, C. Chen, L. Ding, G. Wang, and Y. Zhao, “ELM*: Distributed extreme
learning machine with mapreduce,” World Wide Web, vol. 17, no. 5, pp. 1189–1204, 2014.
[11] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme learning machine for regression
based on mapreduce,” Neurocomputing, vol. 102, pp. 52–58, 2013.
[12] S. Huang, B. Wang, J. Qiu, J. Yao, G. Wang, and G. Yu, “Parallel ensemble of online
sequential extreme learning machine based on mapreduce,” in Proc. ELM-2014, 2015.
[13] L. J. Cao, S. S. Keerthi, C. J. Ong, J. Q. Zhang, U. Periyathamby, X. J. Fu, and
H. P. Lee, “Parallel sequential minimal optimization for the training of support vector ma-
chines,” IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 1039–1049, 2006.
[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker,
and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster com-
puting,” in Proc. USENIX Conf. Networked Systems Design and Implementation, 2012.
[15] K. Olukotun, “Beyond parallel programming with domain specific languages,” in Proc.
Symp. Principles and Practice of Parallel Programming, 2014.
[16] A. Akusok, K. M. Bjork, Y. Miche, and A. Lendasse, “High-performance extreme learn-
ing machines: A complete toolbox for big data applications,” IEEE Access, vol. 3, pp. 1011–1025,
2015.
[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster
computing with working sets,” in Proc. USENIX Conf. Hot Topics in Cloud Computing, 2010.
[18] J. L. Reyes-Ortiz, L. Oneto, and D. Anguita, “Big data analytics in the cloud: Spark on
hadoop vs MPI/openMP on Beowulf,” Procedia Comp. Sci., vol. 53, pp. 121–130, Aug. 2015.

0

1

2

3

4

1 2 3 4 5 6 7

Iteration

T
im

e
M

in
ut

es

0

2

4

6

1 2 3 4 5 6 7
Iteration

T
im

e
M

in
ut

es

0

2

4

6

8

10

1 2 3 4 5 6 7
Iteration

(a) h = 102 (b) h = 103 (c) h = 104

T
im

e
M

in
ut

es

Figure 1 Comparison between algorithms 2 (orange) and 3 (blue): time needed to execute the first iteration (similarly to what is done in [17],
[18]) and time of the next iterations. Results are averaged over 30 different realizations.

AUGUST 2016 | IEEE Computational intelligence magazine 55

[19] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud computing: current state and
future opportunities,” in Proc. Int. Conf. Extending Database Technology, 2011.
[20] L. Breiman, “Statistical modeling: The two cultures (with comments and a rejoinder by the
author),” Stat. Sci., vol. 16, no. 3, pp. 199–231, 2001.
[21] V. Dhar, “Data science and prediction,” Commun. ACM, vol. 56, no. 12, pp. 64–73, 2013.
[22] V. N. Vapnik, “An overview of statistical learning theory,” IEEE Trans. Neural Networks,
vol. 10, no. 5, pp. 988–999, 1999.
[23] V. Koltchinskii, “Rademacher penalties and structural risk minimization,” IEEE Trans.
Inform. Theory, vol. 47, no. 5, pp. 1902–1914, 2001.
[24] P. L. Bartlett, O. Bousquet, and S. Mendelson, “Local rademacher complexities,” Ann.
Stat., vol. 33, no. 4, pp. 1497–1537, 2005.
[25] O. Bousquet and A. Elisseeff, “Stability and generalization,” J. Machine Learn. Res, vol. 2,
pp. 499–526, 2002.
[26] L. Oneto, A. Ghio, S. Ridella, and D. Anguita, “Fully empirical and data-dependent
stability-based bounds,” IEEE Trans. Cybernetics, vol. 45, no. 9, pp. 1913–1926, 2015.
[27] L. G. Valiant, “A theory of the learnable,” Commun. ACM, vol. 27, no. 11, pp. 1134–1142,
1984.
[28] P. L. Bartlett, S. Boucheron, and G. Lugosi, “Model selection and error estimation,” Ma-
chine Learn., vol. 48, no. 1-3, pp. 85–113, 2002.
[29] J. Langford, “Tutorial on practical prediction theory for classification,” J. Machine Learn.
Res., vol. 6, no. 1, pp. 273, 2006.
[30] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “In-sample and out-of-sample model selec-
tion and error estimation for support vector machines,” IEEE Trans. Neural Network Learn. Syst.,
vol. 23, no. 9, pp. 1390–1406, 2012.
[31] E. Cambria and B. White, “Jumping NLP curves: A review of natural language processing
research,” IEEE Comput. Intell. Mag., vol. 9, no. 2, pp. 48–57, 2014.
[32] E. Cambria, B. Schuller, B. Liu, H. Wang, and C. Havasi, “Knowledge-based approaches to con-
cept-level sentiment analysis,” IEEE Intell. Syst., vol. 28, no. 2, pp. 12–14, 2013.
[33] E. Cambria, B. Schuller, B. Liu, H. Wang, and C. Havasi, “Statistical approaches to con-
cept-level sentiment analysis,” IEEE Intell. Syst., vol. 28, no. 3, pp. 6–9, 2013.
[34] A. Gangemi, V. Presutti, and D. Reforgiato, “Frame-based detection of opinion holders and topics:
a model and a tool,” IEEE Comput. Intell. Mag., vol. 9, no. 1, pp. 20–30, 2014.
[35] C. Strapparava and A. Valitutti, “WordNet-Affect: An affective extension of WordNet,”
in Proc. Int. Conf. Language Resources and Evaluation, 2004.
[36] E. Cambria, D. Olsher, and D. Rajagopal, “SenticNet 3: A common and common-sense
knowledge base for cognition-driven sentiment analysis,” in Proc. AAAI, Quebec, 2014, pp.
1515–1521.
[37] S. Poria, E. Cambria, A. Gelbukh, F. Bisio, and A. Hussain, “Sentiment data f low analysis
by means of dynamic linguistic patterns,” IEEE Comput. Intell. Mag., vol. 10, no. 4, pp. 26–36,
2015.
[38] D. Tang, F. Wei, B. Qin, T. Liu, and M. Zhou, “Coooolll: A deep learning system for twit-
ter sentiment classification,” in Proc. 8th Int. Workshop on Semantic Evaluation, 2014.
[39] C. N. dos Santos and M. Gatti, “Deep convolutional neural networks for sentiment analysis
of short texts,” in Proc. Int. Conf. Computational Linguistics, 2014.
[40] D. Tang, F. Wei, N. Yang, M. Zhou, T. Liu, and B. Qin, “Learning sentiment-specific
word embedding for Twitter sentiment classification,” in Proc. Annu. Meeting of the Association
for Computational Linguistics, 2014.
[41] S. Poria, E. Cambria, and A. Gelbukh, “Deep convolutional neural network textual fea-
tures and multiple kernel learning for utterance-level multimodal sentiment analysis,” in Proc.
EMNLP, 2015, pp. 2539–2544.
[42] V. Cherkassky, “The nature of statistical learning theory,” IEEE Trans. Neural Networks,
vol. 8, no. 6, pp. 1564–1564, 1997.
[43] S. Madden, “From databases to big data,” IEEE Internet Comput., no. 3, pp. 4–6, 2012.
[44] A. G. Shoro and T. R. Soomro, “Big data analysis: Apache spark perspective,” Global J.
Comp. Sci. Technol., vol. 15, no. 1, 2015.
[45] L. Rosasco, E. De Vito, A. Caponnetto, M. Piana, and A. Verri, “Are loss functions all the
same?,” Neural Computat., vol. 16, no. 5, pp. 1063–1076, 2004.
[46] L. Devroye, L. Györfi, and G. Lugosi, A Probabilistic Theory of Pattern Recognition. New
York: Springer, 1996.
[47] E. Cambria and G. B. Huang, “Extreme learning machines,” IEEE Intell. Syst., vol. 28,
no. 6, pp. 30–59, 2013.
[48] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: Theory and applica-
tions,” Neurocomputing, vol. 70, no. 1, pp. 489–501, 2006.
[49] S. Ridella, S. Rovetta, and R. Zunino, “Circular backpropagation networks for classifica-
tion,” IEEE Trans. Neural Networks, vol. 8, no. 1, pp. 84–97, 1997.
[50] G. B. Huang, Q. Y. Zhu, and C.-K. Siew, “Extreme learning machine: a new learning
scheme of feedforward neural networks,” in Proc. IEEE Int. Joint Conf. Neural Networks, 2004.
[51] G. B. Huang, L. Chen, and C. K. Siew, “Universal approximation using incremental con-
structive feedforward networks with random hidden nodes,” IEEE Trans. Neural Networks, vol.
17, no. 4, pp. 879–892, 2006.
[52] F. Bisio, P. Gastaldo, R. Zunino, and E. Cambria, “A learning scheme based on similar-
ity functions for affective common-sense reasoning,” in Proc. IJCNN, 2015, pp. 2476–2481.
[53] G. B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regres-
sion and multiclass classification,” IEEE Trans. Syst. Man Cybern. B, vol. 42, no. 2, pp. 513–529,
2012.
[54] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, “Shark: Sql and
rich analytics at scale,” in Proc. ACM SIGMOD Int. Conf. Management of Data, 2013.
[55] H. Furuta, T. Kameda, Y. Fukuda, and D. M. Frangopol, “Life-cycle cost analysis for in-
frastructure systems: Life cycle cost vs. safety level vs. service life,” in Proc. Life-Cycle Performance
of Deteriorating Structures: Assessment, Design and Management, 2004.
[56] A. G. Carlyle, S. L. Harrell, and P. M. Smith, “Cost-effective HPC: The community or the
cloud?” in Proc. IEEE Int. Conf. Cloud Computing Technology and Science, 2010.

[57] H. Karau, A. Konwinski, P. Wendell, and M. Zaharia, Learning Spark. Sebastopol, CA:
O’Reilly Media, 2015.
[58] A. Tarantola, Inverse Problem Theory and Methods for Model Parameter Estimation. Philadelphia,
PA: SIAM, 2005.
[59] R. E. Megginson, An Introduction to Banach Space Theory. New York: Springer, 2012, vol.
183.
[60] H. Zou, T. Hastie, and R. Tibshirani, “On the degrees of freedom of the lasso,” Ann. Stat.,
vol. 35, no. 5, pp. 2173–2192, 2007.
[61] C. De Mol, E. De Vito, and L. Rosasco, “Elastic-net regularization in learning theory,” J. Com-
plex., vol. 25, no. 2, pp. 201–230, 2009.
[62] V. N. Vapnik, Statistical Learning Theory. New York: Wiley-Interscience, 1998.
[63] R. Rifkin, G. Yeo, and T. Poggio, “Regularized least-squares classification,” Nato Sci. Ser.
Sub Ser. III Comp. Syst. Sci., vol. 190, pp. 131–154, 2003.
[64] J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural Process. Lett., vol. 9, no. 3, pp. 293–300, 1999.
[65] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin, “LIBLINEAR: A library
for large linear classification,” J. Machine Learn. Res., vol. 9, pp. 1871–1874, 2008.
[66] R. Caruana, S. Lawrence, and G. Lee, “Overfitting in neural nets: Backpropagation, con-
jugate gradient, and early stopping,” in Proc. Neural Information Processing Systems, 2001.
[67] L. Prechelt, “Automatic early stopping using cross validation: quantifying the criteria,”
Neural Networks, vol. 11, no. 4, pp. 761–767, 1998.
[68] S. Gopalani and R. Arora, “Comparing apache spark and map reduce with performance
analysis using k-means,” Int. J. Comp. Appl., vol. 113, no. 1, 2015.
[69] S. Arlot and A. Celisse, “A survey of cross-validation procedures for model selection,” Stat.
Survey., vol. 4, no. 2010, pp. 40–79, 2010.
[70] D. A. McAllester, “Pac-bayesian stochastic model selection,” Machine Learn., vol. 51, no.
1, pp. 5–21, 2003.
[71] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model
selection,” in Proc. Int. Joint Conf. Artificial Intelligence, San Francisco, CA, 1995, pp. 1137–1143.
[72] I. Guyon, A. Saffari, G. Dror, and G. Cawley, “Model selection: Beyond the Bayesian/
frequentist divide,” J. Machine Learn. Res., vol. 11, pp. 61–87, Mar. 2010.
[73] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “In-sample model selection for support vector
machines,” in Proc. Int. Joint Conf. Neural Networks, San Jose, CA, 2011, pp. 1154–1161.
[74] B. Efron and R. J. Tibshirani, An Introduction to the Bootstrap. London, UK: Chapman &
Hall, 1993.
[75] L. Oneto, A. Ghio, S. Ridella, and D. Anguita, “Global rademacher complexity bounds: From
slow to fast convergence rates,” Neural Processing Letter, vol. 43, no. 2, pp. 567–602, Apr. 2016.
[76] L. Oneto, A. Ghio, S. Ridella, and D. Anguita, “Local rademacher complexity: Sharper risk
bounds with and without unlabeled samples,” Neural Networks, vol. 65, pp. 115-125, May 2015.
[77] D. A. McAllester, “Some pac-bayesian theorems,” in Proc. ACM Computational Learning
Theory, New York, 1998, pp. 230–234.
[78] G. Lever, F. Laviolette, and J. Shawe-Taylor, “Tighter pac-bayes bounds through distribu-
tion-dependent priors,” Theoretic. Comp. Sci., vol. 473, pp. 4–28, 2013.
[79] S. Floyd and M. Warmuth, “Sample compression, learnability, and the vapnik-chervonen-
kis dimension,” Machine Learn., vol. 21, no. 3, pp. 269–304, 1995.
[80] T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi, “General conditions for predictivity
in learning theory,” Nature, vol. 428, no. 6981, pp. 419–422, 2004.
[81] A. Inoue and L. Kilian, “In-sample or out-of-sample tests of predictability: Which one
should we use?” Econometric Rev., vol. 23, no. 4, pp. 371–402, 2005.
[82] F. Cheng, J. Yu, and H. Xiong, “Facial expression recognition in jaffe dataset based on gaussian
process classification,” IEEE Trans. Neural Networks, vol. 21, no. 10, pp. 1685–1690, 2010.
[83] D. Anguita, A. Ghio, S. Ridella, and D. Sterpi, “K-fold cross validation for error rate esti-
mate in support vector machines,” in Proc. Int. Conf. Data Mining, 2009.
[84] W. Hoeffding, “Probability inequalities for sums of bounded random variables,” J. Am.
Stat. Assoc., vol. 58, no. 301, pp. 13–30, 1963.
[85] P. L. Bartlett and S. Mendelson, “Rademacher and gaussian complexities: Risk bounds and
structural results,” J. Machine Learn. Res., vol. 3, pp. 463–482, Mar. 2003.
[86] A. Rakhlin, S. Mukherjee, and T. Poggio, “Stability results in learning theory,” Analysis
Appl, vol. 3, no. 4, pp. 397–417, 2005.
[87] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, “A scalable bootstrap for massive
data,” J. R. Stat. Soc. B Stat. Methodol., vol. 76, no. 4, pp. 795–816, 2014.
[88] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, “The big data bootstrap,” in Proc. Int.
Conf. Machine Learning, 2012.
[89] A. Kleiner, A. Talwalkar, P. Sarkar, and M. I. Jordan, “Bootstrapping big data,” in Proc.
Advances in Neural Information Processing Systems, Workshop: Big Learning: Algorithms, Systems, and
Tools for Learning at Scale, 2011.
[90] L. Oneto, B. Pilarz, A. Ghio, and D. Anguita, “Model selection for big data: Algorithmic stability
and bag of little bootstraps on gpus,” in Proc. Eur. Symp. Artificial Neural Networks, Computational Intel-
ligence and Machine Learning, 2015.
[91] R. Dietrich, M. Opper, and H. Sompolinsky, “Statistical mechanics of support vector
networks,” Phys. Rev. Lett., vol. 82, no. 14, pp. 2975, 1999.
[92] E. Cambria, “Affective computing and sentiment analysis,” IEEE Intell. Syst., vol. 31, no.
2, pp. 102–107, 2016.
[93] E. Cambria, P. Gastaldo, F. Bisio, and R. Zunino, “An ELM-based model for affective
analogical reasoning,” Neurocomputing, vol. 149, no. A, pp. 443–455, Feb. 2015.
[94] E. Cambria, J. Fu, F. Bisio, and S. Poria, “AffectiveSpace 2: Enabling affective intuition for
concept-level sentiment analysis,” in Proc. AAAI, Austin, TX, 2015, pp. 508–514.
[95] E. Cambria and A. Hussain, Sentic Computing: A Common-Sense-Based Framework for Con-
cept-Level Sentiment Analysis. Cham, Switzerland: Springer, 2015.
[96] G. Huang, E. Cambria, K. Toh, B. Widrow, and Z. Xu, “New trends of learning in computational
intelligence [guest editorial],” IEEE Comput. Intell. Mag., vol. 10, no. 2, pp. 16–17, 2015.
�

