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Abstract

The standard problem of rationing a single overdemanded commodity
([11], [2], [16]) has a natural bipartite extension with multiple types of a
one-dimensional commodity (e.g., jobs with di�erent skill requirements),
and each agent can only consume some types of the resource (e.g., workers
have di�erent skills).

We de�ne the new standard loss calibrated rationing methods, that
equalize across agents the ratio of shares to (calibrated) losses (demand
minus share). We extend them to bipartite methods that 1) are not af-
fected by the elimination of an edge and the corresponding 
ow (Consis-
tency), and 2) treat resource types with identical connectivity as a single
type. They are essentially the only standard methods with a bipartite ex-
tension meeting the two properties above. Most of the parametric methods
discussed in the literature ([16], [17]) do not admit such extension.
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1 Introduction

In our earlier paper [10] we consider the problem of selecting a fair max-
ow
in a rich class of 
ow problems on a bipartite graph. There are �nitely many
sources and sinks, each with a �nite capacity to send or receive some homogenous
commodity (the resource), and the edges can carry arbitrarily large 
ows. To
each source is attached an agent i, and we interpret the capacity of this source
as the amount of resource i can consume, his demand ; each sink represents a
di�erent type of resource, and the capacity of sink a is the available amount
of type a resource; the exogenous bipartite graph G speci�es which agent can
consume which type of resource (the connectivity constraints).
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Assuming that the capacity of the sinks is overdemanded1, a max-
ow �lls
the sinks to capacity, but it must ration the sources (ship less than their capac-
ity). We look for a fair rationing method.
The special case with a single type of resource and a set of agents N (a

single sink and multiple sources) corresponds to the much studied problem of
rationing fairly an amount t of some commodity according to individual demands
or liabilities xi; i 2 N , when total demands exceed the resources,

P
N xi > t.

This model is also known as the bankruptcy or estate division problem ([11],
[2], [16]). The literature develops a rich axiomatic discussion of a variety of
rationing methods, from the simple and familiar Proportional method to exotic
ones like the Talmudic method: see the surveys [9], [14].
Here we speak of the model with a single resource-type as the standard

rationing model, to distinguish it from the more general bipartite model with a
�nite set Q of resource-types, and an arbitrary bipartite graph G of connectivity
constraints. We ask to what extent the theory of standard rationing methods
generalizes to the bipartite context. We provide a fairly complete answer for
the family of (standard) parametric methods, that plays a central role in the
normative discussion of rationing methods. First, with the exception of the
three benchmark methods Proportional, Uniform Gains, and Uniform Losses,
we �nd that most parametric methods discussed in the literature cannot be
consistently extended to the bipartite context (once \consistently" is given a
precise meaning). On the other hand we discover a new family of reasonable
parametric methods, called loss calibrated, that can.
We recall �rst some basic facts about standard parametric methods.

2 Standard parametric methods

We use the notation xS =
P

i2S xi. For any pro�le of demands x = (xi)i2N and
available resource t such that 0 � t � xN , we speak of the (standard) rationing
problem (N;x; t). A standard rationing method h selects a pro�le of shares
y = h(N;x; t) = (yi)i2N such that 0 � y � x and yN = t.
The Consistency property is the de�ning property of standard parametric

methods. Fix a method h, a problem (N;x; t), and y = h(N;x; t). Then Consis-
tency requires that for any subset S of N , we have (yi)i2S = h(S; (xi)i2S ; yS).
Although Consistency is not a test of fairness2, it is a powerful rationality state-
ment about the way a rationing method deals with related problems. In the
words of Balinski and Young ([3]): \every part of a fair division must be fair".

1This means that the total capacity of any subset of sinks is not larger than that of
all the sources connected to these sinks. In general the graph can be decomposed in two
disjoint subgraphs, one where sinks are overdemanded as above, the other where sources are
overdemanded: see [10].

2For instance the following priority method is consistent. Fix a priority ordering of N ,
and to divide t units among a subset S of agents, try �rst to meet the demand of the highest
priority agent i in S; if any resource is left (if t > xi), use those toward the demand of the
next highest priority agent, and so on.

2



Combined with the compelling requirements of Symmetry (symmetric treat-
ment of agents) and Continuity (of the mapping (x; t)! y), Consistency char-
acterizes the family of parametric methods ([16]). Every such method h� is
de�ned by a continuous real valued function �(v; �) on R2+, weakly increas-
ing in �, and such that �(v; 0) = 0; �(v;1) = v. Given a problem (N;x; t),
the allocation y = h�(N;x; t) is the unique solution of the following system in
(y; �) 2 RN+ � R+: X

i2N
�(xi; �) = t ; yi = �(xi; �) for all i (1)

(note that the design constraint 0 � y � x is satis�ed)
Although rarely discussed in the literature, the alternative representation of

parametric methods as the solution of a minimization program (introduced in
[16]) is key to the generalization we are looking for.
Fix a parametric method h� as above, and an arbitrary continuous, strictly

increasing real valued function f on R+. The following property de�nes3 a
function u(v; w) on the cone C = f(v; w) 2 R2+j0 � w � vg, continuous in both
variables, and convex in w. For all (v; w) 2 C and all � � 0:

w = �(v; �)
def, @u

@�w
(v; w) � f(�) � @u

@+w
(v; w) (2)

where we use the convention @u
@�w

(v; 0) = �1 when the left derivative is not

de�ned, and similarly @u
@+w

(v; v) = +1, when the right one is not de�ned.
Note that if � is strictly increasing in �; this simpli�es to w = �(v; �) ,

@u
@w (v; w) = f(�).

By construction @u
@w (v; w) is strictly increasing in w:

w < w0 ) � < �0 ) f(�) < f(�0)) @u

@�w
(v; w) <

@u

@+w
(v; w0)

therefore for any problem (N;x; t) the following minimization program has a
unique solution

y = arg min
0�y�x;yN=t

X
i2N

u(xi; yi) (3)

This solution is precisely y = h�(N;x; t). For completenes we prove in the
Appendix the equivalence of (1) and (3). Because f is arbitrary, we have many
choices of u for each parametric method.4

We illustrate this representation for the three benchmark methods standing
out in the microeconomic axiomatic literature, as well as the social psychology
literature ([12], [7], [6]): Proportional method hpro, Uniform Gains (aka Equal

3Note that u(z; w) is given up to an arbitrary function of z, but such a function plays no
role in the minimization program (3).

4Of course we also have many choices for �, because for any increasing bijection of R+ into
itself, �(z; �) and �(z; g(�)) represent the same method.
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Awards) hug, and Uniform Losses (aka Equal Losses) hul. We choose f(�) =
ln(�), of which the primitive is (up to a constant) the entropy function En(v) =
v ln(v).
The (simplest) parametrization of hpro is �(v; �) = �

�+1v. It increases strictly

in �, and w = �(v; �), � = w
v�w . Therefore (2) is

@u
@w (v; w) = ln(w)�ln(v�w),

and we choose u(v; w) = En(w) + En(v � w):

hpro(x; t) = arg min
0�y�x;yN=t

X
i2N

En(yi) + En(xi � yi)

The (simplest) parametrization of hug is �(v; �) = minf�; vg, strictly in-
creasing when w < v, hence (2) gives @u

@w (v; w) = ln(w), and
@u
@�w

(v; v) = ln(v).

We choose u(v; w) = En(w):

hug(x; t) = arg min
0�y�x;yN=t

X
i2N

En(yi)

The (simplest) parametrization of hul is �(v; �) = maxfv � 1
� ; 0g, so that

w = �(v; �), � = 1
v�w as long as w > 0. Therefore

@u
@w (v; w) = � ln(v�w) for

w > 0, while @u
@+w

(v; 0) = � ln(v):

hul(x; t) = arg min
0�y�x;yN=t

X
i2N

En(xi � yi)

3 Overview of the results

The generalization of the Consistency property (thereafter CSY) to the bipartite
model is straightforward. For a given initial problem, say a certain method
selects a 
ow 'ia between agent i and the resource of type a ('ia can only
be positive if ia is an edge of the connectivity graph G). We can reduce the
inital problem by removing the edge ia from the graph, while substracting 'ia
from both the demand of agent i and the available type a resource. Then
Consistency requires that the solution to the reduced problem be unchanged on
all other edges of G.
As for any application of the Consistency axiom (of which [15] gives a sur-

vey), with a consistent bipartite rationing method the \global" argument that
the method selects a fair allocation for the entire graph, is con�rmed by many
(in the order of 2jGj) similar arguments on smaller, \local" problems. This is
especially valuable when G is large and individual agents are only aware of its
local structure. We also refer the reader to section 1.1 of [10], explaining why
CSY is a compelling requirement when agents are held responsible for their own
connectivity constraints.
Another critical requirement of our model is that two resource-types with

exactly the same connectivity can be treated as a single resource. Two types
can only be distinguished if some agents do so themselves. We call this axiom
Merging Identically Connected Resource-types (MIR). For instance if all agents
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are connected to all resource-types, we simply add the available resources and
apply the standard method we wish to generalize.
We give a fairly complete description of which standard parametric methods

are extendable to a bipartite method meeting CSY and MIR. The fact that
our three benchmark methods hpro; hug; hul, are indeed extendable is the main
�nding of [10]. Their extensions, written H� for � = pro; ug; ul, solve three
minization programs entirely similar to those discussed in the previous section.
Write yi =

P
a:ia2G 'ia for agent i's total share of resources in the feasible

max-
ow ', and F for the set of such 
ows. Then

Hpro selects arg min
'2F

X
ia2G

En('ia) +
X
i2N

En(xi � yi)

Hug selects arg min
'2F

X
ia2G

En('ia)

Hul selects in arg min
'2F

X
i2N

En(xi � yi)

After de�ning bipartite rationing methods and our key axioms in Section 4,
we show in section 5 that a standard method extendable to the bipartite context
must satisfy a property that we dub Convexity�: if y is selected for problem
(x; t), then for all �; 0 � � � 1, the solution for problem (x � (1 � �)y; �t) is
�y. In words the �nal allocation is unchanged if we proceed in two steps: �rst
we distribute a fraction of the �nal allocation, then we divide the rest of the
resources according to the reduced demands. This property is not normatively
compelling, however it reveals that many familiar parametric methods are not
extendable to the bipartite context; these include the Talmudic method ([2]),
Young's equal sacri�ce methods ([17]) and most of their dual methods: Lemmas
1 and 2.
We introduce in section 6 the new family of loss calibrated standard meth-

ods , all of which are parametric and have a bipartite extension meeting CSY
and MIR. Such a method h� is de�ned by a continuous and weakly increas-
ing function � from R+ into itself, such that �(z) > 0 for z > 0. Write
B(z) =

R z
1
ln(�(t))dt then de�ne h� by means of the following program

h�(x; t) = arg min
0�y�x;yN=t

X
i2N

En(yi) +B(xi � yi)

This is program (3) for the function u(v; w) = En(w) +B(v � w), therefore by
choosing f(�) = ln(�) and applying (2), a parametric representation �� of h�

is as follows:

w = ��(v; �), ln(�) =
@u

@w
(v; w), w = ��(v � w)

A key result (in section 8) is that a bipartite extension H� of h� again selects
the max-
ow

arg min
'2F

X
ia2G

En('ia) +
X
i2N

B(xi � yi)
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(this is strictly true only if B(0) is �nite; if B(0) is in�nite, describing a bipartite
extension is a bit more complicated). Furthermore the bipartite extension is
unique if �(0) = 0.
Theorem 1 in Section 7 has two statements. When we impose a strict version

of Resource Monotonicity (every individual allocation increases strictly in the
total resource to be divided), the set of extendable standard methods is the
subset of loss calibrated methods for which �(0) = 0. When we impose Scale
Invariance (multiplying all demands and all resources by a common factor does
the same thing to the selected allocation), we �nd the one-dimensional family of
loss calibrated methods where � is a power function, �(z) = zp for some p > 0.
Theorem 2, still in Section 7 captures by weaker axiomatic requirements a

richer set of \hybrid" loss calibrated methods, combining uniform losses hul

when the resources are close enough to total demand, and a general loss cali-
brated for smaller levels of resources.
Theorems 3, 4 in Section 8 explain the bipartite extension(s) of the standard

methods uncovered in Section 7.
The Appendix contains the long proofs of Theorems 1,2, and a little more.

We actually describe the full family of standard methods extendable to the
bipartite context under CSY and MIR. It is more complicated than even the
hybrid family in Theorem 2, but not more interesting.

4 Bipartite rationing problems and methods

We write N for the set of potential agents and Q for that of potential resource-
types. A rationing problem speci�es a set N of n agents, a set Q of q types,
and a bipartite graph G � N �Q: (i; a) 2 G means that agent i can consume
the type a. Note that G may not be connected. For i 2 N and a 2 Q, let
f(i) = fa 2 Qj(i; a) 2 Gg and g(a) = fi 2 N j(i; a) 2 Gg, both assumed to be
non empty.
Agent i demands the total amount xi; xi � 0, of resources, and type a can

supply ra units, ra � 0 (its capacity). The pro�les of demands and of capacities
are x and r, respectively.
A bipartite allocation problem is P = (N;Q;G; x; r) or simply P = (G; x; r)

if the sets N and Q are unambiguous. A 
ow in problem P is ' 2 RG+ such that

'g(a)a � ra for all a 2 Q; and 'if(i) � xi for all i 2 N;

where 'g(a)a
def
=
P

i2g(a) 'ia, and 'if(i)
def
=
P

a2f(i) 'ia. The 
ow ' is a max-


ow if it maximizes
P

i 'if(i) (equivalently
P

a 'g(a)a). De�ne F(P ); also writ-
ten F(G; x; r), as the set of max-
ows for problem P = (G; x; r); any ' 2 F(P )
is a solution to the problem P . Agent i's allocation, or share, is yi = 'if(i).
We say that P is a rationing problem if in every ' 2 F(P ) all resources

are fully allocated: 'g(a)a = ra for all a 2 Q. Then we call agent i rationed if
'if(i) < xi. A well known consequence of the max-
ow min-cut theorem ([1])
is that any problem P can be decomposed in at most two disjoint subproblems,
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one in which resources are overdemanded (a rationing problem), the other in
which resources are underdemanded; that is, in every max-
ow, all agents re-
ceive exactly their demand, while resource-types may have unused capacity.5

Therefore we restrict attention throughout to overdemanded problems P . This
restriction is captured by the following system of inequalities:

for all B � Q: rB � xg(B): (4)

We write P for the set of bipartite rationing problems.
A rationing problem P 0 is standard if it involves a single resource type to

which all agents are connected: P 0 = (N;x; t), where x 2 RN+ and 0 � t � xN .
We let P0 be the set of standard problems.
De�nition 1 A bipartite rationing method H associates to each problem

P 2 P a max-
ow ' = H(P ) 2 F(P ).
A standard rationing method h is a method applying only to standard prob-

lems. Thus h(P 0) = h(N;x; t) is a division of t among the agents in N such
that 0 � hi(N;x; t) � xi for all i 2 N .
The following four additional properties of fairness and regularity for bi-

partite rationing methods are required in most of the literature on standard
methods (see [9], [14]).

Symmetry (SYM). A method H is symmetric if the labels of the agents
and types do not matter.6

Continuity (CONT). A method H is continuous if the mapping (x; r)!
H(G; x; r) is continuous in the subset of RN+ � R

Q
+ de�ned by (4).

Ranking (RKG). A method satis�es Ranking if for any P = (G; x; r) and
any i; j 2 N : ff(i) = f(j) and xi � xjg ) yi � yj .
Ranking�(RKG�). A method satis�es Ranking� if for any P = (G; x; r)

and any i; j 2 N : ff(i) = f(j) and xi � xjg ) xi � yi � xj � yj
De�nition 2 We write H (resp. H0) for the set of symmetric, continuous

bipartite (resp. standard) rationing methods meeting Ranking and Ranking�.
We use the notation H(A;B; � � � );H0(A;B; � � � ) for the subset of methods in H
or H0 satisfying properties A;B; � � � .
A bipartite method H 2 H de�nes a standard rationing method h 2 H0

by the way it deals with an arbitrary single resource-type a and the complete
graph G = N � fag:

h(N;x; t) = H(N � fag; x; ra = t)

(this de�nition is independent of a by Symmetry)
The �rst of our two key axioms for bipartite methods is the natural gener-

alization of Consistency for standard methods.

5This is a rationing problem when we exchange the roles of agents and resources.
6For any permutation � of N and � of Q, de�ne G�;� by (�(i); �(a)) 2 G�;� , (i; a) 2 G.

SYM requires: fH(G; x; r) = ';H(G�;� ; x� ; r�) = '0g ) f'ia = '0�(i)�(a) for all (i; a) 2 Gg.
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Notation: for a given graph G � N �Q, and subsets N 0 � N , Q0 � Q, the
restricted graph of G is G(N 0; Q0)

def
= G\fN 0�Q0g, and the restricted problem

obtains by also restricting x to N 0 and r to Q0.

Consistency (CSY). Fix a problem P = (N;Q;G; x; r) 2 P, an agent
i 2 N and an edge ia 2 G. Given a method H 2 H, the reduced problem after
removing ia is P 0 = (N�; Q�; G�fiag; xH(�ia); rH(�ia)) where

N� = N if f(i) 6= fag , N� = N�fig if f(i) 6= fag
Q� = Q if g(a) 6= fig , Q� = Q�fag if g(a) = fig
xHi (�ia) = xi � 'ia; xHj (�ia) = xj for j 6= i
rHa (�ia) = ra � 'ia; rHb (�ia) = rb for b 6= a

Then the two 
ows H(P ) = ' and H(P 0) = '0 must coincide on G�fiag.
For a standard method h, CSY takes the following form. For all P 0 =

(N;x; t) and all i 2 N :

y = h(N;x; t)) yj = hj(N�fig; x�i; t� yi) for all j 6= i

(repeated applications of which give the formulation at the beginning of Section
2).
Our second key axiom has no counterpart in the standard problem.

Merging Identically Connected Resource-types (MIR). If in problem
P 2 P two types a1; a2 are such that g(a1) = g(a2), then we can merge those
two types in a single type with capacity ra1 + ra2 , without a�ecting the 
ow
selected by the method H.7

MIR says that an arti�cial split of a resource-type into subtypes, that does
not a�ect the connectivity pattern, should have no impact either on the optimal

ow. In particular if G = N�Q is the complete graph, the allocation yi = 'if(i)
is simply hi(x; rQ), where h is the standard method associated to H.

5 Convexity� and an impossibility result

Juarez ([8]) introduces the following property for a standard method h:

Convexity (CVX). For all (N;x; t) 2 P0 and all � 2 [0; 1]

y = h(x; t)) h(�x+ (1� �)y; t) = y.

Interpretation: if we lower claims by a fraction of the losses, the allocation
does not change. Convexity is a natural axiom that plays no role in our results,
but it is a natural way to introduce its dual axiom8, that, on the contrary, plays
a central role here.

7That is, for all i, the 
ow 'ia is unchanged for all a 6= a1; a2, and the 
ow to the merged
node is 'ia1 + 'ia2 .

8The dual h� of the standard method h is de�ned by h�(x; t) = x � h(x; xN � t). A
rationing method h satis�es the dual A� of an axiom A, i� the dual method h� satis�es A.
We omit the straightforward proof that CVX and CVX� are dual axioms.
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Convexity� (CVX�). For all (N;x; t) 2 P0 and all � 2 [0; 1]

y = h(x; t)) h(x� (1� �)y; �t) = �y. (5)

Interpretation: if we distribute a fraction of the gains, and lower claims accord-
ingly, the allocation does not change.
We do not view CVX� (or CVX) as normatively compelling, in particular

because many familiar methods in H0(CSY ) fail CVX� (and CVX). Lemma 1
below explains these incompatibilities, then Lemma 2 shows the relevance of
CVX� to the methods in H(CSY;MIR).
One of the earliest standard methods in the literature, the Talmudic method

htal ([2]) is a self-dual compromise between uniform gains hug and uniform
losses hul. With the notation a ^ b = minfa; bg and b+ = maxfb; 0g, de�ne

htal(x; t) = hug(x2 ; t ^
xN
2 ) + h

ul(x2 ; (t�
xN
2 )+)

The Equal Sacri�ce and Dual Equal Sacri�ce methods are introduced in
[17]. Besides their empirical relevance to tax schedules, they connect elegantly
the three benchmark methods. Pick a concave9, strictly increasing function
s : R+ ! R+ [ f�1g (so s(z) = �1 and s0(z) = +1 can only happen at
z = 0). The equal s-sacri�ce method selects y = h(x; t) by budget balance
(yN = t) and the system

for all i: yi > 0) s(xi)� s(yi) = max
N
fs(xj)� s(yj)g

For the same function s, the dual equal s-sacri�ce method selects y = h(x; t)
by budget balance and the system

for all i: yi < xi ) s(xi)� s(xi � yi) = max
N
fs(xj)� s(xj � yj)g

We let the reader check that these methods are inH0; in particular concavity
of s ensures RKG� for an equal sacri�ce method, and RKG for its dual. Note
also that hpro and hul are equal sacri�ce methods, for s(z) = ln(z) and s(z) = z
respectively, while hpro and hug are dual equal sacri�ce methods for the same
two functions s.

Lemma 1
i) The Talmudic method fails CVX �;
ii) The only equal sacri�ce methods meeting CVX � are hpro and hul;
iii) The dual s�equal sacri�ce method meets CVX � if and only if it is hpro, or
hug, or (up to normalization) s(z) = ln(1 + Cz) for some positive number C.
Proof

Statements i) and ii) are Corollary 1 to Lemma 2 in [10]. We only prove
statement iii).

9Concavity of s is needed to ensure RKG� for the equal s-sacri�ce method, and RKG for
the dual equal s-sacri�ce one.
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Fix s and assume the dual s�method meets CVX�. Fix a; b; a0; b0, all positive
and such that a > b; a0 > b0, and

s(a)� s(b) = s(a0)� s(b0) (6)

In the problem N = f1; 2g, x = (a; a0); t = a + a0 � b � b0 the dual s�method
picks y = (a� b; a0 � b0). By CVX� for any � 2 [0; 1], the method chooses �y in
the problem with demands x � (1 � �)y = (�a + (1 � �)b; �a0 + (1 � �)b0); the
pro�le of losses (x� (1� �)y)� �y = (b; b0) is unchanged; therefore

s(�a+ (1� �)b)� s(b) = s(�a0 + (1� �)b0)� s(b0) (7)

In the rest of the proof we assume that s is di�erentiable, omitting for brevity
the details of the argument when the concave function s only has a left and a
right derivative at some kink points. Note that s0(z) is positive for all positive
z (and possibly in�nite at zero).
We just showed that equality (6) implies (7) for any � 2 [0; 1]. We �x now

a; b; 0 < b < a, and � 2 [0; 1]. For " > 0 small enough there exists "0 > 0 such
that s(a)� s(b) = s(a+ ")� s(b+ "0), therefore

s(�a+ (1� �)b)� s(b) = s(�(a+ ") + (1� �)(b+ "0))� s(b+ "0)

When " goes to zero, the ratio "0

" converges to
s0(a)
s0(b) , and the equality above

converges to

s0(�a+ (1� �)b) � (�"+ (1� �)"0) = s0(b)"0

) s0(�a+ (1� �)b) � (�s0(b) + (1� �)s0(a)) = s0(a)s0(b) (8)

Thus on the interval [b; a], the positive function z ! s0(z) takes the form s0(z) =
�

�+
z with

� = (a� b)s0(a)s0(b); � = as0(a)� bs0(b); 
 = s0(b)� s0(a)

Note that � > 0 , 
 � 0 , and �+
b > 0. Upon normalization of s we can choose
� = 1. On two strictly overlapping intervals [b; a] and [c; d] the two expressions
1

�+
z must coincide, therefore

s0(z) =
1

� + 
z
for all z > 0 , and �; 
 � 0 , � + 
 > 0

We conclude that our dual s�method is hug if 
 = 0; if 
 > 0, after one more
normalization, it takes the form s0(z) = 1

1+Cz for some positive C, as desired.�
The rationing methods uncovered by statement iii) are new. See more com-

ments after Proposition 1 in the next section.
Together with Lemma 1, our next result shows that many of the most de-

bated consistent standard methods , cannot be consistently extended to the
bipartite context.

10



Remark 1 The familiar axioms Lower Composition (LC) and Upper Com-
position (UC), (aka Composition Up, and Composition Down; see [9], [14])
are critical to the characterization of equal sacri�ce methods and their dual
([17], [9]). For all x; t; t0, such that t < t0 � xN , LC requires h(x; t0) =
h(x; t) + h(x� h(x; t); t0 � t), and UC requires h(x; t) = h(h(x; t0); t).
We conjecture that the following slightly stronger version of statement ii)

holds true: the only standard methods meeting CVX � and Lower Composition
(LC) are hpro and hul. Similarly, statement iii) would become: the only stan-
dard methods meeting CVX � and Upper Composition (UC) are hpro, hug, and
the dual s�equal sacri�ce methods where (up to normalization) s(z) = ln(1+Cz)
for some positive number C.

Lemma 2: Assume the set Q of potential resource-types is in�nite. If
H 2 H(CSY;MIR), the associated standard method h satis�es Consistency
and Convexity�.
Proof There is nothing to prove for CSY. For CVX� we reproduce for

completeness the argument in Lemma 2 of [10].
Fix H 2 H(CSY;MIR) and a standard problem (N;x; t) 2 P0. Fix any two

integers p; q; 1 � p < q, and a set Q of types with cardinality q. Consider the
problem P = (N � Q; x; r) with complete graph, where ra = t

q for all a 2 Q,
and let y be the associated pro�le of shares at ' = H(P ). By MIR y = h(x; t)
and by symmetry 'ia =

yi
q for all i 2 N . Drop now p of the nodes and let Q

0 be
the remaining set of types. Applying CSY successively to all edges connecting
these p nodes gives H(N � Q0; x0; r0) = '0, where x0 = x � p

q y; r
0
a =

t
q for all

a 2 Q0, and '0 is the restriction of ' to N �Q0. Therefore y0 = q�p
q y. MIR in

the reduced problem gives y0 = h(x0; q�pq t). This shows
q�p
q y = h(x�

p
q y;

q�p
q t),

precisely (5) for � = p
q . Continuity implies (5) for other real values of �.�

Remark 2 We introduce in [10] the property of Node-Consistency, weaker
than CSY. It only considers reduced games in which either an agent i or a
resource-type is deleted (all edges in f(i), or all in g(a)). Similarly Reduction
of Complete Graph (RCG) weakens MIR in that it only allows to merge all
resource-types when all types are identically connected, i.e., the graph G is
complete. It turns out that Lemma 2 is preserved under these two weaker
assumptions: if H 2 H meets CSY and RCG, the standard method h still
meets CSY and CVX�.

In the next section we focus on the set H0(CSY;CV X�) of standard meth-
ods, which we now know contains all the methods that can be extended to
H(CSY;MIR). By Young's theorem ([16]), any such method h is parametric:
h = h�. Without loss of generality, we consider only those parametrizations �
that distinguish all parameter values in the following sense: for all � < �0 there
is some v such that �(v; �) < �(v; �0). We say that such a parametrization is
clean.
The de�nition of H0 includes the properties Ranking and Ranking�. It is

easy to check that h� meets RKG i� �(v; �) is weakly increasing in v as well,
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and RKG� i� �(v; �) is 1-Lipschitz in v: �(v0; �)� �(v; �) � v0� v for all v < v0.
Our next result describes the impact on � of Convexity�.

Lemma 3: A standard method h 2 H0 is in H0(CSY;CV X�) if and only
if it any one of its clean parametrization � satis�es the following. For all � � 0
and all � 2 [0; 1], there exists �0 � 0 such that

�(v � ��(v; �); �0) = (1� �)�(v; �) for all v � 0 (9)

Proof
Only if. We �x � � 0; � 2 [0; 1], and de�ne J(v) = f�0 � 0j�(v � ��(v; �); �0) =
(1 � �)�(v; �)g for all v � 0. If v > �(v; �), J(v) is a non empty compact
interval, because �(v � ��(v; �); 0) = 0 and �(v � ��(v; �);1) > (1 � �)�(v; �).
If v = �(v; �) the de�nition of �0 becomes �((1 � �)v; �0) = (1 � �)v, therefore
J(v) is a possibly empty closed half-line [a;1[ (recall �(v; �) increases weakly
and �(v; �) � v). Note that v = �(v; �) cannot hold for all v � 0, for this would
imply v = �(v; �") for all �" � � and all v, contradicting the cleanliness of �.
Thus at least one J(v) is non empty and compact.
Next we claim that J(x1) \ J(x2) is non empty for any two x1; x2. De�ne

t = �(x1; �) + �(x2; �) and apply CVX
� to the problem (x = (x1; x2); t):

h�(x� � � (�(x1; �); �(x2; �)); (1� �)t) = (1� �) � (�(x1; �); �(x2; �))

Hence for some parameter �0 we have �(xi � ��(xi; �); �0) = (1 � �)�(xi; �) for
i = 1; 2, as claimed.
We conclude that \v�0J(v) is non empty, and any �0 in this set satis�es (9).

If. Fix (N;x; t) 2 P0 and � 2 [0; 1]. Let � be a solution of system (1), and �0

be such that (9) holds true. Applying (9) to v = xi for each i 2 N shows that
(1� �) � h�(x; t) is precisely h�(x� � � h�(x; t); (1� �)t).�

6 Loss calibrated standard methods

In this Section we de�ne the large family of loss calibrated standard methods, all
in H0(CSY;CV X�). We use these methods in the next Section to characterize
several subsets of H0(CSY;CV X�) under mild additional properties. A full
description of H0(CSY;CV X�) obtains as a by-product of the proofs in the
Appendix.

De�nitionWe call the function �, from R+ into itself, a calibration func-
tion if it is continuous, weakly increasing, �(0) 2 f0; 1g, and �(z) > 0 for all
z > 0. If �(0) = 0, � is a strict calibration; if �(0) = 1, it is a non-strict
calibration. The sets of strict and non strict calibrations are denoted Bs and
Bns respectively, and B = Bs [ Bns is the set of all calibration functions.

Proposition 1
i) Fix � 2 Bs. For all (N;x; t) 2 P0 such that t < xN , the system in y 2 RN+

0 � y � x , yN = t
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yi
�(xi � yi)

=
yj

�(xj � yj)
for all i; j such that xi; xj > 0 (10)

has a unique solution y = h�(x; t) de�ning a rationing method in H0(CSY;CV X�),
and parametrized by �� as follows. For all (v; �) 2 R2+

��(v; �) is the unique solution y 2 [0; v] of y = ��(v � y) (11)

ii) Fix � 2 Bns. For all (N;x; t) 2 P0 the system in y 2 RN+

0 � y � x , yN = t

fyi < xi )
yi

�(xi � yi)
= max

j

yj
�(xj � yj)

g for all i (12)

has a unique solution y = h�(x; t) de�ning a rationing method in H0(CSY;CV X�),
and parametrized by the following ��. For all (v; �) 2]0;1[�R+

��(v; �) is the unique solution y 2 [0; v] of y

�(v � y) = � ^ v (13)

We write LCs (resp. LCns) for the set of strict (resp. non-strict) loss-
calibrated methods corresponding to the two types of calibration functions, and
LC = LCs [ LCns is the set of all loss-calibrated methods.
Proof
If t = xN or xi = 0 the corresponding shares are clear by de�nition of

rationing methods, hence statement i) is a complete de�nition of a rationing
method.
For v = 0, both (11) and (13) give ��(0; �) = 0. For v > 0, the function

y ! y
�(v�y) is continuous and strictly increasing for y 2 [0; v[; in the strict case

this ratio goes to1 as y approaches v; in the non strict case it reaches v. Hence
both systems (11) and (13) have a unique solution ��(v; �) in the corresponding
intervals. The function �� is clearly continuous on R2+ and weakly increasing
in both variables. The corner conditions ��(v; 0) = 0; and ��(v;1) = v are
equally clear.
Next we �x (N;x; t) 2 P0 with t < xN , and let yi = ��(xi; �) be the

allocation selected by the parametric method �� , i.e., � solves
P

i2N �
�(xi; �) =

t. In the strict case it is clear from (11) that yi
�(xi�yi) is independent of i

whenever xi > 0. In the non-strict case (13) implies
yi

�(xi�yi) = � ^ xi for all i.
If yi < xi we have

yi
�(xi�yi) = � (recall �(xi � yi) � 1), and if yi = xi we have

yi
�(xi�yi) � �, completing the proof that y is a solution of (12).
Conversely in the strict case a solution y of (10) clearly takes the form

yi = ��(xi; �) for some �. In the non-strict case, if y is a solution of (12),
we set � = maxj

yj
�(xj�yj) . For i such that yi = xi, inequality

yi
�(xi�yi) � �

implies yi
�(xi�yi) = � ^ xi; for i such that yi < xi we have

yi
�(xi�yi) = � and

yi
�(xi�yi) � yi � xi, so

yi
�(xi�yi) = � ^ xi as well.

We have shown that (10) de�nes a strict method h� parametrized by (11),
and (12) de�nes a non-strict one h� parametrized by (13).
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The properties CONT, SYM, and CSY are clear. Next we check RKG, i.e.,
��(v; �) is weakly increasing in v. In the non-strict case, �x � and assume to the
contrary v < v0 and y0 < y, where y; v; �, as well as y0; v0; �, meet (13). Then

� ^ v = y

�(v � y) �
y

�(v0 � y0) >
y0

�(v0 � y0) = � ^ v
0

contradiction. The proof in the strict case is similar.
To prove RKG�, i.e., ��(v; �) is 1-Lipschitz in v, start with the strict case.

Fix � and assume to the contrary v < v0 and v � y > v0 � y0: then y0 > y; so
y

�(v�y) =
y0

�(v0�y0) yields a contradiction. In the non-strict case, pick �; v < v
0,

and assume y
�(v�y) = � ^ v;

y0

�(v0�y0) = � ^ v
0. If � � v then we are back to the

previous case; if v < � then y = v (by (13)) and y0 � v0 so we are done.
We check �nally CVX�. Fix � 2 Bs [ Bns, a problem (N;x; t) 2 P0 and

� 2 [0; 1]. Direct inspection shows that if the triple (x; t; y) meets system (10)
in the strict case(or (12) in the non-strict case), then so does the triple
(x� (1� �)y; �t; �y).�
We give some examples of loss calibrated methods.
The identity function �(z) = z is a strict calibration (� 2 Bs), corresponding

to the proportional method hpro 2 LCs; equation (11) gives the parametrization
�pro(v; �) = �

1+�v mentioned in the introduction
The constant function �(z) = 1 is non-strict (� 2 Bns), it corresponds in

(12) to the uniform gain method hug 2 LCns, parametrized by �ug(v; �) = �^v.
It is easy to see that hul is not loss calibrated (hul =2 LC), except in a limit

sense explained below.
A familiar and powerful requirement for standard methods is that they

should ignore the scale of the problem. This is compelling when the context
does not include any benchmark level of demands or resources.

Scale Invariance (SI). For all (N;x; t) 2 P0 and all � > 0

h(�x; �t) = �h(x; t)

This axiom cuts a simple one-dimensional family in LC, where the calibration
function is a power function �(z) = zp for some p � 0. For p = 0 this is simply
uniform gains hug. For p > 0 the corresponding method y = hp(x; t) obtains by
solving the system

0 � y � x , yi
(xi � yi)p

=
yj

(xj � yj)p
for all i; j, and yN = t (14)

For p = 1, this is simply hpro. For p = 2 and p = 1
2 , the parametrization is in

closed form:

�2(v; �) = v(1� 2

1 +
p
�v + 1

)

�
1
2 (v; �) = v

2

1 +
p

v
� + 1
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The family (14) fhp; p � 0g is new to the literature on standard methods.
It connects the three benchmark methods as follows: h0 = hug, h1 = hpro, and
hul = limp!1 h

p, where the limit is in the pointwise sense (for any problem
(x; t) limp!1 h

p(x; t) = hul(x; t)).
Theorem 1 in the next Section implies that the power functions are the

only scale invariant methods in LC. In fact it says much more: the only scale
invariant methods in H0(CSY;CV X�) are hul and hp for some p � 0.
In statement iii) of Lemma 1 we discovered another new one-dimensional,

family of methods connecting this time hug and hpro. For any C > 0, the
dual equal s-sacri�ce method hC with s(z) = ln(1 + Cz) is (non-strictly) loss
calibrated by �C(z) = 1+Cz. Indeed for all x; x0; y; y0, such that y < x; y0 < x0

we have

ln(1 + Cx)� ln (1 + C(x� y)) = ln(1 + Cx0)� ln (1 + C(x0 � y0))

() y

1 + Cx
=

y0

1 + Cx0
, y

1 + C(x� y) =
y0

1 + C(x0 � y0)

The method hC is parametrized by as follows:

�C(v; �) =
� ^ v

1 + C(� ^ v) (1 + Cv)

Moreover h0 = hug and limC!1 h
C = hpro. We omit the easy proof of these

two claims.
Finally we construct yet another new one-dimensional family connecting hug

and hpro in LCs by choosing the strict calibration �D(z) = z ^D, where D is
an arbitrary positive constant. The corresponding parametrization is

�D(v; �) =
�

1 + �
v ^ �D

and one checks that limD!0 h
D = hug, while limD!1 h

D = hpro.

7 Characterization of (hybrid) loss calibrated

rationing

The long proof of Theorems 1,2 below starts by the analysis of the setH0(CSY;CV X�)
of consistent standard methods satisfying CVX�: subsection 10.1. This set con-
tains uninterestingly complicated methods combining countable families of loss
calibrated submethods: see subsection 10.1.?. In Theorems 1,2 we add to CSY
and CV X� one of three mild and natural axiomatic requirements, and obtain
relatively simple subfamilies of methods, either directly loss calibrated ( in LC),
or close variants of loss calibrated methods, that we dub hybrid methods. More-
over the bipartite extension of the latter methods is easy to describe, which is
not the case for more general methods in H0(CSY;CV X�).

15



The �rst of the three axioms just mentioned is Scale Invariance, de�ned at
the end of the previous section. The second one is well known in the literature.

Strict Resource Monotonicity (SRM): for all (N;x; t); (N;x; t0) 2 P0 such
that y = h(x; t), y0 = h(x; t0)

t < t0 ) yi < y
0
i for all i 2 N

The proportional method hpro is strictly resource monotonic, but neither hug

nor hul is. The equal s�sacri�ce method (resp. its dual) meets SRM if and
only if s(0) = �1, for instance s(z) = � 1

zp for p > 0.

Theorem 1
i) The rationing method h is in H0(CSY;CV X�; SI) if and only if it is hug; hul,
or it is strictly calibrated by a power function �(z) = zp for some p > 0.
ii) The rationing method h is in H0(CSY;CV X�; SRM) if and only if it is a
strictly loss calibrated: LCs = H0(CSY;CV X�; SRM).

The long proofs of Theorems 1 and 2 are in the Appendix.
Our second main result captures a subset of H0(CSY;CV X�) that is larger

than LC, in particular it contains hul. The additional requirement we impose
is a mild strengthening of RKG�, which holds true for the three benchmark
methods, all equal sacri�ce methods and their dual, and the Talmudic method.
@Ranking� (@RKG�): for all (N;x; t); (N;x; t0) 2 P0 such that t � t0, y =

h(x; t), and y0 = h(x; t0)

fxi � yi = xj � yj for all i; jg ) fxi � y0i = xj � y0j for all i; jg

This says that if at some level of the resources t all agents experience the same
loss, then for higher levels of resources the losses remain identical across agents.
It is strictly weaker than the strict version of RKG�, xi < xj ) xi�yi < xj�yj .
The set H0(CSY;CV X�; @RKG�) contains LC, hul, as well as new hybrid

methods combining hul and a loss calibrated method.

Proposition 2 Fix a calibration function � 2 B, and a constant A, 0 � A �
1. The following system de�nes a standard method h�;A in H0(CSY;CV X�).
For all (N;x; t) 2 P0

h�;A(x; t) = h�((x�A)+; t) for all t s.t. t �
X
N

(xi �A)+ (15)

h�;A(x; t) = hul(x; t) for all t s.t.
X
N

(xi �A)+ � t � xN (16)

This method is parametrized by

��;A(v; �) = ��((v �A)+;
�

1�A� ) for all v � 0, all � �
1

A
(17)

��;A(v; �) = (v � 1

�
)+ for all v � 0, all � �

1

A
(18)
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We write fLC for the set of hybrid loss calibrated methods thus de�ned.
Proof

By Proposition 1, equation (17) de�nes a continuous, weakly increasing (in both
variables) function ��;A(v; �) in the subset f0 � � < 1

Ag of R
2
+. Equation (18)

de�nes a function with the same properties in the subset f� � 1
Ag; continu-

ity on the line f� = 1
Ag follows from lim�0!1 �

�(v0; �0) = v0. The equalities

��;A(v; 0) = 0 and ��;A(v;1) = v are equally clear. Thus ��;A(v; �) is a gen-
uine parametrization, moreover it is weakly increasing and 1-lipschitz in v, so
it de�nes a rationing method in H0(CSY ). Checking CVX� is easy: for each
� < 1

A and � 2 [0; 1] we apply Lemma 3 to �
� and the parameter �

1�A� to �nd
�0

1�A�0 satisfying (9) for some �
0 < 1

A , so that (9) holds for �
�;A when � < 1

A ;

the argument for � � 1
A is similar but for �

ul.

It remains to show that the method parametrized by ��;A is given by system
(15),(16). Fix a problem (N;x; t) and distinguish two cases.
Case 1: xi � A for all i. Then ��;A(xi; �) = 0 for � � 1

A , so we have

��;A(xi; �) = (xi � 1
� )+ = �

ul(xi; �) for all � � 0, hence the parametric method
selects with hul(x; t), just like (16) does.
Case 2:

P
N (xi�A)+ > 0. Then �!

P
N �

�;A(xi; �) reaches
P

N (xi�A)+
at � = 1

A (and possibly before
1
A ), and is strictly larger when � >

1
A . Therefore

the equation
P

N �
�;A(xi; �) = t with unknown �, has its solution before 1

A if
t <

P
N (xi�A)+, and after 1

A if t >
P

N (xi�A)+. If the former this equation
is
P

N �
�((xi �A)+; �

1�A� ) = t, so it delivers the allocation h
�((x�A)+; t). If

the latter the equation is
P

N (xi � 1
� )+ = t, and the allocation is h

ul(x; t).�
For A = 0, our method is simply loss-calibrated: h�;0 = h� 2 LC. For

A =1, it is hul. For 0 < A <1, h�;A works as follows: apply to the pro�le x
a uniform reduction by the �xed amount A (possibly canceling some demands);
then apply the loss calibrated method to these reduced demands, if they still
exceed the available resources; otherwise pick the uniform losses allocation.

Theorem 2 The rationing method h is in H0(CSY;CV X�; @RKG�) if and

only if it is an hybrid loss calibrated method : fLC = H0(CSY;CV X�; @RKG�).

Remark 2 The following is axiom strengthens the @RKG� property:
@@Ranking (@@RKG): for all i; j;

fxi < xj ; t < t0g ) hi(x; t
0)� hi(x; t) � hj(x; t0)� hj(x; t)

In words, a bigger claim warrants a weakly bigger share of any resource increase.
This is a self-dual property, implying at once RKG, RKG�, and @RKG�. For
the parametric method �(xi; �), @@Ranking amounts to a cross monotonicity
property:

fxi < x0i; � < �0g ) �(x0i; �) + �(xi; �
0) � �(xi; �) + �(x0i; �0)

or @x�� � 0, for short.
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All equal s-sacri�ce and dual equal s-sacri�ce methods satisfy @@RKG, be-
cause the function s is concave. For a loss calibrated method h� , or the hybrid
methos h�;A, it is easily checked that @@RKG holds if and only if the calibra-
tion function � is concave. This in turn gives a variant of Theorem 2, where
@@RKG replaces @RKG�, and we characterize the hybrid methods with concave
calibration.

8 Bipartite (hybrid) loss calibrated methods

We show �nally that all standard methods uncovered in Theorems 1 and 2 can be
exended toH(CSY;MIR). For strictly loss calibrated methods (in particular all
methods in Theorem 1 except hug and hul), this extension is unique: Theorem
3. For hug,hul, other non strict loss calibrated methods, and all hybrid loss
calibrated methods (with A > 0 in Theorem 2), it is not unique: Theorem 4.
Given �2B, we de�ne B(z) =

R z
1
ln(�(t))dt; this integral is �nite for z > 0,

and possibly in�nite (+1) for z = 0 (e.g., B(0) = +1 if �(z) = e�
1
z ). We also

write the entropy function En(z) = z ln(z) =
R z
1
(ln(t) + 1)dt.

Theorem 3 For any strict calibration � 2 Bs, the corresponding standard
method h� 2 LCs has a unique extension H� to H(CSY;MIR), de�ned as
follows. Given the rationing problem P = (N;Q;G; x; r) 2 P, let N0 � N be
the subset of agents i with yi = 'i;f(i) = xi for every ' 2 F (G; x; r). Then,

'�(P ) = arg min
'2F(G;x;r)

X
ia2G

En('ia) +
X

i2NnN0

B(xi � yi): (19)

We say that P is balanced if xN = rQ. In this case every max-
ow meets
individual demands in full, but we still have many choices for the actual 
ow
along the edges. Theorem 3 implies that for a balanced problem, all extended
strict calibration methods select the same 
ow

'�(P ) = arg min
'2F(G;x;r)

X
ia2G

En('iz) (20)

which coincides in particular with the solution of the bipartite proportional
method ([10]).
Note that if B(0) is �nite, de�nition (19) takes the simpler form

'�(P ) = arg min
'2F(G;x;r)

X
ia2G

En('ia) +
X
i2N

B(xi � yi) for all P 2 P (21)

Proof Step 1: The entropy function is strictly convex and B is convex,
therefore the program (19) has a unique solution. Fix P 2 P and N0 as de�ned
above, and set N1 = N�N0. Then Q is uniquely partitioned as Q0 [ Q1
such that g(Q0) = N0, xN0

= rQ0
, and f(N1) = Q1. The restriction of P to

(N0; Q0) is a balanced problem P0, while its restriction to (N1; Q1) is a strictly
overdemanded problem P1, i.e., for all B � Q1 we have rB < xg(B)\N1

. Program
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(19) decomposes into two independent programs, namely (20) on P0 and (21)
on P1.
Check �rst that for a standard problem (x; t) this de�nes the loss calibrated

method h� . Indeed N0 = ; or N0 = N for such a problem, and the KKT
conditions for

arg min
yN=t;y�x

X
i2N

En(yi) +
X
i2N

B(xi � yi)

are that yi < xi for all i unless the problem is balanced, and yi
�(xi�yi) is inde-

pendent of i.
Next we need to check that H� meets the four properties in De�nition 2,

as well as CSY and MIR. SYM is obvious. For RKG and RKG�, note that
f(i) = f(j) implies that i and j are both in N0 or both in N1; if the former, there
is nothing to prove; if the latter assume for instance xi � xj and yi < yj , then
we improve the objective by averaging the 
ows to i and j (giving 1

2 ('ia +'ib)
to both), because En is strictly convex. Checking MIR is equally easy as two
nodes with identical connectivity are also in the same element of the partition
Q0 [ Q1. Similarly for CSY note that upon dropping an edge, the partitions
of N and Q do not change (except if an agent or a type disappears, in which
case the corresponding set N0;1 and/or Q0;1 shrinks), so we can check CSY
separately for P0 and P1. This is clear because xi � yi does not change when
we drop an edge ia.

Step 2: The only property requiring a global argument is CONT, because
when (xk; rk) converges to (x; r), the partitions may shift at the limit problem.
In the case where B(0) is �nite, the 
ow H�(x; r) solves the program (21),
independent of the partitions of N;Q, and we can apply Berge's maximum the-
orem under convexity [13]. The correspondence (x; r) ! F(G; x; r) is convex
and compact valued, and both upper and lower hemi-continuous (see, for in-
stance, Bohm [5]), and we minimize a strictly convex function, so the argmin
is a continuous function.
A more complex argument is needed to accomodate the case B(0) = 1,

where the program (21) is not de�ned for balnced problems. Fix N;Q;G, and
consider a converging sequence in P: P = limk P k. It is clearly enough to show
H(P ) = limkH(P

k) when the partitions Nk
0;1; Q

k
0;1 are the same for all k. If

this is also the partition of P , we can still invoke Berge's Theorem because H
solves the strictly convex program (19) over the same correspondence (x; r) !
F(G; x; r). When the partition changes in the limit, the balanced component
must expand. Omitting some straightforward details, it will be enough to prove
CONT for a sequence (xk; rk) converging to (x; r) such that:

� P k = (N;Q;G; xk; rk) is strictly overdemanded

� P = (N;Q;G; x; r) is balanced and irreducible ([10]), i.e., B  Q1 we have
rB < xg(B)\N1

Assume �rst that G is the complete graph N �Q. Then the solution 'k =
H�(P k) of (21) is characterized by the KKT conditions

'kia
�(xki�yki )

=
'kja

�(xkj�ykj )
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for all i; j; a, in particular yki < xki and '
k
ia > 0 for all i; a; k. This implies

'kia
'kib

=
'kja
'kjb

=
rka
rkb
and in turn 'kia =

rka
rkQ
yki (even for those types such that r

k
a = 0).

Now yki < x
k
i , y

k
N = r

k
Q, the convergence assumptions and the balancedness of P

imply limk y
k
i = xi then limk '

k
ia =

ra
rQ
xi, i.e., '

k converges to the proportional


ow in P , precisely the solution of (20).
Next assume G is an arbitrary graph. The solution 'k = H�(P k) of (21)

still has yki < xki , '
k
ia > 0, and is still characterized by the KKT conditions

'kia
�(xki�yki )

=
'kja

�(xkj�ykj )
for all i; j; a such that ia; ja 2 G. Set �ki = �(xki � yki ) and

de�ne as follows a 
ow 'k in the complete graph G = N �Q, augmenting 'k:

'kia = '
k
ia if ia 2 G; 'kia =

�ki

�kj
'kja for any j 2 g(a) (22)

Consider the new problem P
k
= (G; xk; rk) where

xki = x
k
i +

X
a2Q�f(i)

'kia ; r
k
a = r

k
a +

X
i2N�g(a)

'kia

One checks easily the following facts: P
k
is strictly overdemanded; 'k is a max-


ow in P
k
; xki � yki = xki � yki so that �

k

i = �(xki � yki ) = �ki ; and �nally '
k

meets the KKT conditions of (21), namely
'kia
�ki

=
'kja
�kj

for all i; j; a. Therefore

'k = H�(P
k
).

The sequence 'k is bounded, we check now that 'k is bounded as well.

The binary relation in N : i � j i� A <
�ki
�kj

< B for some A;B, s.t. A >

0, is an equivalence relation. If N itself is an equivalence class, each 'kia is
bounded as well. If there are two or more equivalence classes, we can take
a subsequence of k (denoted k for simplicity) and partition N as N+ [ N�

such that
�ki
�kj
! 0 (limit w.r.t. k) for all i 2 N+ and j 2 N�. Then we set

Q+ = f(N+); Q� = Q�Q+, so g(Q�) = N�. For any a 2 Q+, j 2 g(a) \N+,

and i 2 N�, the equation 'kia =
�ki
�kj
'kja implies '

k
ia ! 0, therefore 'kN��Q+ ! 0,

and in turn 'kG(N�;Q+) ! 0. Because (xk; rk) converges to (x; r) and P is

balanced, we have 'kG(N�;Q) ! xN� . Combining the last two limit statements

gives 'kG(N�;Q�) ! xN� ; on the other hand G(N�; Q�) = G(N;Q�) because

g(Q�) = N�, therefore 'kG(N�;Q�) ! rQ� . This contradicts the irreducibility

of P , and completes the proof that the sequence 'k is bounded.
We check now that any convergent subsequence of 'k (written 'k for simplic-

ity) converges to ' = H�(P ), i.e., is the solution of (20) at P . Take a converging
subsequence (written the same) of 'k such that 'k converges as well, and let '
be its limit. De�ne the problem P = (G; x; r) on the complete graph:

xi = xi +
X

a2Q�f(i)

'ia ; ra = ra +
X

i2N�g(a)

'ia
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so that P is balanced. We showed above that ' is the solution of (20) at P
(the proportional 
ow). The solution of (20) for balanced problems meets CSY;
by removing successively all edges outside G we get problem P , therefore the
restriction 'k of 'k to G is also the solution of (20) for problem P .

Step 3: To show uniqueness, �x an extension H of h� in H(CSY;MIR), and
a problem P 2 P, with corresponding subproblems P0; P1 (see Step1) restricted
respectively to N0�Q0 and N1�Q1. By repeated applications of CSY, H(P ) is
the union of the two 
ows H(P0) and H(P1). We show �rst H(P1) = H

�(P1).
Set H(P1) = ' and zi = xi � yi, so that

P
N zi > 0. Fix a resource type a,

drop all edges in G(N1 �Q1) except those ending at a, and reduce accordingly
individual demands as in the de�nition of CSY. The zi-s do not change, and
the remaining standard problem is ((zi+'ia)i2g(a); ra), strictly overdemanded.
Invoking CSY and Proposition 1 we have:

'�a = h
�((zi + 'ia)i2g(a); ra),

'ia
�(zi)

=
'ja
�(zj)

for all i; j 2 g(a)

As a was arbitrary, these are precisely the KKT conditions for problem (19)
restricted to N1 �Q1.
Now H(P0) = H�(P0) follows by choosing a sequence of strictly overde-

manded problems P k = (G(N0 � Q0); xk; rk) converging to P0: the previous
argument gives H(P k) = H�(P k) for all k and CONT concludes the proof.�

The proof above shows that for a strictly overdemanded problem P =
(G; x; r), the 
ow ' = H�(P ) is determined by the pro�le of losses zi = xi � yi
as follows

'ia =
�(zi)P
g(a) �(zj)

ra

and z is the unique solution of the system

xi = zi +
X
a2f(i)

�(zi)P
g(a) �(zj)

ra

This system appears in [10] for the special case of the proportional method,
�(z) = z.

Theorem 4 Any standard method h�;A 2 fLC can be extended to H(CSY;MIR).
Proof sketch
Step 1: Given a non strict loss calibrated method h� 2 LCns we de�ne one

of its extensions H� to H(CSY;MIR) as the solution of program (21), well
de�ned because B(0) is �nite. Given P = (G; x; r), and for a 
ow ' the usual
notation yi = 'if(i) and zi = xi � yi, the KKT conditions for ' = H�(G; x; r)
are

'�a = h
�((zi+'ia)i2g(a); ra), fzi > 0)

'ia
�(zi)

= max
j

'ja
�(zj)

for all i; j 2 g(a)
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To check that H� is well de�ned and in H(CSY;MIR) proceeds exactly
as in steps 1,2 of the previous proof (CONT (step2) is easier because B(0) is
�nite). We omit the details.
We also need an extension Hul of the uniform losses method hul, which was

introduced in [10]. Given P = (G; x; r) we determine �rst the pro�le of shares
y as follows

y = arg min
'2F(G;x;r)

X
i2N

W (xi � yi)

where W is an arbitrary strictly convex function (x � y is Lorenz dominant
among all pro�les of losses achievable in a max-
ow). Then the 
ow ' is

' = arg min
'2F(G;y;r)

X
ia2G

En('ia)

Note that replacing En by any strictly convex function V would still give
an extension of hul, albeit a di�erent one.

Step 2: We now extend a general hybrid loss calibrated method h�;A (Propo-
sition 2). Fix a problem P = (N;Q;G; x; r) 2 P, and consider the max-

ow problem in the bipartite graph (N;Q;G; (x � A)+; r) (where (x � A)+ =
((xi�A)+)i2N ). It is not necessarily in P. The Gallai Edmunds decomposition
of this 
ow graph is a pair of partitions N = N+ [N� and Q = Q+ [Q� such
that:

� G(N�; Q�) = ?

� (G(N�; Q+); x; r) is overdemanded: rB �
P

g(B)\N�
(xi � A)+ for all

B � Q+

� (G(N+; Q�); x; r) is underdemanded:
P

M (xi � A)+ � rf(M)\Q� for all
M � N+

Observe that this last problem is underdemanded when the claims are de-
creased by A, but remains overdemanded if we use the original claims: this is
because the agents in N� have no link to any resources in Q�, and the original
problem P is overdemanded.
We de�ne the extension H�;A of h�;A by applying the extension H� of h�

in step 1 to the (N�; Q+)-subproblem, and an extension H
ul of hul to the

(N+; Q�)-subproblem. We write '[S] for the restriction of ' to G(S; f(S)).

'�;A[N�]
= H�(N�; Q+; G(N�; Q+); (x�A)+; r)

'�;A[N+]
= Hul(N+; Q�; G(N+; Q�); x; r)

That this extension satis�es CSY and MIR follows directly. Continuity
comes from the continuity properties of these extensions, and from the fact that
the edge-
ows in any balanced subproblem are identical and do not depend on
the extension used.�
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9 Appendix 1: equivalence of (1) and (3)

Fix a problem (N;x; t) throughout. The solution y of (3) is characterized by
the Kuhn-Tucker optimality conditions, i.e., for all i:

yi > 0)
@u

@�w
(xi; yi) � min

j2N

@u

@+w
(xj ; yj)

yi = 0)
@u

@+w
(xi; yi) � max

j2N

@u

@�w
(xj ; yj)

Let (y; �) be the solution of (1): by de�nition of @u
@+;�w

we have for all i:

@u

@�w
(xi; yi) � f(�) �

@u

@+w
(xi; yi)

implying the KT system at once.
Conversely let y be the solution of (3). For any two distinct i; j, we assume

[ @u@�w
(xi; yi);

@u
@+w

(xi; yi)] < [
@u
@�w

(xj ; yj);
@u
@+w

(xj ; yj)] and derive a contradiction.

The KT conditions imply yj = 0 and yi = xi. From yj = �(xj ; 0) and (2) we get
@u
@�w

(xj ; yj) � f(0), while yi � �(xi; 1) and (2) give f(1) � @u
@+w

(xi; �(xi; 1)) �
@u
@+w

(xi; yi), contradiction because f increases strictly.

Thus the intervals [ @u@�w
(xi; yi);

@u
@+w

(xi; yi)] are pairwise overlapping, which

means that they contain a common element f(�). Then (y; �) is a solution of
(1), as was to be proved.�

10 Appendix 2: proof of Theorems 1,2

10.1 Structure of H0(CSY;CV X�)

We �x in this subsection a method H0(CSY;CV X�): by Lemmas 2,3, it is a
parametric method � meeting (9); we also assume that � is clean (� 6= �0 )
�(�; �) 6= �(�; �0)).

10.1.1 the correspondence B

The following correspondence B from R2+ into R+ is the key tool in our proof:

B(z; �) = fy � 0jy = �(z + y; �)g for all (z; �) 2 R2+ (23)

Note �rst that B is an alternative representation of � in the following sense: �x
any (v; �) 2 R2+ then for all y 2 R+ we have

y = �(v; �), y 2 B(v � y; �)

The fact that the equation y 2 B(v�y; �) with unknown y always has a unique
solution places many constraints on B, which are the object of this and the next
two subsections of this proof.
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Note �rst that B(z; �) can be empty: e.g., for hul we need to solve y =
(z + y � 1

� )+ which is only possible if z �
1
� . Then we have B(z; �) = f0g if

z < 1
� , and B(

1
� ; �) = R+.

If B(z; �) is non empty, it is closed because � is continuous. It is also convex:
if y1; y2 2 B(z; �) and y1 < y2, we have

�(z + y2; �)� �(z + y1; �) = (z + y2)� (z + y1)

As y ! �(z + y; �) is 1-Lipschitz, this function is a�ne in [y1; y2], therefore
[y1; y2] � B(z; �), proving the claim.
Thus B(z; �) is a compact interval [b(z; �); b(z; �)] � R+ or a half-line

[b(z; �);1[, in which case we set b(z; �) =1.
Next we de�ne M(�) = fzjB(z; �) 6= ?g for any � � 0. We claim that

fB(z; �) 6= ? and z0 < zg imply B(z0; �) 6= ?. Pick y such that y = �(z+ y; �);
then y0 � �(z0 + y0; �) is non positive at y0 = 0 and non negative at y0 = y,
so the continuity of � gives the claim. As M(�) always contains 0 (because
0 2 B(0; �)), we see that M(�) is an interval [0;m(�)] or [0;m(�)[; where in the
second case m(�) � 1.
We illustrate these three possible con�gurations. We already showed that

for hul we have M(�) = [0; 1� ]. For h
pro and hug we have M(�) = R+ but

very di�erent behavior for B: Bpro(z; �) = f�zg; Bug(z; �) = f�g if z > 0,
Bug(0; �) = [0; �]. Finally consider the dual s-equal sacri�ce method with s(z) =

� 1
z : we have �(v; �) =

�v2

1+�v , B(z; �) =
�z2

1��z , and M(�) = [0;
1
� [.

We conclude this step by some properties of m and M . Clearly M(0) = R+
so m(0) =1. Next m(�) > 0 for all �. By contradiction, assume M(�) = f0g
for some � > 0: this implies 0 < �(v; �) for all v, hence by continuity y <
�(z+ y; �) for all y; z � 0; �xing y and letting z go to 0 gives y � �(y; �), which
must be an equality by the 1-Lipschitz property. Now �(y; �) = �(y;1) for all
y contradicts the cleanliness of �.
The next fact is that M(�) weakly decreases in �, and so does m(�). Indeed

�0 < � and y = �(z+y; �) implies that �(z+y0; �0)�y0 is non negative at y0 = 0
and non positive at y0 = y, so that B(z; �0) 6= ?.
We note �nally that B has full range, in the following sense

for all z > 0; y � 0, there is some � � 0 such that y 2 B(z; �) (24)

Indeed �(z + y; �) � y is continuous in �, non positive for � = 0, and positive
for �!1.

10.1.2 properties of b(z; �); b(z; �)

We analyze �rst the limit behavior of b(z; �). For all �; z 2 R+ we have

� 1) �(z + y; �) < y for all y > b(z; �)

� 2) z < m(�)) b(z; �) <1
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� 3) if m(�) < 1: b(m(�); �) = 1 if m(�) 2 M(�); limz!m(�) b(z; �) = 1
if m(�) =2M(�)

For 1), the 1-Lipschitz property gives for any " > 0: �(z + b(z; �) + "; �) �
b(z; �) + ", which must be a strict inequality by de�nition of b(z; �). For 2)
assume z < m(�) and b(z; �) = 1. Pick z0; z < z0 < m(�) and some y0 such
that �(z0 + y0; �) = y0. From b(z; �) =1 we have �(z + y; �) = y for all y large
enough; pick such y above y0 and apply the 1-Lipschitz property:

�(z0 + y; �) � �(z0 + y0; �) + (y � y0) = y

On the other hand

�(z0 + y; �) = �(z + (y + z0 � z); �) = y + z0 � z

a contradiction. For 3) assume �rst m(�) 2M(�) and b(m(�); �) <1: then for
any y > b(m(�); �), 1) gives �(m(�) + y; �) < y. Setting � = y � �(m(�) + y; �)
we have �((m(�)+ �)+ (y� �); �) = y� �, contradicting the de�nition of m(�).
In the case m(�) =2M(�), consider the identity

�((y � �(y; �)) + �(y; �); �) = �(y; �) (25)

where z = y��(y; �) is non negative (1-Lipschitz property). As b(z; �) increases
weakly in z (property 6 below), it is enough to derive a contradiction from the
assumption supz�0 b(z; �) = C <1. The latter assumption implies �(y; �) � C
for all y. Taking y > m(�) + C gives z = y � �(y; �) > m(�), and identity (25)
reads �(y; �) 2 B(z; �), contradicting the de�nition of m(�).
We prove next a continuity and two monotonicity properties:

� 4) the graph of B is closed on its domain f(z; �)jz 2 M(�)g, i.e., B(z; �)
is upper-semi-continuous;

� 5) �-monotonicity: �! b(z; �) and �! b(z; �) are weakly increasing;

� 6) z-monotonicity: z < z0 ) b(z; �) � b(z0; �);

Continuity of � gives statement 4).
For statement 5), �x z and assume �0 < �. Setting y = b(z; �) we have

y = �(z + y; �) � �(z + y; �0) and 0 � �(z + 0; �); therefore B(z; �0) intersects
[0; y] (again by continuity of �), hence b(z; �0) � b(z; �). Next we �x z and
� < �0, set y = b(z; �) and we must prove that B(z; �0) contains at least one
y0 � y. Suppose it doesn't: then it contains some y0 < y (recall we assume
B(z; �0) 6= ?), and we apply the 1-Lipschitz property:

y0 = �(z + y0; �0)) �(z + y; �0) � �(z + y0; �0) + (y � y0) = y

Because y =2 B(z; �0) this implies �(z + y; �0) < y = �(z + y; �), contradicting
the monotonicity of � in �.
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For statement 6) we �x � and z < z0, pick y 2 B(z; �); y0 2 B(z0; �) and
show y � y0. Indeed y0 < y would imply y0 = �(z0 + y0; �) < y = �(z + y; �),
hence z0+ y0 < z+ y; this contradicts the 1-Lipschitz property because y� y0 >
(z + y)� (z0 + y0).
Note that z-monotonicity of b; b, implies that B(z; �) is not a singleton for

at most countably many values of z.

10.1.3 brackets and non brackets

In this step we discuss a special shape of the graph of B(�; �).
For all � � 0

d(�) = supfzjb(z; �) = 0g � m(�)

is well de�ned because b(0; �) = 0. Clearly d(0) = 1, moreover d is weakly
decreasing in � by �-monotonicity( property 6).
If d(�) = m(�) = z0, then z0 > 0 (recall m(�) > 0 for all �), and the graph

of B(�; �) is the following z0-bracket

B(z; �) = f0g for z < z0 ; B(z0; �) = R+ ; B(z; �) = ? for z > z0 (26)

Indeed we have b(z0; �) = 0 by upper semi continuity of B(�; �) (property 4),
and for all z,z < z0, b(z; �) � b(z0; �) = 0, hence B(z; �) = f0g. Ifm(�) =2M(�)
property 3 implies a contradiction, therefore m(�) 2M(�) and property 3 give
B(z0; �) = R+ as claimed.
If d(�) < m(�) then we have

0 < b(z; �) � b(z; �) <1 for all z, d(�) < z < m(�) (27)

The right-hand inequality is property 2 above, the left-hand one is by de�nition
of d(�). These inequalities imply the following alternative characterization of
brackets. For any � � 0:

B(z; �) = f0g or R+ for all z 2M(�)

, fB(�; �) is some z0-bracket, or � = 0g (28)

By (27) the right-hand assumption implies d(�) = m(�); if this number is �nite
we saw above that B(�; �) is the corresponding bracket; if d(�) = m(�) =
1 then B(z; �) = f0g for all z, which implies � = 0 by cleanliness of the
parametrization.

10.1.4 exploiting CVX�

We �x b� > 0 in this step and the next, and assume that B(�; b�) is not a bracket.
We pick � 2]0; 1] and set �0 = 1� �. Then we apply CVX� in parametric form
(Lemma 3) for b� and �0: equation (9) holds for some �. Apply it to v = z + y
where z 2 cM =M(b�) and y 2 B(z; b�), this gives
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�(z + y � �0y; �) = (1� �0)y , �(z + �y; �) = �y , �y 2 B(z; �)

Therefore cM �M(�) and �B(z; b�) � B(z; �) for all z 2 cM . We claim that this
inclusion is in fact an equality

�B(z; b�) = B(z; �) for all z 2 cM (29)

By contradiction, suppose �B(z; b�)  B(z; �). Then B(z; �) is a true interval
(not a singleton) and for some " > 0 at least one of the two following statement
is true:

� b(z; b�) <1 and b(z; �) � �b(z; b�) + "
� �b(z; b�) � b(z; �) + "
Assume the �rst statement. Then z < bm = m(b�), because b(bm; b�) = 1

(property 3 above). For any z0; z < z0 < bm, we now apply z-monotonicity
(property 6):

�b(z0; b�) � b(z0; �) � b(z; �) � �b(z; b�) + "
When z0 converges to z, this contradicts the fact that the graph of B is closed
(property 4). Deriving a contradiction from the second statement is entirely

similar. First b(0; b�) = 0, hence z > 0. For z0 < z we have �b(z0; b�) � b(z0; �) �
b(z; �) � �b(z; b�) � ", and a similar contradiction of the upper-semi-continuity
of B. Equality (29) is proven.

We check next that the inclusion cM � M(�) (proven at the end of step
10.1.1: M(�) is weakly decreasing) is in fact an equality. There is nothing to

prove if cM = R+. If cM = [0; bm] then property 3 and (29) imply b(bm;�) = 1,
hence bm = m(�) by z-monotonicity. If cM = [0; bm[ then property 3 again and
(29) imply limz!bm b(z; �) = 1, and the desired conclusion by z-monotonicity
again.
Now we check that �, satisfying (29) and cM =M(�), is uniquely determined

by b� and �. Otherwise we have �1; �2 satisfying (29) and such that M(�1) =
M(�2) and B(�; �1) = B(�; �2). This implies �(z+y; �1) = �(z+y; �2) for every
z 2 M(�i) and y 2 B(z; �i). If M(�i) = R+ the range of such z + y is clearly
R+, by z-monotonicity and upper-semi-continuity of B. This range is still R+
when bm is �nite by property 3 above, and upper-semi-continuity. We conclude
�1 = �2 by cleanliness of �.
The next fact is � � b�, with equality only if � = 1. Assume � < 1. Because

B(�; b�) is not a bracket, we can choose z such that d(b�) = bd < z < bm and

0 < b(z; b�) � b(z; b�) <1 ((27)). Now (29) implies b(z; �) < b(z; b�), and we can
apply property 1 above:

�(z + b(z; b�); �) < b(z; b�) = �(z + b(z; b�); b�)
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and the conclusion � < b� follows.
Next we analyze, for a �xed b�, the mapping g: ]0; 1] 3 � ! � = g(�).

It is one-to-one, otherwise (29) implies �1B(z; b�) = �2B(z; b�) for all z 2 cM ,
where �1 6= �2: this means that each B(z; b�) is either f0g or R+, which is
excluded because B(�; b�) is not a bracket (see (28)). Moreover g is continuous:
the equality � = g(�) is equivalent to the system of equalities (29), and each

equality �B(z; b�) = B(z; �) (for �xed z 2 cM) means
�y = �(z + y; �) for all y such that y = �(z + y; b�)

therefore the graph of g is an intersection of closed sets, hence it is closed. Finally
g is increasing, because �1 < �2 and �i = g(�i); i = 1; 2, implies B(�; �1) =
�1

�2
B(�; �2), and �1 < �2 follows exactly like in the previous paragraph.
We conclude that g is an increasing homeomorphism from ]0; 1] into an

interval ]b̀�; b�] where b̀� depends on b�. We write this function gb� to remind
us that it depends on b�. For all � 2]0; 1], gb�(�) is de�ned by the system of
equalities

�B(z; b�) = B(z; gb�(�)) for all z 2 cM =M(g
b�(�)) (30)

Note that for any � 2]0; 1], B(�; gb�(�)) is not a bracket and moreover
d(g

b�(�)) = bd and `�(gb�(�)) = b̀� (31)

The �rst equality because for any z 2 cM , b(z; �) is positive if and only if b(z; b�)
is. For the second we set � = g

b�(�) and compute
B(�; g�(�0)) = �0B(�; �) = ��0B(�; b�) = B(�; gb�(��0))

This means g�(�0) = g
b�(��0) for all �; �0 2]0; 1], proving the second equality.

10.1.5 extending g� to ]0;1[

As in the previous substep, we �x b� > 0 such that B(�; b�) is not a bracket, and
we use the notation bm = m(b�), etc...
We prove �rst some simple boundary conditions on b̀� = `�(b�):

d(b̀�) � bm (32)

bm =1) b̀� = 0 (33)

bm <1) b̀� > 0 and B(�; b̀�) is the bm-bracket (34)

For (32) it is enough to observe that (30) and (27) together imply inf b̀�<�0 b(z; �0) =
0 for z 2 cM . Next if bm =1 (32) implies d(b̀�) =1 therefore B(z; b̀�) = f0g ,
�(z; b̀�) = 0, for all z. This proves (33).
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Assume next bm <1 and b̀� = 0. Then for any z > bm we have B(z; �) = ?
for all � > b̀� = 0, and B(z; 0) = f0g, therefore 1 2 B(z; �) cannot hold for any
�, in contradiction of (24). This prove the implication in (34).

We show now that B(�; b̀�) is the bm-bracket. We know from (32) B(z; b̀�) =
f0g for z < bm, which implies �(z; b̀�) = 0 for the same z (because the identity
(25) applied to z and b̀� gives �(z; b̀�) 2 B(z � �(z; b̀�); b̀�)); by continuity
�(bm; b̀�) = 0. We want to show �(z; b̀�) = z � bm for all z � bm (implying

B(bm; b̀�) = R+ as desired). The 1-Lipschitz property gives �(z; b̀�) � z � bm,
so we need to derive a contradiction if �(z; b̀�) < z � bm for some z > bm. The
identity (25) applied to such z and to � > b̀� gives �(z; �) 2 B(z � �(z; �); �),
implying z��(z; �) � m(�) � bm (recall m is weakly decreasing): thus �(z; �) �
z� bm for all � > b̀�, whereas �(z; b̀�) < z� bm, contradiction. The proof of (34)
is complete.

We check now that if for �1; �2, are such that ]d(�1);m(�1)[ and ]d(�2);m(�2)[
have a non empty intersection, they coincide and `�(�

2) = `�(�
1). Assume

�1 < �2 and pick z in this intersection. Then b(z; `�(�
2)) = 0 (as z � m(�2) �

d(`�(�
2))) and b(z; �1) > 0 ((27)), implying `�(�

2) < �1, hence the claim by
(30) and (31).

We go back to a �xed b� > 0 such that B(�; b�) is not a bracket, and we
extend the domain of g

b� to an interval ]b̀�; b̀+[ containing �, and g� to an
homeomorphism from ]b̀�; b̀+[ to ]0;1[, de�ned as in (30) by the equality
�B(�; b�) = B(�; gb�(�)), and such that m(�); d(�), and `�(�); `+(�) are constant
for all � 2]b̀�; b̀+[.
We �x z 2]bd; bm[ and � > 1. The construction of gb�(�) takes two steps. We

�rst pick � such that �b(z; b�) = �(z + �b(z; b�); �): this is possible because we
have two strict inequalities in opposite directions at � = 0 and � =1 (�b(z; b�)
and z are both positive). Then we have m(�) � z (by de�nition of m), � > b�
(as b(z; �) � �b(z; b�) > b(z; b�)), and d(�) � z (because b(z; �) > 0). In fact

d(�) = z would imply b(z; b�) � b(z; �) = 0, contradicting (27). Therefore

d(�) < z so ]bd; bm[ and ]d(�);m(�)[ overlap, hence they coincide and so do b̀�
and `�(�).

By (30) we have B(�; b�) = �0B(�; �) for some �0 2]0; 1], and by construction
of � we have �b(z; b�) � b(z; �); together these two facts imply ��0 � 1. Now we
can pick �" < � such that �" > b̀� and B(�; �") = ��0B(�; �): then B(�; �") =
�B(�; b�). This concludes the construction of gb�(�) for � > 1.
Checking that g

b� is an increasing homeomorphism of ]1;1[ into an interval
[b�; b̀+[ proceeds exactly as in substep 10.1.4. That m(�); d(�), and `�(�), are
constant on ]b̀�; b̀+[ is clear from the construction above; the same holds true

for b̀+ by the same argument used to prove (31).
The �nal statement of this subsection is used in the proof of Theorem 2:b̀+ <1) m(b̀+) = bd and B(�; b̀+) is the bd-bracket (35)
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Indeed (30) and (27) together imply sup�<b̀+ b(z; �) = 1 for z 2]bd; bm[; if for
some such z the set B(z; b̀+) is non empty, then b(z; b̀+) is �nite, which contra-
dicts the fact that b(z; �) is weakly increasing in �. This proves m(b̀+) � bd. If
m(b̀+) < bd we pick z 2]m(b̀+); bd[ so that B(z; b̀+) = ?, and B(z; �) = ? for

all � � b̀+, whereas B(z; �) = f0g for all � < b̀+; this contradicts (24). Thus
m(b̀+) = bd. By continuity of � we have �(bd; b̀+) = 0 (because B(z; �) = f0g for
z < bd and � close to b̀+). It remains to check �(z; b̀+) = z � bd for all z � bd. By
the 1-Lipschitz property we only need to show that �(z; b̀+) < z� bd is impossible:
it would imply z � �(z; b̀+) > bd and the identity �(z; b̀+) 2 B(z � �(z; b̀+); b̀+)
would establish the desired contradiction.

10.1.6 the structure of H0(CSY;CV X�)

We gather the results of the two previous steps. Fix an arbitrary method h
in H0(CSY;CV X�), with associated correspondence B ((23)). For any b� > 0,
if B(�; b�) is not a bracket, there exists an interval ]`�; `+[ containing b�, an
interval ]d;mj for the variable z (where ]d;mj can be either ]d;m[ or ]d;m]), and
a correspondence eB : [0;mj ! R+, such that B(�; �) , and as follows in ]`�; `+[:

B(z; �) = f(�) eB(z) in [0;mj�]`�; `+[ ; B(z; �) = ? in ]m;1[�]`�; `+[ (36)

where f :]`�; `
+[!]0;1[ is an increasing homeomorphism, and the correspon-

dence eB is such that

� eB(z) = f0g for all z < d
� eB is upper semi continuous and z-monotonic (property 6)

� if ]d;mj =]d;m], then eB(m) = [b(m);1[ ; if m is �nite and ]d;mj =]d;m[,
then limz!m b(z) =1

Because a continuous and strictly increasing transformation of � does not
change the method it parametrizes, if `+ is �nite we can always choose the
canonical homeomorhism f(�) = ��`�

`+�� . Then the parametrization �(�; �) is as
follows in ]`�; `

+[:

for all v and all �; `� < � < `
+ : �(v; �) = y , y 2 �� `�

`+ � �
eB(v � y) (37)

(existence and uniqueness of y follow from the properties of eB).
Any two such partial parametrizations � = (`�; `

+; d;m; eB) and �0 of h
have disjoint intervals ]`�; `

+[ and ]`0�; `
0+[ as well as disjoint ]d;mj and ]d0;m0j.

Thus we have a �nite or countable set of partial parametrizations, and for every
parameter � outside the union of the corresponding intervals, B(�; �) is a bracket.
For instance (34) says that whenever m is �nite, B(�; `�) is the m-bracket, i.e.,
�(v; `�) = (v�m)+ for all v. Similarly if `+ <1, (35) means �(v; `+) = (v�d)+
for all �.
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We illustrate the general construction for the standard methods character-
ized in section 7.
If B(�; �) is a bracket for all �, then there is a function � ! g(�) such that

�(�; �) = (� � g(�))+, and or method is hul.10
If ]`�; `

+[=]0;1[, and eB is single valued, we �nd the loss calibrated method
h
eB .
The hybrid method h�;A has `� = 0, `+ = 1

A (for instance), d = A and

m = 1. Finally eB(z) = �((z � A)+). Then B(�; 1A ) is the A-bracket ((35))
and B(�; �) is a bracket for � � 1

A ; we can choose the parametrization �(�; �) =
(� � 1

� )+ for such �. For � <
1
A we get from (37):

�(v; �) = y , y =
�

1
A � �

�((v �A� y)+) =
A�

1�A��((v �A)+ � y)

exactly as in (17), (18), up to the innocuous change of parameter A�
1�A� =

�0

1�A�0

in the interval [0; 1A [.
Whether and how a fully general method in H0(CSY;CV X�) can be ex-

tended into H(CSY;CV X�) is an interesting open question.

10.2 Proof of Theorem 1

10.2.1 statement i)

The "if" statement was proven in section 6, in the discussion following Propo-
sition 1. We prove "only if". Fix a parametric method � 2 H0(CSY;CV X�)
satisfying SI. It is easy to check that SI (for any method in H0(CSY )) amounts
to the following: for all �; 
 > 0 there exists �0 > 0 such that

�(
v; �) = 
�(v; �0) for all v � 0

Fixing �; 
 > 0, this implies

for all y; z: y 2 �(z + y; �), 
y 2 �(
z + 
y; �0)

) 
B(z; �) = B(
z; �0) for all z � 0 (38)

In particular m(�0) = 
m(�) and d(�0) = 
d(�).
If for all � > 0, B(�; �) is a bracket, � is the uniform losses method (subsection

6.1.6).
Assume next that B(�; �) is not a bracket for some � > 0. Then for 


close enough to 1, ]d(�);m(�)[ and ]d(�0);m(�0)[ overlap, so m(�0) = m(�) and
d(�0) = d(�). Thus the only possibility is d(�) = 0 and m(�) =1.
Therefore in the analysis of subsection 6.1.6 and property (36), there is a

single interval ]`�; `
+[=]0;1[, an increasing homeomorphism f from R+ into

itself, and a correspondence eB from R+ into itself, such that

B(z; �) = f(�) eB(z) for all �; z � 0
10It is easy to show that g is a bijection from R+ into itslef.
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and eB has the following properties:

� eB(0) = [0; b(0)]
� for z > 0: eB(z) � [b(z); b(z)] where 0 < b(z) � b(z) <1
� eB is upper semi continuous and z-monotonic (properties 4 and 6)

Applying Scale Invariance ((38)) to � = 1 and arbitrary positive 
, gives

eB(
z) = 
0 eB(z) for all z � 0
for some positive 
0 = F (
) that depends upon 
 but not on z. If eB(z) is
a true interval at some z > 0 (b(z) < b(z)), it is also a true interval for any

positive z0, which is clearly ruled out by z-monotonicity. Thus eB is a continuous
single-valued function everywhere except perhaps at 0, positive on ]0;1[.
The above equation eB(
z) = F (
) eB(z) for all positive 
; z, implies

B(zz0) = B(z)B(z0) for all z; z0 > 0

where B is a constant multiple of eB, that clearly represents the same rationing
method as eB. It is well known that a continuous function B meeting the above
equation is a power function B(z) = zp. As B is weakly increasing, p is non
negative. We conclude that, up to replacing � by the equivalent parametere� = f(�), B is the function B(z; e�) = e�zp for all z > 0 and e� � 0. If p > 0,
upper semi continuity implies this equality holds for z = 0 as well. If p = 0,
upper semi continuity implies B(0; e�) = [0; e�].
Finally we use (23) to derive the parametrization of our method. For p = 0,

and any (v; e�) 2 R2+, the unique solution y of y 2 B(v�y; e�) is clearly y = v^e�,
so we have hug. For p > 0 it solves y = e�(v � y)p, precisely like (11) when � is
the p-power function.

10.2.2 statement ii)

The parametric method � meets SRM if and only if for all v > 0, �(v; �) is
strictly increasing in �.
For the "if" statement: the parametric representation �� of a method h� in

LCs is given by (11) in Proposition 1. It is clearly strictly increasing in �. On
the other hand for h� in LCns, �� de�ned by (13) is weakly but not strictly
increasing in �.
We prove now "only if". Pick a parametric method � 2 H0(CSY;CV X�)

satisfying SRM. This implies d(�) = 0 for any � > 0. Assume d(�) > 0: then
B(z; �) = f0g for z 2 [0; d(�)[, implying �(v; �) = 0 for v 2]0; d(�)[. Therefore
�(v; �0) = 0 as well for �0 < �, contradicting SRM. In particular B(�; �) cannot
be a z0-bracket.
Next we show m(�) = 1 for any � > 0. Suppose not, and recall m(�) > 0

(proven at the end of subsection 6.1.1), so we have 0 < m(�) <1 for some pos-
itive �. Then (32) implies `�(�) > 0 then d(`�(�)) � m(�) > 0, contradiction.
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Just like in the proof of statement i), there is a single interval ]`�; `
+[=]0;1[,

an increasing homeomorphism f from R+ into itself, and a correspondence eB
from R+ into itself, such that

B(z; �) = f(�) eB(z) for all �; z � 0
and eB is upper semi continuous and z-monotonic.
We check that eB must be everywhere single-valued. Fix any z � 0, and

suppose y 2 B(z; �) \ B(z; �0) for some � 6= �0: then y = �(z + y; �) = �(z +
y; �0) contradicts SRM because � increases strictly in �. So the sets B(z; �) are

pairwise disjoint when � varies in R+. This is clearly impossible if eB(z) is a
true interval.
Thus after changing parameter to e� = f(�), B is a function B(z; e�) = e��(z)

where �, from R+ into itself, is continuous and weakly increasing. The fact
that B has full range (property (24)) implies �(z) > 0 for all z > 0. Moreover

�(0) = 0: if �(0) = a > 0, and f(e�) = 1, we have B(0; e�) = fag implying
a = �(a; e�); then �(0; e�) = 0 and the 1-Lipschitz property of � implies [0; a] �
B(0; e�), contradiction. Thus � is a calibration function in Bs.
As in the previous proof we use now (23) to derive the parametrization of

our method: the unique solution y of y = B(v � y; e�) = e��(v � y) is precisely
�� in (11).

10.3 Proof of Theorem 2

10.3.1 statement "if"

Fix a method h�;A as in Proposition 2, and a problem (N;x; t) such that y =
h(x; t) satis�es xi � yi = xj � yj for all i; j. The @RKG� property requires that
the same equalities jhold whenever the resources increase to t0. This is always
true by Symmetry if all coordinates of x are equal, or if t = xN , so we can
assume x1 6= x2 and t < xN .
Suppose �rst t �

P
N (xi � A)+. If � 2 Bs the system (10) implies yi = yj

for all i; j, and a contradiction of x1 6= x2. If � 2 Bns, for the same reason the
system (12) implies yi = xi for some i, hence yj = xj for all j, contradicting
t < xN .
Suppose next

P
N (xi�A)+ � t. Using the parametric representation of hul,

there is some � such that xi � (xi � 1
� )+ = xj � (xj �

1
� )+ for all i; j. In view

of x1 6= x2 this gives xi � 1
� for all i, and this inequality is preserved for higher

values of �, corresponding to larger amounts of resources to divide.

10.3.2 statement "only if"

We �x � 2 H0(CSY;CV X�) satisfying @RKG�. We can assume that B(�; �)
is not a bracket for at least one � > 0, because otherwise � = �ul (subsection

6.1.6). We �x such b� such that B(�; b�) is not a bracket, and we prove bm = 1
by contradiction.
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If bm < 1 we know (property (34)) that b̀� > 0 and B(�; b̀�) is the bm-
bracket. For any distinct x1; x2 > bm, this means �(xi; b̀�) = xi� bm for i = 1; 2.
Therefore for t = x1+x2�2bm, the solution of problem (f1; 2g; x; t) is yi = xi� bm,
precisely what hul recommends. Thus for any z < bm, property @RKG� says
that our method � and hul still coincide for all problems (f1; 2g; x; t0) with
t0 = x1 + x2 � 2z > t. Hence for each z < bm there is some � > b̀� such that for
i = 1; 2:

xi � z = �(xi; �), xi � z 2 B(z; �)
For z 2]bd; bm[, the parameter � must be in ]b̀�; b̀+[ (because B(z; �) = ? for

� � b̀+), and as the xi can be arbitrarily large, B(z; �) is some [b(z; �);1[. In
view of (36) this means that eB(z) is a true interval for all z 2]bd; bm[, contradicting
z-monotonicity ( eB(z) can only be a true interval for countably many values of
z). This proves bm =1, hence b̀� = 0 ((33)).
Moreover a similar argument shows that eB(z) must be single-valued on

]bd;1[. Suppose it is not: f(b�) eB(z) contains two distinct y1; y2; setting xi =
z + yi we have xi � z = �(xi; �) for i = 1; 2, therefore @RKG� implies that our
solution coincides with hul on all problems (f1; 2g; x; t0) with t0 � y1 + y2, and
this means that for all z0 2]bd; z], if we set y0i = xi � z0 then there is � 2]0; b̀+[
such that y0i 2 f(�) eB(z0) for i = 1; 2, therefore eB(z0) is also a true interval,
and this holds true for too many choices of z0 as above. We have shown the
existence of a function e� on ]bd;1[, contiuous and weakly increasing, such that
B(z; �) = f(�)e�(z) for all � 2]0; b̀+[ and z 2]bd;1[. We distinguish two cases.
Case 1: b̀+ = 1. Then bd = 0 otherwise we have B(�; �) = f0g on [0; bd[ for

all �, contradicting the full range of B ((24)). Thus B(z; �) = f(�)e�(z) for all
�; z > 0, where e� :]0;1[!]0;1[, is continuous and weakly increasing. The full
range of B ((24)) implies e�(z) > 0 for all z > 0. Setting e�(0) = limz!0

e�(z)
completes the de�nition of e�; note that e� 2 Bs if e�(0) = 0, and 1e�(0)e� 2 Bns ife�(0) > 0. The upper semi continuity of B implies B(0; �) = f(�)[0; e�(0)].
As above we use (23) to show the method � is in LC. If e�(0) = 0, the unique

solution y of y = B(v � y; �) = f(�)e�(v � y) is �e�(v; f(�)), so the change of
parameter e� = f(�) gives � 2 LCs. If e�(0) > 0, we change the parameter toe� = f(�)e�(0), so the property y 2 B(v � y; �) means either fy = v � e�g or
fy < v and y = e��(v � y)g where � = 1e�(0)e�. This is clearly the same as (13)
so � = �� .

Case 2: b̀+ < 1. Then we set bd = A and apply (35): A is positive (as

A = m(b̀+) and m(z) > 0 for all z), and B(�; b̀+) is the A-bracket. In fact
B(�; �) is also a bracket for all � � b̀+, otherwise the previous argument shows
m(�) = 1, impossible because ]d(�);m(�)[ and ]bd; bm[ are pairwise disjoint
(subsection 6.1.5).

Thus for � < b̀+ we have
B(z; �) = f0g for z < A ; B(A; �) = f(�)[0; e�(A)]
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B(z; �) = f(�)e�(z) for z > A
where e�(A) = limz!A

e�(z).
For � � b̀+, B(�; �) is the '(�)-bracket, where ' : [b̀+;1[! [A; 0[ is a de-

creasing homeomorphism (it is onto by full range of B, one-to-one by cleanliness,
and clearly decreasing).
As usual we solve the description of B gives the solution y of y 2 B(v�y; �),

which by (23) is precisely �(v; �).

For � < b̀+
y = 0 if v < A

y = v �A if A � v � A+ f(�)e�(A)
y = f(�)e�(v � y) if v > A+ f(�)e�(A)

For � � b̀+
y = 0 if v < '(�)

y = v � '(�) if v � '(�)

If � � b̀+ this is ��;A(v; e�) in (18) upon a change of parameter �! e� takingb̀+ to 1
A and '(�) to 1e� . If � < b̀+ and e�(A) = 0, this is ��;A(v; e�) in (17) for

�(z) = e�(z + A), and provided � ! e� sends f(�) to e�
1�Ae� . And for e�(A) > 0,

this is ��;A(v; e�) in (17) for �(z) = 1e�(A)e�(z + A), and provided � ! e� sends
f(�)e�(A) to e�

1�Ae� . The proof of Theorem 2 is complete.
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