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Abstract. Determining sharp conditions for the global stability of equilibria remains one of the
most challenging problems in the analysis of models for the management and control of biological
systems. Yet such results are necessary for derivation of parameter thresholds for eradication of
pests or clearing infections. This applies particularly to models involving nonlinearity and delays.
In this paper, we provide some general results applicable to immune system dynamics: we consider
a viral model with general target-cell dynamics, nonlinear incidence functions, state dependent re-
moval functions, infinitely distributed intracellular delays, and the cytotoxic T lymphocyte response
(CTL). This general model admits three types of equilibria: infection-free equilibria, CTL-inactivated
infection equilibria, and CTL-activated infection equilibria. The model admits two critical values:
Ro (the basic reproduction number for viral infection) and R (the viral reproduction number at
the CTL-inactivated infection equilibrium). Under certain assumptions, it is shown that if Rg < 1,
then the infection-free equilibrium Ej is globally stable and the viruses are cleared. If Ry <1 < Ry,
then there exists a unique CTL-inactivated infection equilibrium F7 which is globally stable and the
infection becomes chronic with no sustained immune response. If R; > 1, then there is a unique
CTL-activated infection equilibrium, which is globally stable implying persistent immune responses.
Our results cover and improve many existing ones and include the case when the nonlinear functions
are nonmonotone.
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1. Introduction. The global stability of equilibria in models for viral dynamics
remains an important and largely open research problem. Such results are necessary
to evaluate treatment strategies for infections and to establish thresholds for treat-
ment rates. Several models can be found in the literature to understand the immune
response to viral infection. These models propose dynamics for the interactions be-
tween target cells, infected cells producing viruses, matured viruses, and immune cells
such as Cytotoxic T cells (CTLs). Sufficient conditions for the global stability of the
infection-free equilibrium of these models can provide insights on implementing effec-
tive antiviral drug therapies to clear viruses [3]. Alternately, if the immune control
equilibrium (the equilibrium with a positive level of immune cells) is shown to be
globally stable, then it means lifelong immunity can be achieved in the host [14], and
no sustained oscillatory viral loads will be observed.
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Most existing viral models consider three main compartments: target cells, in-
fected cells producing viruses, and matured viruses; see, for example, [5, 13, 15, 17,
18, 19, 21, 23, 28, 29, 30, 31]. Some models include intermediate stages such as an
exposed stage [7, 8]. A few models also incorporate an immune response as the fourth
compartment [22, 26, 27, 34, 35, 37].

In the aforementioned models, intracellular delays in the viral infection and repli-
cation, and immune response processes were taken into consideration in [13, 17, 18,
19, 21, 22, 23, 27, 28]. These delays may or may not induce periodic oscillations via
Hopf bifurcations; this critically depends on how and in which stages and in what
forms the delays are incorporated [4, 13, 18, 19, 20, 21, 27]. Even with no intracellu-
lar delays, it is known that some target-cell dynamics can cause sustained oscillations
[5, 33].

Earlier models for viral dynamics fit the general form

(1.1a) ¥ =n(z) — h(z,v),
(1.1b) Y =h(z,v) =y — pyz,
(1.1c) v = ky — pov,

(1.1d) 2 =qyz — p3z.

Here, n(x) models the dynamics of cells in the absence of the virus; h(z,v) is the
incidence of new infections; infected cells are removed by CTLs at the rate pyz,
produce virions at a rate ky, and die at a per capita rate p1; new CTLs are recruited
at a rate qyz; and finally, virions are cleared at a per capita rate puo, and CTLs
die at a per capita rate pug. The motivation for the rates of virion production and
CTL recruitment is as follows: infected cells are either killed by CTLs or die as they
release a burst of k/uq virions which are immediately infectious, leading to the overall
production of virions at rate ky; each cell killed by a CTL immediately leads to a
recruitment of ¢/p new CTLs. It is known that there are delays in each connecting
step [28]: infected cells can not immediately burst but go through a latent period;
released virions may go through a maturation phase outside the cell before becoming
infectious; and there is a complex chain of events between CTL attack and subsequent
recruitment.

The earliest of these in-host viral models is due to Nowak and Bonhoeffer [30],
who set n(z) = A— pz and h(z,v) = Bzv. Nelson and Perelson [28] analyzed a model
with n(z) = A — px + rz(l — z/z,,) but without an immune response (p = ¢ = 0).
Their assumption was that A is the rate cells emerge from the thymus and the final
term is the rate cells increase through mitosis. The addition of the nonlinearity to
the model gives rise to Hopf bifurcations and periodic orbits.

The basic model was extended by Herz et al. [12] to include an exposed period.
More generally, this can be done by allowing a delay in (1.1b). Li and Shu [19] replaced
this equation by

y' = fxh(zv) - my,
where f x h(x,v) is the convolution

(f * h(z,v)) (t) = /000 fh(x(t —1),0(t — 7)) dT.

More recent work has extended the model to include delays in the maturation of
virions and the recruitment of CTLs.
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In general, global stability is one of the most difficult problems in the analysis of
many classes of biological models and is essential in ruling out other scenarios such
as periodic solutions. Unlike local stability, which can be analyzed by studying the
distribution of the eigenvalues of the corresponding characteristic equations, there are
no standard procedures for establishing global stability. The commonly used methods
include Lyapunov functions for systems of ordinary differential equations, Lyapunov
functionals for systems of delay differential equations [11], and persistence theory and
theory for monotone dynamical systems [32].

In this paper, we aim to establish global stability results and find sufficient condi-
tions under which oscillations are impossible for a viral model with general target-cell
dynamics and general forms of delays. We study a model which contains most of
the previously mentioned models as special cases. More precisely, we consider the
following system of delay-differential equations:

(1.2a) 7 = n(x) — h(z,v),

(1.2b) y' = f1* (h(z,v) — gi(y) — pw(y, 2),
(1.2¢) v’ :kf * (g1(y)) — p2ga2(v),

(1.2d) 2= qfs* (w(y, 2)) — pags(2),

where z(t), y(t), v(t), and z(t) denote the concentrations of the uninfected target
cells, actively infected target cells, mature viruses, and virus-specific CTLs at time ¢,
respectively. The model consists of the above equations together with suitable initial
conditions and the restrictions on the functions given by the six main hypotheses
below.

The dynamics of uninfected target cells, x, in the absence of infection is governed
by

a'(t) = n(x(t),

where n(z) denotes the intrinsic growth rate of uninfected target cells accounting for
both production and natural mortality, which is assumed to satisfy the following:
(Hy) n(z) is continuously differentiable, and there exists Z > 0 such that n(z) =
0, n(z) > 0 for z € [0,Z), and n(z) < 0 for z > .
Here, Z is the equilibrium cell density in the absence of infection. Thus (H;) assumes
that the infection-free system has a unique globally asymptotically stable equilibrium.
Typical such functions appearing in the literature are n(z) = A — dz and n(z) =
A—dzx+rz(l—z/K), where \, d, r, K are positive real numbers [19, 21, 26, 27, 28, 31].
The incidence of new infections of target cells occurs at a rate h(z,v), which
includes the rate of contact between viruses and uninfected target cells as well as
the probability of cell entry per contact. The nonlinear incidence function h(z,v) is
assumed to satisfy the following conditions:
(Ha) h(z,v) is continuously differentiable; h(x,v) > 0 for x € (0,00), v € (0,00)
with h(z,v) = 0if and only if z = 0 or v = 0; h(z,v) < h(Z,v) for x € [0, T),
v € [0,00).
The assumptions (Hs) are all quite realistic for infection dynamics and are satisfied
by most incidence functions appearing in the literature. The last of these restrictions
assumes that for any given viral load, the incidence is greater at the infection-free cell
density than at lower cell densities. Many models in the literature make the more
restrictive assumption that h(x, v) be increasing in both cell density, x, and viral load,
v. Examples include Bxv, fz™v!, Ba™vl /(2™ + a1) (vt + a2)) with B,a1,a2 > 0,
0<my<m,and 0 <l <I1<11[5,19, 26,27, 28, 31].
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The intracellular delay between viral infection of an uninfected target cell and
the production of an actively infected target cell is modelled by the distribution f;.
As mentioned above, the incidence of infection at time ¢ is given by the function
h(z(t),v(t)). However, we include a delay between infection and the the presentation
of viral epitopes on the surface of the infected cells such that these cells can be
recognized and killed by the CTLs. The rate at which cells are becoming infectious
at time ¢ is assumed to be

(f1* h(z,0)) () = /OOO Hi()h(@(t —7),0(t — 7)) dr,

where f1(7) is the probability that an infected cell survives at least 7 time units
past infection and becomes actively infectious at time 7 past infection. Note that
this incorporates two, possibly separate, events: first, the “actively infectious” cells
are detectable by the CTLs and subject to predation, and second, these cells begin
bursting at the rate p191(y). In reality, it is likely that these are two separate stages:
cells becoming detectable by the CTLs as they present viral proteins on their surface,
which may then lead to the assembly of virions and bursting. This additional detail
is not included in our model.

It is also assumed that the death rates of the actively infected target cells, ma-
ture viruses, and CTLs depend on their concentrations. These rates are given by
1191(y), page(v), and psgs(z), respectively. Throughout this paper, we assume that
these three state-dependent removal functions g;,7 = 1,2, 3, satisfy the following as-
sumptions:

(Hs) g, is strictly increasing on [0, 00); ¢;(0) = 0; ¢;(0) = 1; limy 0 gi(y) = +00;

and there exists k; > 0 such that g;(y) > k;y for any y >0, i =1,2,3.
Thus, p1, p2, and ps are the per capita clearance rates at low densities for infected
cells, free virus, and CTLs, respectively.

Infected cells are assumed to be killed by CTLs at a rate pw(y, z). We make the
following assumption on this rate.

(Hy) w(y,2) is continuously differentiable; dw(y, z)/0z > 0 for y € (0,00), z €
[0,00); w(y, z) > 0 for y € (0,00), z € (0,00) with w(y, z) = 0 if and only if
y=0o0rz=0.

However, the uniqueness and global stability results on the positive equilibrium require
the following rather restrictive assumption.

(Hs) w(y, 2) = g1(y)g3(2).

This is akin to assuming that the attack rate at which CTLs clear infected cells is
proportional to the product of the rate these cells clear in the absence of a CTL
response and the mortality rate of the CTLs. This restriction excludes the functions
that appear in [1] and [6] but is a generalization of the widely used assumption of
linear death rates (g3(z) = z) and bilinear CTL induced death rates (w(y, z) = yz)
that appear in [22, 26, 27, 29, 34, 35, 37].

The ratio of infection rates to clearance rates plays an important role in trans-
mission models. In most models for both disease-transmission and in-host infection,
both the incidence term and the clearance rate increase with the level of infection.
However, there is also a common but unstated assumption that the ratio of the two
is nonincreasing. In our model, this assumption is stated as follows:

(Hg) h(x,v)/g2(v) is nonincreasing with respect to v for v € (0, 00).

To model the delay between viral release and maturation, we use f2(7) to denote
the probability a virion released at time ¢t — 7 survives to and becomes infectious at
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time ¢. Then the rate of virion maturation at time ¢ is given by the convolution

k(fax 1) (8) = & / " )l — 7)) dr

Here, k/p1 is the average number of virions budding out from a single infected target
cell.

To account for the time lag incurred by a sequence of events such as antigenic
activation, selection, and proliferation of the CTLs, we let f3(7) be the distribution
of delays between cell encounters and subsequent recruitment. Then the rate of CTLs
proliferation at time ¢ is given by the convolution

q(fs*w(y,2))(t) = q/ooo fa(Mw(y(t —7),2(t — 7)) dr.

Thus we assume that each effective encounter between a CTL and an infected cell
initiates a recruitment of p/q new CTLs which become active after delays distributed
according to f3. Note that this distribution is a product of the probability the cell
survives to activation and the probability of activation at a time 7 after initiation of
the recruitment process. CTLs decay at the rate usgs(z(t)) in the absence of viral
stimulation.

All parameters in (1.2) are nonnegative, 1, po, and ps are positive, and the
distributions f;(7) with ¢ = 1,2, 3 are assumed to satisfy

fi(T) >0, ‘/O fi(T)dT <1, and ‘/O fi(T)eSTdT < 00

for some positive s. Here we remark that each f;(7) is the product of a probability
density function and survival distribution. So, it is possible to have the total integral
along the positive real line being strictly less than one.

Our model, which we refer to as our general model, consists of (1.2) together
with assumptions (H;)—(Hg) and suitable initial conditions. This model is general
in the sense that it includes many existing models as special cases. For example, if
p =0, g1(y) =y, and g2(v) = v, then the equations of (1.2) reduce to those of the
model considered recently in [19]. If f1(7) = e 51 §(7 — 11), f2(7T) = e *2724(7 — 12),
n(x) = A —dzx, g2(v) = v, and p = 0, then the model is the same as the one studied
in [13]. We will discuss these and other special cases in section 4.

We organize the rest of this paper as follows. Section 2 provides some preliminary
results concerning the well-posedness of (1.2) as well as existence and uniqueness
of equilibria. Our global stability results are presented in section 3, with proofs
postponed to section 5. Some examples allowing nonmonotone nonlinear functions
are given in section 4. We summarize our conclusion and discuss our findings in
section 6.

2. Preliminaries. For system (1.2), the suitable phase space is
Ct=CxCxCxC,
where C is the Banach space of fading memory type [2, 16]

C:= {¢ € C((—00,0],R)

#(0)e*?is uniformly continuous
for 6 € (—00,0] and ||4|| < o0 [’
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where & > 0 is a constant and the norm is defined by ||¢]| = supy<q |¢(0)|e*? for
¢ € C. The nonnegative cone of C is denoted by C; = C((—00,0],Ry). We define
¢ €C as ¢ (0) = d(t +0), 6 € (—o00,0]. For any initial condition

(moayﬂvvﬂazﬂ) € Ci = C+ X C+ X C+ X C+,

the existence and uniqueness of the solution (z¢, y¢, vt, 2¢) of system (1.2) follows from
the standard theory of differential equations with infinitely distributed delays [11].
Let

0
Set
My = sup n(z), My:= sup  gi(y), Mz:= sup h(z,v)
z€[0,7] ye[o0, 22 (z,0)€[0,] x [0, 222222 ]

fo=min (M1 /%, prk1), it = min(uiks, psks), y = 2M181 /i, © = kB2 Ma/(pz2ks), and
zZ = qf1PsMs/(pfr), and denote the sets

I'= {($an07UO;ZO) S Ci : ||ZII()|| <z, ||y0|| <Y, ||’U0|| <, ||ZO|| < 2},
Zf_ = {(x0707070) S Ci : ||$0|| 2 0}7
and

Q= {(ﬂfo,yo,vo,Zo) €Ch i |zol] < j}

Using an argument similar to [19, Proposition 2.1], we can prove the following
lemma.

LEMMA 2.1. Assume that (Hy)—(Hy) are satisfied, and then the region I' is pos-
itively invariant and absorbing in Q with respect to system (1.2), all solutions with
initial conditions in Q) enter I' in finite time, and all omega limit sets are contained
in L.

Under assumption (Hs), the equilibrium equations for (1.2) are given by

(2.2a) n(z) = h(z,v),
(2.2b) Bih(z,v) = p1g1(y) + pg1(y)gs(2),
(2.2¢) kB291(y) = p292(v),
(2.2d) aB391(y)g3(2) = psgs(2).

Clearly, system (1.2) always has an infection-free equilibrium Ey = (Z,0,0,0). In
addition to Ejy, the system may have two types of chronic-infection equilibria E; =
(z*,y*,v*,0) and Es = (2,9,0,2) in I', where o*,y*,v*, &, 7, 0, £ are all strictly pos-
itive. We call E; a CTL-inactivated equilibrium (CTL-IE) if it exists and Fy a
CTL-activated equilibrium (CTL-AE) if it exists. At a CTL-IE, the infection is per-
sistent with a constant proviral load v* > 0, whereas the CTL response is absent.
This corresponds to an asymptomatic carrier. At a CTL-AE, the viral load and the
CTL response persist at the level of ¢ and 2, respectively.
We define the general reproduction number as

_ kB1B2h(z,v)
Riw,v) = pia fi2g2(v)

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/05/13 to 131.202.94.138. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1286 HONGYING SHU, LIN WANG, AND JAMES WATMOUGH

which is the ratio of the per capita production and decay rates of mature viruses at
an equilibrium (x,y, v, z) with z = 0. In particular, at the infection-free equilibrium,
Ey, we denote R(z,0) by Ry and refer to it as the basic reproduction number for viral
infection:

kB1Ba lim h(z,v) _ kB1B2 5h(!’f,0).

2.3 Ry =
23) O ppn w0t ga(v) pape  Ov

Assumptions (Hs) imply that go is invertible. Hence from (2.2¢)—(2.2d),

. | kMBﬂz)
24 v <QM253 '

Let H(x) = n(x) — h(z,0). Then H(0) = n(0) > 0 and H(Z) = —h(Z,?) < 0. Thus

there exists & € (0, ) such that H(Z) = 0. Existence of & and ¢ indicates that R(&,d)

is well defined, which we denote by R; and refer to as the viral reproduction number.
Assumptions (Hsz) and (Hg) imply that

(2.5) Ry = R(%,0) > R(Z,v) > R(z,v) for z €0,Z),v € (0,7].

In particular, Ry > R;.
The basic reproduction number for the CTL response Rcry is given by

ass_duwly',0) _ abs
ps3g3(0) 0z 13

(2.6) Rerr = 1(y"),

which comes from the limiting (linearized) z-dynamics near z = 0. The connection
between Rorr and R; is stated in Remark 3.1 and explored further in section 6.

Remark 2.1. Rcrp is the usual reproduction number for the CTL response in
the sense that if CTL-IE E; is a stable equilibrium of (1.2) with w(y, z) = 0, then
there is a transcritical bifurcation of (1.2) at Rory, = 1 involving the appearance of
a CTL-AE E,.

Before stating results on existence and uniqueness of equilibria, we require two
additional assumptions. First, we define the following sets:

Xn={£€[0,2] | (n(z) —n(&))(z —§) <0 forz#E xel0,1]},
Xn(v) ={£ €[0,2] | (h(x,v) = h(&v))(x —§) >0 forz#E xe(0,7]},
X = mve(o)g]Xh(v) NnxX,.

If X, is nonempty, then there are cell densities at which the net growth rate is lower
than the net growth rates at lower densities yet higher than the net growth rates at
higher densities.

The theorem below states the conditions for the existence of equilibria for the
model. The following assumptions are then used to guarantee the uniqueness of these
equilibria.

(A1) The model (1.2) has a CTL-IE E; = (z*, y*,v*,0) satisfying «* € X.

(A2) The model (1.2) has a CTL-AE Es = (2,9, 0, £) satisfying & € X,, N Xp, (D).

THEOREM 2.2. Assume that (H1)—(Hg) are satisfied.

(i) If Ry <1, then Ey = (%,0,0,0) is the only equilibrium.
(ii) If Ry < 1 < Ry, then, in addition to Ey, there is at least one CTL-IE
Ey = (z*,y*,v%,0), and there are no CTL-AEs.
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(iii) If Ry > 1, then, in addition to Ey and at least one CTL-IE Ey, there is at
least one CTL-AE Ey = (%,9,0,%).
(iv) If further, (A1) holds, then Ey is the unique CTL-IE of system (1.2).
(v) If further, (Ag) holds, then Ey is the unique CTL-AE of system (1.2).
Proof. Note that the CTL-IE Fy = (z*,y*,v*,0) exists if (z*,y", v*) satisfies the
following equations:

M1 12
2.7 n(x) = h(x,v = v).
(27) (@) = ble0) = B a(0) = 222 o)
By (Hs), we know that g, ! exists. Solving n(z) = 1 p2g2(v)/(kB182) for v gives
_1 ((kB1B2 )
1
v = xT) = nlx
@) =5 (2 20(a)
with (%) = 0, ¢(0) = v°, where v" is the unique positive root of the equation

n(0) = papag2(v)/ (kB S ) Deﬁne

G(x) = iz, ¢(2) = 152 02(o(2).

Then G(0) = —p1292(v°)/(kB152) < 0 and G(Z) = h(Z,0) — p1p1292(0)/ (kB152) = 0
Note that

Oh(z,0) n oh(z,0) |,

¢-@) = Ox 90 7 () - ;ﬁluﬁz g5(0)¢ ()
L (BB ONEO)
- kﬁlﬁ?@ ’ < pipz O 1) =n(z) (Ro—1).

Assumption (H;) implies that »/(Z) < 0. Thus, if Ry > 1, then G_(Z) < 0. This
implies that there exists * € (0,%) such that G( *) = 0. The value of v* is then
given by ¢(x*). Assumption (Hs) ensures that the equation kB2g1(y) = paga(v*) has
a unique positive solution y*. Therefore, F; exists if Ry > 1. We next show that
Ry > 1is also a necessary condition for the existence of F;. For 0 < x < T and v > 0,
(2.5) implies that u1pu2g2(v)Ro > kB1P82h(x,v) and thus ppege(v) > kB12h(z,v) for
0<z<zandv>0if Ry <1. Thus, (2.7) cannot be satisfied and F; does not exist
if Ry < 1. This shows that F; exists if and only if Ry > 1.

Next we show that if (Aq) holds, then E; = (z*,y*,v*,0) is indeed the unique
CTL-IE. Suppose, to the contrary, there exists another CTL-IE Ef = (z**, y**,v**,0).
Without of loss of generality, we assume that z** < x*. Then z* € X, implies
that n(x**) > n(z*). This, together with the fact that k5 Ban(x*) = pipage(v*),
kB1fan(x**) = pipega(v*™), and monotonicity of go, yields v** > v*. By (Hg),
we have h(z*,v**)/ga(v**) < h(z*,v*)/g2(v*). By virtue of z** < z* and z* €
Nue(0,5)Xn(v), we obtain h(z**,v**) < h(z*,v**) and thus h(z**,v**)/g2(v**) <
h(z*,v*)/g2(v*). On the other hand, it follows from (2.7) that h(z**,v**)/ge(v**) =
h(z*,v*)/g2(v*) = p1pa/(kB1P2). This is a contradiction, and thus Fj is the unique
CTL-IE.

Note that the CTL-AE Ey = (Z,9,0, 2) exists if (2,9,0,2) € R% satisfies the
equilibrium equations (2.2). Equation (2.2d) and (Hs) imply that

(2.8) g =91" (us/(qBs)) -
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Note that the values & and v used to define R; clearly satisfy the equilibrium equations.
Solving the second equation of (2.2d) for z yields 2 = (81 h(Z,0) — pu191(9))/(pg1(4)) =
p1(R1 — 1)/p. Therefore, the CTL-AE E; = (Z, 9,0, 2) exists if and only if Ry > 1.

Next we show that Fs is the unique CTL-AE if (A2) holds. Suppose there exists
another CTL-AE, E} = (&%, ¢, 0" 2*) Then, § = ¢* and 0 = ¢*. Again, without
loss of generality, we assume that &* < Z. Then & € X,, implies that n(Z*) > n(z).
Note that n(2) = h(z,0) and n(&*) = h(&*,v), which implies that h(z*, ) > h(Z, ).
This contradicts with & € X} (0) and hence Ej is the unique CTL-AE. O

3. Global stability results. In this section, we state our main results concern-
ing the global stability of system (1.2), with proofs postponed to section 5. Before
stating our main results, we require two additional assumptions. First, we define the
following sets.

Yi(z) ={¢ € [0,7] | (h(z,v) = h(z,())(v =¢) >0 forv#( vel0u]},
Y = ﬂrG(O,E]Yh(x)'

The following assumptions are used to guarantee the global stability of the CTL-IE
and CTL-AE.

(B1) The CTL-IE E; = (a*,y*,v*,0) satisfies v* € Y.

(B2) The CTL-AE E; = (2,9, 0, 2) satisfies 0 € Y.

THEOREM 3.1. Assume that (Hy)-(Hg) hold. If Ry < 1, then the infection-free
equilibrium Eq of system (1.2) is globally asymptotically stable in Q2; whereas if Ry > 1,
then Eqy is unstable.

THEOREM 3.2. Assume that (H1)—(Hg) hold and that Ry > 1. Suppose further
that By = (z*,y*,v*,0) satisfies (A1) and (B1). If Rorr < 1, then Ei is locally
asymptotically stable, and if Rcrr > 1, then Ey is unstable.

THEOREM 3.3. Assume that (Hi)—(Hg) hold. Suppose that By = (z*,y*,v*,0)
satisﬁes (A1) and (B1). If Ry <1 < Ry, then E; is globally asymptotically stable in
Q\ Z , and if Ry > 1, then Ey is unstable.

Remark 3.1. By the equilibrium equations, we can rewrite R; and Rcryp as

Ry — (Iﬂlﬂ:an(@ and Repy, — qﬁlﬁBn(x*).
H1pes K2

It then follows from Lemma 5.1 that under the assumptions of Theorem 3.2 (also
Theorem 33), Ri>1< Rerrp >1,Ri <1< Rerp <1l,and Ry = 1< Reorp = 1.

It follows from Theorems 2.2, 3.1, and 3.3 that if R; > 1, then both Ey and E; are
unstable and the CTL-AE Ey = (Z, §, 0, 2) exists. It has been shown in [4, 20, 36] that
a time delay in the CTL response process can induce sustained oscillations through
Hopf bifurcation for in-host viral models with CTL responses. Therefore, we only
attempt to establish the global stability of the CTL-AE FEs, and we assume that no
delay is presented in the CTL response process. That is, we consider system (1.2)

with f3(7) = d(7):

(3.1a) ¥ =n(z) — h(z,v),

(3.1b) y' = f1x (h(z,v)) — p191(y) — pgr(y)g3(2),
(3.1¢c) v = kfax (91(y)) — p2g2(v),

(3.1d) 2= qg1(y)g3(z) — pags(2),

THEOREM 3.4. Assume that (Hy)—(Hg) hold and that f3(7) = 6(7). Further,
suppose that By = (&,7,0,2) satisfies (A2) and (B2). If Ry > 1, then for system
(3.1), Ey is globally asymptotically stable in the interior of Q.
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Remark 3.2. If n(z) is monotonically decreasing for « € [0, Z], then {z*,%} C
X,. If h(z,v) is monotonically increasing with respect to z and v, then {z*, &} C
Nve(0,5)Xn(v) and {v*,0} C Y. However, the monotonicity is not necessary for these
assumptions to hold. In section 4, we give an example in which n(z) is of logistic
type and thus is nonmonotone and h(z,v) is not monotone in v, but (A;)—(A2) and

(B1)-(B

») hold.

4. Examples.
Example 4.1. Consider

(4.1)

o z"(t) v(t)
0= A= drll) = By ) (o (@) +an)
a™(t — 1) ot —n)

y/(t) = 56_517-1 (xml (t _ 7-1) + (11) (’Ull (t _ ,7_1) 4 a2) - Mly(t) —py(t)Z(t),

V' (t) = ke 2yt — 12) — pov(t),
2'(t) = qy(t)2(t) — paz(t)

with mq,11, a1, a2, s1, 2,71, 70 > 0 and the other parameters being positive.
It can be verified that h(z,v) is strictly monotonically increasing with respect to
x and v if one of the following conditions holds:

(C1) :m1 <m, Iy <land a; >0 for i =1,2;
(Cq) :mq <m, Iy <landa; >0fori=1,2.

Moreover, h(z,v)/v is nonincreasing in v for v € [0,00) if [; <1 < 1.
Applying Theorems 3.1-3.4 to system (4.1) yields the following result.
COROLLARY 4.1. Assume that either (C1) or (Ca) is satisfied.

(i)

Ifl < 1, then Ry = 400, and the infection-free equilibrium Ey of system (4.1)
is always unstable and system (4.1) admits a unique CTL-IE E1, which is
globally asymptotically stable in Q if Ry < 1. If Ry > 1, then system (4.1)
admits a unique CTL-AE Eo, which is globally asymptotically stable in the
interior of €.
Ifl =1, then

kﬁ8_51T1_52T2 i,m

—_ 9
1 p2a "™ + ag

Ry =

where T = A/d. In this case, if Ry < 1, then the infection-free equilibrium Ey
of system (4.1) is globally asymptotically stable in Q. If Ry < 1 < Ry, then
Ey is unstable and the unique CTL-1E FE1 is globally asymptotically stable in
Q\ Zf. If Ry > 1, then Ey and Ey are unstable and the unique CTL-AE Fs
is globally asymptotically stable in the interior of 2.

Remark 4.1. If m;1 =0,m=1,l1 =1 =1,a1 =0, and s; = s = 0, then system
(4.1) reduces to the system considered in [22] and the global dynamics are completely
determined by Ry and Ry. If m =1 =1,m; =11 =0,a;1 = a3 = 0,59 = 0,75 =0,

then (4.

1) reduces to the model studied in [37], in which only local stability of F;

and FEs was given and their global stability was left open. Corollary 4.1 gives an
affirmative answer to the open problem.
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Ezxample 4.2. Consider the following system

2/ (t) = X\ — dx(t) + ra(t) (1 — %) — Bx(t)v(t),

(
(4.2) ( ) — my(t) — py(t)z(t),
( );
"(t) = qu(t)z(t) — paz(t)
with 71,7 > 0 and the other parameters being positive.
Clearly, n(x) is a nonmonotone function for positive z if » > d. A direct calcula-
tion yields

K(T—d)+\/K2(’I‘—d)2+4/\7’K * M1y’26817’1+527'2

= o TR ’
. kem?2us 1 R -
= M s (—K(d+ B — )+ VKAt Bo— )2 + 4/\rK) :
H2g 2r
and
—S81T1—82T2 —S81T1—82T2
Ry = Moe TR g MR
12 12

Clearly if Ry <1 < Ry, then (B;) holds, and (A1) holds if and only if

d

K
If Ry > 1, then (Bs) holds, and (Asz) holds if and only if

d
(4.4) 0§r<1 =

K

Therefore, applying Theorems 3.1, 3.3, and 3.4 to system (4.2), we immediately
have the following result.

COROLLARY 4.2. Consider system (4.2). If Rg < 1, then Ey is globally asymptot-
ically stable in Q. If Ry <1 < Ry, then Ey is unstable, and system (4.2) has a unique
CTL-IE Ey, which is globally asymptotically stable in Q\ Z{" provided that (4.3) is
satisfied. If Ry > 1, then Ey and Ey are unstable, and system (4.2) admits a unique
CTL-AE E,, which is globally asymptotically stable in the interior of  provided that
(4.4) holds.

Remark 4.2. 1f (4.3)(resp., (4.4)) is not satisfied, then F; (resp., F3) may become
unstable and (4.2) may admit stable periodic solutions (see Figure 4.1). In the case
of p = 0, the variable z does not appear in the first three equations of system (4.2).
The subsystem consisting of the first three equations with 7 = 7 = 0 is considered
in [5]. It is shown in [5, Theorem 2.1] that E; is globally asymptotically stable if
Ry > 1and 0 < r < d. Corollary 4.2 relaxes the condition 0 < r < d to (4.3), and
when (4.3) is not satisfied, E7 may lose its stability and Hopf bifurcation may occur
inducing stable periodic oscillations.

Example 4.3. Consider

!E/(t) =A— diC(t) + T‘x(t) (]_ — %) — Bz ((U _ b)e*CU + b),

(4.5) Y(t)=Be 1 a(t — 1) ((v(t — 1) = b)e ) 1 b) — py(t) — py(t)=(1),
v'(t) = ke*2m2y(t — T2) — pav(t),
Z'(t) = qy(t)z(t) — usz(t),

where b > 0, ¢ > 0 and the other parameters are the same as in Example 4.2.
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. . .
0 50 100 150 200

0.3
0.2
N
0.1
o . . .
0 50 100 150 200
time ¢

Fia. 4.1. A numerical solution (the v and z components) of system (4.2) with sustained os-
cillations. Parameter values are A = 10 cells mm3day~!, d = 0.1 day™ !, r = 0.6 day~ 1,
K =500 cells mm~=3, 8 = 0.1 mm3virus~'day=!, s1 = 0.01 day~ ', 71 = 0.2 day, p1 = 0.8 day~ !,
p = 9 mmBcells tday=1, k = 0.8 virus cells~lday=1, s2 = 0.05 day~!, = = 0.3 day,
pus = 3.5 day~', ¢ = 0.03 mm3cells~'day~', and p3 = 0.75 day~'. The initial condition is
(2(6), y(0), v(0), 2(0)) = (8/2, 5/2, 0/2, 2/2) for 6 € [-7,0].

One can verify that (H;)—(Hg) hold. Direct calculations yield
K(r—d)+ K2(r —d)? + 4K

ﬂl = 6781717 52 = 67827—27 T =

2r ’
. kBops . 1
= —— = — d ha( (d h 244K
b=t 0 = (~K(d+ Bm(8) = 1) + K@+ BRi(0) = 1) + 40K ),
and
Ro = B#(1 + be) kﬁ152, Ry = Bi kpiBa hlA('U).
H1 2 f1 2 v

Note that hq(v) is increasing for v € (0,b+1/c), and is decreasing for v > b+1/c.
The maximum of hq(v) is attained at v = b+ 1/c. Suppose ¥ > b+ 1/c. (Otherwise,
if o <b+ 1/¢, then h(z,v) is increasing with respect to v for v € (0,7).) Then there
exists a ¥ € (0,b+ 1/c) such that hy () = hq(0).

If Ry <1 < Ry, then x* is the unique positive solution of the nonlinear equation

n(z) = By (’“ﬁlﬁznm) |

f1 2

and v* = kf1Ban(x*)/(pape). We can further verify that (A;) holds provided that
(4.3) is satisfied, and (B1) holds if and only if v* < .

If Ry > 1, then we can verify that (As) holds provided that (4.4) is satisfied, and
(B2) holds if and only if ¢ < .

Therefore, applying Theorems 3.1, 3.3, and 3.4 to system (4.5), we immediately
have the following result.

COROLLARY 4.3. Consider system (4.5). If Ry < 1, then Ey is globally asymptot-
ically stable in Q. If Ry <1 < Ry, then Ey is unstable, and system (4.5) has a unique
CTL-IE E1, which is globally asymptotically stable in Q\ Z;" provided that (4.3) and
v* < U are satisfied. If Ry > 1, then Fy and E; are unstable, and system (4.5) ad-
mits a unique CTL-AFE Es, which is globally asymptotically stable in the interior of
Q provided that (4.4) and © < ¥ hold.
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5. Proofs of main results.

5.1. Proof of Theorem 3.1. Assume that Ry < 1. Define a Lyapunov func-
tional L : I' — R as

w0 h(z,0) 1 e p
Lo, yor v, 22) = 22(0) — / tiay 120+ n0) + 0+ L (0)

/ hir / h(xe(s),vi(s)) dsdr
5152/ flr /OT 91(yt(s)) dsdr

0
" 51]953/0 Fs(7) /_Tgl(yt(s))%(a(s)) dsdr

with z:(s) = x(t + s),y:(s) = y(t + ), and v(s) = v(t + s),2¢(s) = z(t + s) for
s € (—00,0]. Calculating the time derivative of L along a solution of system (1.2) and
making use of (2.1) and (Hs), we obtain

iL _ h(z,v)
G = (o) (1= i e G0 ) 4 )00 iy 7
41 42 p“3
. kwggg(v( ) = gy (1))

< ntott) (1~ tim 771 )

iagin KBuBo h(x(D).0(t) . h(zv)
T 55 (”(”(um 720(0)) %h(x(t),v)‘l)'

Assumptions (Hy)—(Hg) imply that n(z)(1 — lim,— h(Z,v)/h(x,v)) <0, and

Mav) o h(@v) o h(eo) P52 9h(z,0) 1
92(0) ¥ h(w,v) ~ 050 ga(0) oha0) Qv gh(0)’
It follows from (2.3) that
L
L U2 0 o(6)) (Ro—1) <0 if Ro <1,

dt = kpip2

and dL/dt = 0 implies that xz(t) = Z and z(t) = 0 for any ¢t > 0; it follows from
2'(t) = 0 and (Hz) that y(t) = v(¢) = 0 for any ¢ > 0. Therefore, the maximal compact
invariant set in {dL/dt = 0} is the singleton { Ey}. By the LaSalle invariance principle
[9, 10, 11], Ey is globally attractive in I". Note that the Lyapunov functional L is
positive definite in I'. It can be verified that Ej is locally stable using the same proof
as that for Corollary 5.3.1 in [11]. Therefore, Ej is globally asymptotically stable in I"
if Ryp < 1. Finally, Fjy is globally asymptotically stable in 2 since I' is absorbing in €.
Next assume that

kB1B2 lim h(Z,v)

R =
0 Hiptz v—0+ g2(v)

> 1.

Then there exists v > 0 such that

h(T,v) kB152
g2(v)  pap2

(5.2) >1 for ve (0,0).
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From (5.1), (5.2), and the continuity of h(z,v), it follows that dL/dt > 0 in a neigh-
borhood of Ey = (Z,0,0,0), except for the points with v = 0. Thus solutions in T"
starting from arbitrarily small neighborhoods of Ey move away from Ej, except for
those starting in Z;" = {(20,0,0,0) € C{ : 7y > 0}, which remain in Z;" and tend to
Ey. Therefore, Ey is unstable if Ry > 1.

5.2. Proof of Theorem 3.2. The characteristic equation associated with the
linearization of system (1.2) at (z*,y*,v*,0) is

(5.3) A1(§)A2(8) =0
7E+n/(1*)7 ah(%f,u*) 0 ah(x* v*)
where Ay (&) = det < T fi(e)  —E—pgh(y) LU >f1<5>> nd
0 kgl (4" fo(6) —E—pagh(v”)
ow(y*,0
(5.4 80(6) = €~ WD i) 4 g0,

and we have used fl(é) i =1,2,3, to denote the Laplace transform fo fi(T)e ¢ dr.

If Ry > 1, then (z*,y*,v*) is the unique positive equilibrium of the subsystem
of (1.2) consisting of the first three equations with p = 0, and (z*,y*,v*) is global
asymptotically stable (see [19]), which implies that all eigenvalue of A;(§) = 0 have
negative real parts. Therefore, F; is asymptotically stable if all zeros of Ag(&) have
negative real parts.

Note that A4(€) > 0. Then Ay(€§) is an increasing function. Since Ag(o0) = oo
and Ag(—o0) = —o0, it follows that As(€) has exactly one real root, denoted by &p.
Next, we claim that if Ay(a+bi) = 0 with b # 0, then a < &. Assume to the contrary
that @ > &, and then we obtain from the real part of the equation Ag(a + bi) = 0
that

a+p395(0) = ¢ dwly”, 0/ f3(7)e™ 7 cos(br)dr

0 0)
<qg——(= L y / f3(T)e™0Tdr = & + p3gh(0).

Thus, a = & and cos(br) = 1. On the other hand, we have sin(br) f3(7) = 0 for all
7 > 0. It follows from the imaginary part of the equation Ag(a + bi) = 0 that

—lll y 0) / f3(T)e=" sin(br)dr = 0.

This leads to a contradiction. Finally, we note that A2(0) = ps3g5(0)(1 — Rerr), and
then we have A2(0) > 0 if Repr, < 1 and Ay(0) < 0 if Ropr, > 1. Then we can
easily obtain that if Ropr < 1, all eigenvalues of the characteristic equation (5.3)
have negative real parts; if Rorr > 1, there exists at least one positive eigenvalue.
This completes the proof of Theorem 3.2.

5.3. Proof of Theorem 3.3. First, we prove a lemma which will be used in the
proof of Theorem 3.3.

LEMMA 5.1. Suppose that (Hi), (Hg), (A1), and (B1) are satisfied and Ry > 1.
Then x*,y*,v*,Z,4,0 exist satisfying sgn(& — x*) = sgn(v* — 0) = sgn(y* — §) =
sgn(Ry — 1).

Proof. Tt follows from (2.2¢) and (2.7) that g1(y*) = page(v*)/(kB2), 1(9) =
1292(0)/(kB2). This, together with (Hs), implies that sgn(v* —9) = sgn(y* —§). Next
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we claim
(5.5) sgn(z — 2*) = sgn(v* —0).

Suppose this is not true, i.e., sgn(& — z*) = sgn(d — v*). Assumptions (A;)-(B;)
imply that

(h(Z,v*) — h(z*,v")) (& — 2*) > 0, (h(Z,0) — h(Z,v*)) (0 —v*) > 0.
Note that
n(z) — n(x*) = (h(z,0) — h(2,v*)) + (h(Z,v*) — h(z*,v")).

Thus sgn (n(z) — n(z*)) = sgn(& — «*), which contradicts with (A;). Therefore (5.5)
holds. By (2.7), we obtain

kBiBs (h(#,9)  h(#,v") | h(#v") = h(z*,v")
oy ( 20) g (o) ) '
By (Hg) and (Aq), we have

(5.6) Ri—1=

h(j:?ﬁ) h(i,l]*) * * * ok S *
(gz(f)) — gg(v*)>(v ) >0, (h(&,v*) — h(z*,v*)) (& —x*) > 0.

This, together with (5.5) and (5.6), indicates that sgn(R; — 1) = sgn(z — x™*). O
We are now in the position to prove Theorem 3.3. Assume that Ry < 1 < Ry.
Theorem 2.2 implies that the CTL-IE E; = (z*, y*, v*,0) exists and is unique. Denote

c(@) =60—-1—1nb.

Then ¢(f) > 0 for > 0 and ¢(f) = 0 if and only if § = 1. Motivated by the earlier
work in [25], we construct a Lyapunov functional V : T' — R as

B 2+(0) h(x v ) 1 y+(0) gl(y*)
V(xt;ytavtazt) = $t(0) —‘/w* Wde"‘ 2 < (0)_‘/1/* 91(0) do

p O gy (v) P
* k(182 < +(0) / g2(0) d6‘> * qB1B3 2(0)
800 [ o [ (M
mg1 91(y:(s))
naa | e / C( e )ds‘“

[ 56) [ otutsatonasa

5153

It follows from the equilibrium equation (2.7) that the time derivative of V' along
solutions of system (1.2) is given by

av. h(z*,v*)
@~ ") (1 - h<x<t>,v*>>
o B A,
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where

S1 = 501 (=(0) = - 0s(a(0)) = F-0s(=(0) (91(57) — 92(4)

and
So = h(z*,v* x(t — t—7))d
2 (f ! ( Mlgl / fl T ( T)) T

W/ F2(7)g1 (y(t — 7))dr — In h(x(t), v(t))

" E/o fi(T) Inh(z(t —7),0(t —7))dr —Ingi(y(t))
+ i/ fa(m)In g1 (y (t—T))d7'>
S {51 / Y { 1191 (y ( ))h(x(t —7),0(t = 7)) — Inh(z(t), v(t))
(et — 1), 0(t — T))] i
L [ e2)a - 1)
B /0 R )[1 91(y*)g2(v(t))
—Ingi(y(t)) +Ingi(y(t - r))] dT}

— h(a*,v" nhWﬁWMﬂWﬂ)_h@ﬂW> R G G AP
= h(z",v")1 h(2(), 0(t))ga (") %, /O fa( )( ()92 (0) )d

_ h(z”, 0 Bih(z(t —7),v(t — 1)) .
[ ne ( g (o) )d'

Thus
O = a0~ ) (1 LY s
) [ (B
 h(z*, 0 / hr (gzllf(* yEZ—T )dT
where
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Therefore,
dVv *
T = ntalo) =) (1- sk

p1g1(y(t))

h * * [e’e] * t—
_ (z*,v") falr)e g2(v )i]l(y( 7)) dr.
0 g1(y*)g2(v(1))
By (A1), we have (n(z(t)) —n(z*))(1 — h(z*,v*)/h(x(t),v*)) < 0. Lemma 5.1 implies
that y* < gif Ry < 1. It then follows from the monotonicity of g; that S; <0 if Ry <
1. Assumptions (Hg) and (B;) imply that

<h(a:(t),v(t)) - 1) < g2(v)  h(x(t),v")

h(x(t),v*) H@) h(x(t)’v(t))> <0 for ¢ > 0.

The positive definiteness of ¢(0) then implies dV/dt < 0 for all (x¢,ys,ve,2:) € T,
and thus the omega limit sets of solutions are contained in K, the largest compact
invariant subset of {dV/dt = 0}. It can be verified that dV/dt = 0 implies that

_ o Piblat = 1), vt = 7)) _ g2(v")gr(y(t — 7))

(582) = =2,z ma®) aGee@) oSt
L B 7) el o
(5.8b) = =zx", PYRCI0) = 0 e (0@) =1if Ry = 1.

Along a solution in the set defined by (5.8a), we must have
z(t) =%, 2(t) =0, 2/(t) =y (t) =2'(¢t) = 0.

Note that if z(t) = z* and z(t) = 0, then y(t) = y*, v(t) = v* are determined. If Ry
1, then along a solution in the set defined in (5.8b), we have z(t) = a*, z'(t) = v'(¢)
0, and hence v(t) = v*. This, together with ga(v*)g1(y(t — 7))/(g1(y*)g2(v(¢))) =
and the monotonicity of ¢1, gives y(¢t) = y* and hence y'(t) = 0. Therefore, 2(t) = 0
and thus Ky = {E1} if Ry <1 < Ry. The LaSalle invariance principle and a similar
argument as in the proof of Theorem 3.1 show that the unique CTL-IE Fj is globally
asymptotically stable in Q\ Z;.

Assume that Ry > 1. Lemma 5.1 implies that y* > ¢. This, together with the
monotonicity of g7, yields that

(5.9) S1= %gs(Z(t)) (91(¥") —91(9)) > 0 for z>0.

By (5.7), (5.9), and the continuity of the functions n(z), h(x,v),g:(v)(@ = 1,2,3),
it follows that dV/dt > 0 in a neighborhood of Ey = (z*,y*,v*,0), except for the
points with z,y,v > 0 and z = 0. Thus solutions in I' that start in arbitrarily
small neighborhoods of E; move away from Ej, except for those starting in Z; =
{(x0,y0,v0,0) € C% : [|xo|| > 0,]|yo|| > 0, ||vo|| > 0}, which remain in Z7 and tend to
E. Therefore, F; is unstable if Ry > 1. d

=l

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/05/13 to 131.202.94.138. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

GLOBAL STABILITY OF A VIRAL INFECTION MODEL 1297

5.4. Proof of Theorem 3.4. Assume that Ry > 1. The existence and unique-
ness of the CTL-AE Ey = (Z, 9, 9, 2) of system (3.1) follows from Theorem 2.2. Define
a Lyapunov functional U : I' — R

U(xtaytavtazt)

_ xt(O)—/:(o) ZEZZ; d0+é(yt(0)—/ﬂyt(0) zigz; d0>
i (o [ )+ (o [ 2]
%/j fil7) /OTc<7h(“}fsj::Zt)(s))> dsdr
G e [ {25t

Making use of (2.2) and noting that

S (0 w®) = @) (1 + (=000
~ h(i.9) (g;(ly(g)” - 1) + 2 (01(0(0) ~ 020)) (38000 — 30(5)).
(20— 2) (00100 ) = 5 (200 = 2) (0 w0 — 1)),

we can express the time derivative of U along a positive solution of system (3.1) as

awo_ (@, 9) oy @) @)
i =10 (1 Gt ) bl o) s = P o) + Q.
where
B L h(z,0)ga(v h(z, 0 Bakg1(y(t — 7))
Q= na ottt -t [ Ao < o) )‘“
h(z(t —7), vt = 7)91(§) |
h&,9)91(y(t)) '

Note that n(2) = h(&,9), and then we have

v ; M 0)
- = (n(z(t)) — n(2)) <1 - h(a:(t),ﬁ)) e

_h(:r,f;) T e[ Mat =)0t —1)g1 ()
/ fl”( WGz )01 (D) )d

B h(z, 0 Bakgr ( (t—T)) .
/ fa(r ( p2g2(v(t)) >d7
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where
2\ — (s h(z,0) 2(8). v h(z,0)
(&, ) . h(Z,0)g2(v(t))
=) RO R
h(i, ) g2(v(t)) [ h(z(t),v(t)) 1 92(0)  h(z(t),0)
g2(0) \ h(z(t),0) g2(v(t))  h(z(t),v(t))
() (b0, 0)ga(0(0)
h(z(t), 0) h(z(t), v(t))g2(0)
Thus
dU h(&, %)
o = () = @) (1- 75 )
. g2(0(8) (h(z(),o(t) g92(0) _ _h(z(t),)
BT < h(x(t), o) 1>(gzvt)) ha t>,vt>>>
e ovel @)\ (h(@(t), 9)ga(v(t))
o) <h(a:<t ) o) <h<x<t>,v<t >g2<f»>>
b Mt =)ot - D)o (),
NS e < G 9. 010) )d
~ h(E,0 / folr <ﬁ2kg1 t—T) dr.
H2g
It follows from (Az) that (n(z(t)) — n(2))(1 — h(2,0)/h(z(t),0)) < 0 for t > 0, and
the equality holds only if z(t) = z. Assumptlons (Hg) and (Bg) imply that

ne@. o) |\ [ 0@ 0.9 ),
h(x(t), ) g2(v(t))  h(z(t),v()) ) —
Therefore dU/dt < 0 for all (x¢,ys,v¢,2¢) € T, and thus the omega limit sets of

solutions are contained in Ky, the largest compact invariant subset of {dU/dt = 0}.
It can be verified that dU/dt = 0 implies

hz(t —7),v(t = 7))g1(9) _ Bakgr(y(t — 7))
h(2,9)g1(y(t)) p2g2(v(t))
and z’(t) = v'(t) = 0. Note that once x(t) = & is given, v(t) = ¢. This, together with

h(z(t — 7),v(t — 7))g1(§) = h(Z,0)g1(y(t)) and the monotonicity of g1, shows that
y(t) = ¢. Thus,

x(t) = z,

=1 for 7€0,00),

0=1y'(t) = Bih(2,9) — mg1(9) — pg1(§)g3(2(t)),
which implies that z(t) = 2. Therefore, Ko = {E>} and the global stability of F5 in

the interior of Q) follows from the LaSalle invariance principle and a similar argument
as in the proof of Theorem 3.1. O
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v Lot

vy

0 Rorrp =Ry =1 qBs/ 3 0 Ro=1 Ry =1 k/ iz

Fic. 6.1. Equilibrium viral load of system (4.2) versus a combination of CTL parameters,
qB3/us (left), and a combination of viral parameters, k/u2 (right).

6. Conclusion and discussion. In this paper we have considered an in-host
model, given by (1.2) together with assumptions (H;)—(Hg), which describes the dy-
namics among healthy target cells, actively infected target cells, mature viruses, and
virus-specific CTLs. The model allows for very general target-cell dynamics, n(x),
including a nonlinear incidence, h(z,v), infinitely distributed intracellular delays, f;,
and state-dependent removal functions, g; (¢ = 1,2,3). This general model includes
many existing models in the literature as special cases.

It is shown that this model admits three types of equilibria: infection-free equilib-
ria, CTL-inactivated equilibria (CTL-IE), and CTL-activated equilibria (CTL-AE).
The dynamics of our model are shown to be determined by two critical values: the
basic reproduction number for viral infection, Ry, and the viral reproduction number
at the CTL-IE, R;. More precisely, we have proved the following: (i) if Ry < 1, then
the infection-free equilibrium Ej is globally stable; (ii) if Rg > 1 > R; and (A;) holds,
then model (1.2) admits a unique CTL-IE (E}), which is globally stable provided fur-
ther that (B1) holds; (iii) if Ry > 1 and (A2) holds, then model (1.2) possesses a
unique CTL-AE (E>), which is globally stable provided that (Bs) is further satisfied.
For case (i), this means that the viruses are cleared; (ii) implies that the infection
becomes chronic with no sustained immune responses; and (iii) indicates that the
infection becomes chronic with persistent immune responses.

It is important to note that even though increasing R; through the threshold
leads to a stability switch from the CTL-IE E; to the CTL-AE F,, this does not
imply that the viral load at the equilibrium decreases as R; increases across the
threshold. Figure 6.1 (left) shows a plot of viral load as a function of ¢f85/us, a
combination of CTL parameters giving a measure of the CTL response. Both R;
and the CTL reproduction number, Rory,, increase with this parameter combination,
and as the two reproduction numbers pass through one, the immune response lowers
the equilibrium viral load from v* to ¢. In contrast, Figure 6.1 (right) shows the
dependence of the same equilibria, again as both R; and Ropr increase through one,
but by increasing k/ 2, which is a combination of viral parameters measuring the virus
replication rate. Again, both R; and Rcory increase through the threshold as k/ps
is increased, and although there is a switch from CTL inactivation to CTL activation
as the threshold is crossed, the equilibrium viral load continues to increase. Thus the
bifurcation to CTL activation does not imply a reduction in viral load; equilibrium
viral loads do not always decrease as Rcryp, or Ry, passes through the bifurcation
threshold. This suggests that analysis of models for treatment should focus on model
outputs such as viral loads and on simple parameter combinations.
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Theorems 3.1-3.4 suggest that if (A7) and (B1) (or (Az) and (Bsy)) hold, then
the intracellular delays (between healthy target cells and actively infected target cells,
and between actively infected target cells and mature viruses) do not induce sustained
oscillations. However, the values and forms of delays do influence the values of Ry
and R; and thus have impacts on the viral dynamics. For instance, considering the
general model (4.2) with discrete delays in stages 1 and 2, denoted by 71 and 7o,
respectively, the value of Ry would be lower than one and thus the viruses can be
cleared in the host if 71 4+ 79 is large enough. Hence, increasing delays in replication
and infection can decrease Ry and R;, leading to inability of the virus to invade the
host.

Our global stability results cover and improve many existing ones (see Remarks 4.1
and 4.2). Moreover, our results can apply to models with nonmonotone nonlinear
functions, for which very limited results have been established. Most existing global
stability results for in-host models appearing in the literature require the monotonicity
of the nonlinear functions. For example, h(x,v) is assumed to be increasing with
respect to z and v in [13]. However, in viral dynamics, monotonicity is often not
expected [31]. In this sense, our work is an important extension. A concrete example
(Example 4.3) is given to demonstrate the applicability of our results when n(z) and
h(z,v) are nonmonotone. As shown in Figure 4.1, if (A;) (resp., (A2)) does not hold,
then the global stability of E; (E2) is not taken for granted and periodic solutions
may exist.

If the distribution functions fi, f2, fs in our model are chosen as gamma functions,
then our model can be rewritten as an ordinary differential equation model with
multiple intracellular stages [24]. Our analysis shows that no surprising dynamics will
appear if we only let f; and f; be gamma functions. Note that our global stability
result for the CTL-AE FEs of system (3.1) is established under the assumption that
there is no delay in the CTL response. If there is a delay in the CTL immune response,
then it is natural to expect that the CTL-AE F, is globally stable when the delay
is sufficiently small. Deriving conditions (very likely to be delay dependent) for the
global stability of (3.1) with a nonzero delay in the CTL response process would be
very interesting but challenging, as a large delay may destabilize the CTL-AE leading
to stable periodic oscillations [20, 36]. Figure 4.1 suggests that the occurrence of
sustained oscillations critically depends on the target-cell dynamics and/or the delay
in the CTL response process. This suggests that the system may exhibit rich dynamics
beyond globally stable equilibria if f3 is a gamma function.

Acknowledgments. The authors are very grateful to the anonymous referees
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