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ABSTRACT 
In this paper, we address the problem that how could the 
decentralized local interactions of autonomous agents generate 
social norms. Different from the existing work in this area, we 
focus on dynamic social networks that agents can freely change 
their connections based on their individual interests. We propose a 
new social norm rule called Highest Weighted Neighborhood 
(HWN) that agents can dynamically choose their neighbors to 
maximize their own utility through all previous interactions 
between the agents and these neighbors. Comparing with the 
traditional models that networks usually are static or agents 
choose their neighbors randomly, our model is able to handle 
dynamic interactions between rational selfish agents. We prove 
that in the 2-action pure coordination games, our system will 
stabilize in a clustering state and at that time all relationships in 
the network are rewarded the optimal payoff. Our preliminary 
experiments verify the theory.  
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1. INTRODUCTION 
Simulation is becoming a convenient and efficient 
approach to study social behaviour problems [2]. With the 
help of modern computers, researchers are able to simulate 
social experiments that originally may take months to finish 
within hours. In many other cases, simulation allows 
researchers to study social behaviors in such a huge scale 
that is almost impossible to implement and observe in real 
life.  

Multi-Agent Systems is one of the most powerful and 
widely used tools for social simulation [4]. Here agents are 
used to model social entities such as people, groups and 
towns. One purpose of these models is to study “generative 
social science” [6], i.e. how could the decentralized local 
interactions of autonomous agents generate social norms? 
However, the existing network models, such as random 
network, small-world network [13], and scale free network 
[9], all share a critical drawback. They are all static 
networks and do not allow agents to change the network 
structure. Here a network will be called static if edges are 
never created or removed after the generation of the graph. 
A dynamic network is one in which the edges are created 
and removed as the network evolves. Static networks may 
well model social behaviors in a relative stable 
environment such as a community where people barely 

move around and always keep the same relationships to 
others, but usually they will fail to model many dynamic 
networks such as behaviors in social network service (SNS) 
where agents frequently change their relationships to 
others. Examples include the friendship networks of high 
school students [7], the network of citations between 
scientific papers [10], links between web pages on the 
World Wide Web [1] and network of human sexual contact 
[8]. 

Zhang and Leezer previously proposed a social 
interaction rule called Highest Rewarding Neighborhood 
(HRN) in order to give agents the ability to update their 
neighborhood in a social network [14]. Adopting the HRN 
rule, one can easily transform a classic static network into a 
dynamic network with few restrictions on how agents 
observe their neighbors and how agents make the decision 
about when to keep an existing connection or disconnect it 
so they can connect to a new neighbor. However, we found 
some properties of the HRN rule are still not very realistic. 
In a dynamic network, agents need a certain function to 
evaluate their neighbors, and after the evaluation the agents 
also need to negotiate with their neighbors about whether to 
keep the connection or not. In the original HRN rule, agents 
keep track of the average reward they receive from all 
relationships and also the average reward they receive from 
every single relationship. The agents will decide whether to 
keep a connection or not through the comparison between 
these two average reward. However, when calculate the 
average reward, the agent evaluate all the past rewards 
equally. Here we argue that in real life recent rewards 
usually affect people’s decision more than the rewards that 
they received long time ago. Also, people’s future action 
may be more consistent with their recent actions than with 
their past decisions.  

For the above reasons, we propose an extension to the 
HRN rule. The new rule is called Highest Weighted 
Reward (HWR). The HWR rule weighted recent rewards 
from a relation more than that of the long-time-ago 
rewards. Agents’ decision about whether to keep a 
relationship or not is based on if the weighted rewards is 
greater than the weighted average reward earned from 
every relationship. 

The paper is structured as the following. Section 2 
introduces the HRN rule (from which the HWR rule is 
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extended) and other existing rules that lead to social norms 
emerge from a social network. Section 3 defines the HWR 
rule. Section 4 describes the environment of our model. 
Section 5 introduces the idea of how to prove that a system 
reach a clustering state. Section 6 is the proof that in the 2-
action pure coordination games, our system will stabilize in 
a clustering state and at that time all relationships in the 
network are rewarded the optimal payoff. Section 7 
presents our preliminary experiments showing that our 
system indeed stabilizes in a clustering state. Section 8 
concludes the paper. 

2. RELATED WORK AND BACKGROUND 
Common theme researchers have found while studying the 
ways in which a society of agents act towards a problem is 
that the agents within that society tends to converge onto a 
single solution. However, different individual decision 
making algorithms render different lengths of time for the 
society of agents to converge to a mutual solution. There 
are two categories of these strategy selection rules. The first 
category is the study of how social norms emerge in static 
networks. The second category is the study of social norms 
in evolutionary networks or dynamic networks. Example 
rules of the first category include the Highest Cumulative 
Reward (HCR), also called highest current reward, and the 
General Simple Majority (GSM) rule. Research in the 
second category has just started. One example model is the 
Highest Neighborhood Award (HNA) rule. Next, we 
introduce then one by one. 

Shoham and Tennenholtz propose the Highest 
Cumulative Reward rule [11]. For each update period, an 
agent would switch to a new action if and only if the total 
payoff obtained from that action in the latest time step 
iteration is greater than the payoff obtained from the 
currently chose action in the same time period. They then 
implemented this HCR rule to agents, simulating test cases 
and modifying variables (memory update frequency, 
memory restart frequency, and both) to experiment agent 
on an agent’s effectiveness in learning about their 
environment. For our experiment, we ran the same tests 
using Jason’s HRN rule and Q-learning to compare results 
with Shoham and Tennenholtz. 

Jordi Delgado proposes the Generalized Simple 
Majority rule [5]. Agents will change to an alternative 
strategy if so far they have observed more instances of it on 
other agents than their present strategy. This rule 
generalizes simple majority since as the limit of β  ∞, we 
can note that the change of state occurs as soon as more 
than half of the agents are already in that alternate state. 

 
Generalized Simple Majority Definition [5] 

 
The second category of research into generating 

agents’ social behavior is the study of evolutionary 

networks or dynamic networks, such as [3, 12]. Here 
researchers investigate the ways in which populations of 
agents may converge onto a particular strategy. While the 
research is merited, assumptions are often made that make 
the experiments unrealistic. For example agents often have 
no control over whom they play with. Also, agents don’t 
employ selfish reward maximizing decision making but 
instead often imitate their neighbors. Lastly, agents are 
often able to see the actions and rewards of their neighbors, 
which is unrealistic in many social settings. 

Zhang and Leezer propose the Highest Rewarding 
Neighborhood (HRN) rule [14]. The HRN rule allows 
agents to learn from the environent and compete in 
networks. Different from those agents alike in work [3] 
which can observe their neighbors’ action and imitate it, the 
HRN agents employ selfish reward maximizing decision 
making and can learn from the environment. Under the 
HRN rule, cooperative behavior emerges even though 
agents are selfish and attempt to only maximize their own 
utility. This is because agents are able to break unrewarding 
relationships and therefore are able to maintain mutually 
beneficial neighborhoods. This leads to a Pareto-optimum 
social convention. 

This paper proposes the Highest Weighted Reward 
(HWR) rule, which is extended from the HRN rule. In 
HRN rule, the agent values its neighbors based on 14their 
performances equally throughout the history. However, this 
leads to the fact that the agent will focus too much on the 
history of the neighbor and fail to respond promptly to the 
neighbor’s latest performance. What is worse is that, after 
the agent has stored a very long history of one neighbor, the 
agent’s evaluation of this neighbor will be almost entirely 
based on the past history and can hardly be changed in a 
short time. Apparently, this is not a rational behavior we 
want the agent to have. Therefore, we introduce the HWR 
rule, which introduces a time discount factor that helps the 
agents to focus more on the recent history. 

3. Highest Weighted Reward Rule 
Definition Highest Weighted Reward Rule. According to 
the HWR rule, an agent will only maintain a relationship iff 
the weighted average reward earned from that relationship 
is no less than a specified percentage of the weighted 
average reward earned from every relationship.  
In the HWR rule, we calculate the average reward in the 
following way: 
1. For each neighbor, we have a variable T called 

TotalReward in order to store the history interaction of 
the agent. In each turn, TotalReward is updated as the 
following: 

Tt = c×Tt-1 + Rt.                                           (1) 
Where Tt is the Total Reward at time t, Tt-1 is the past 
Total Reward, c is a time discount factor and R is the 
current reward. 
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2. In a similar way, we keep a variable GT called General 
Total Reward to store the rewards the agents got from 
all agents in the history. In each turn, we update the 
General Total Reward as the following: 

GTt = c×GTt-1 + ்


                                        (2) 

where GTt is the General Total Reward at time t, GTt-1 
is the past General Total Reward, Tt is the Total 
Reward in this turn, and n is the number of neighbors. 
Therefore, ்


 is the average reward the agent gets from 

each interaction. 
3. The decision-making process for choosing bad 

neighbors is this. We first calculate the average reward 
for every agent. The Average Reward, denoted by AR, 
is calculated in the following way: suppose the agent 
has been playing with the neighbor for n turns,  

ARt = ்
ଵାାమାڮା 

 = ்
ଵି×(1−c)                                         (3) 

Notice that when n→∞, cn→0. Therefore, when n→∞,  
ARt = Tt ×(1−c)                                            (4) 

4. Calculate the Average Total Reward, denoted by ATR. 
Similar to step 3,  

ATRt = ீ ்
ଵାାమାڮା 

= ீ ்
ଵି×(1−c)                                          (5) 

Notice that when n→∞, cn→0. Therefore, when n→∞,  
ATRt = GTt ×(1−c)                                       (6) 

5. Finally to decide if a neighbor is bad so the agent will 
disconnect with it, we compare the ratio of Average 
Reward vs Average Total Reward with the threshold θ. 
The rule is as the following. 

ቊ
݂݅ ோ

்ோ
 θ,    ݇݁݁ݎܾ݄݃݅݁݊ ݄݁ݐ 

,݁ݏ݅ݓ݁ݎ݄݁ݐܱ ݎܾ݄݃݅݁݊ ܾ݀ܽ ݐܿ݁݊݊ܿݏ݅݀
       (7) 

In this way, the agent can evaluate its neighbor with an 
emphasis on recent history. For example, if we set c to be 
0.95, then the reward we get 100 turns ago will be weighted 
very lightly as this: 0.95100 × 0.05 = 0.03%.  

Next, we analyze the bound on c. Basically, the bound 
on c is a empirical value and varies on different payoff 
matrix for the pure coordination game. Here we analyze a 
special case. Assume we are playing the pure cooperation 
game with reward 1 for cooperation and -1 for defect. If we 
set c too low, the last reward the agent got from the 
neighbor may dominate the whole history. The following 
illustrate an example of this. 

1−c−c2−…−cn > 0 
⇒1 > c+c2+…+cn 

⇒1 > cଵା

ଵି
                                                           (8) 

When n→∞, cn→0, then 

⇒1 > 
ଵି

 

⇒c < 0.5                                                                (9) 
Based on this, when c < 0.5, the latest reward has a huge 
influence over the whole history. For this reason, we set a 
bound on c be c∈(0.5, 1]. Usually, c will take a value 
between 0.9 and 1, in order to take consideration of a 
relatively long history. 

Notice that when c = 1, the HWR rule is exactly the 
HRN rule proposed by Zhang and Leezer [14]. So HWR is 
a generalized rule of HRN. 

The above definitions are given under the assumption 
that the agent has infinite memory, which means the agent 
can remember all past interactions and their relative 
payoffs. However, this may not always be the case in real 
world. Therefore, sometimes we set a memory limit L. In 
that case, the agent will only remember the interactions in 
the last L turns. But the decision is made in a similar way. 

4. ENVIRONMENT 
The environment of our model has the following properties. 
These are also what our proof (see Section 6) and 
experiments (see Section 7) are based on. 
• All trials run in a random network. 
• The number of connections in the network remains the 

same throughout the trial. 
• Every time when a connection is broken, both agents 

have a 50% chance to gain the right to connect to a 
new neighbor. But only one of them will eventually 
make a new neighbor. This restriction guarantees the 
number of connections remains the same. 

• All agents have a limit memory size of k. 
• All agents adopt the ideal learning rule, which means 

the agent will always choose the action that the 
majority of its neighbors used in the last turn. If there 
is same number of neighbors adopting different 
actions, the agent will not change its current action. 

• The agents can only see local information. They do not 
know the payoff matrix and the identities of their 
neighbors. 

• Our domain is the two-action Pure Coordination 
Game. It is a simple game in which agents receive a 
reward in the event they choose the same strategy and 
a penalty in the event they choose different strategies. 
Table 1 shows the payoff matrix for the Pure 
Coordination Game we use.  

Table 1 Payoff Matrix for the Pure Coordination Game 
 Cooperate Defect 

Cooperate 1, 1 0,0 
Defect 0,0 1,1 
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Notice that there are two equal Nash Equilibrium in the 
game: (Cooperate, Cooperate) and (Defect Defect). Notice 
that the optimal strategy depends on the strategy of an 
agent’s neighbor. However, when this game is played with 
multiple neighbors, the optimal strategy is the strategy 
adopted by the majority of an agent’s neighbors.  

5. PROOF STRUCTURE 
Researchers have proved under most circumstances a static 
network will reach convergence when agents adopt the 
Generalized Simple Majority rule [5]. However, during our 
research we found that certain networks will never 
converge under the GSM rule. The simplest one may be 
referred as the "traffic light" network, which is a network 
containing only two agents. At the beginning, the two 
agents are connected to each other, but they use different 
actions. Since for each agent the only neighbor they have is 
the other agent, they both will change their action in the 
next turn based on the GSM rule. As the consequence, the 
two agents will keep repeating this process and flipping 
between two actions. Thus the network can never reach 
convergence. Even though this is a special case of static 
network, dynamic networks could have the same problem. 
For example, if our network is initialized as a complete 
network (theoretically there is an extremely low probability 
that it could happen), then the network will remain as static 
since it is impossible to add more connections between any 
pair of agents (because all agents are connected to each 
other). Thus, the special case we just pointed out can be 
treated as an extremely rare but valid case for our model. 

Due to the existence of this kind of the special case, 
not all networks will reach a stable clustering state. 
Therefore, inspired by Shoham’s work [11], we proved that 
as time step approaches infinity, the probability that a 
network reaches the stable clustering state will approaches 
to 1. In Section 6, we show our proof in great details. In 
order to make our proof easier to understand, here we first 
explain the basic idea behind the proof. The idea is very 
similar to the logic of the classic Monkey and Shakespeare 
problem. Let a monkey randomly type on a keyboard. 
Given infinite time, the monkey will eventually finish a 
work of Shakespeare. The idea is: given a specific process 
that can happen with a very low probability and infinite 
time, the probability that this process can approach to 1 
eventually. 

The proof contains three major parts:  
• A starting state that should be valid at any time 

step throughout the trial;  
• An ending state, which is also the goal state of the 

proof;  
• A specific process that will lead the system from 

the starting state to the ending state. In our proof, 
the starting state is a normal random state of the 
system. The goal state is the stable clustering state. 
We have also described the specific process in 
great detail in our proof. 

6. PROOF 

6.1 Definition 
We have the following definitions. 
• Ai denotes the ith agent in the network. 
• ai denotes the action choice for agent Ai. In 

coordination games, ai has binary values representing 
different action choice. 

• Rij denotes the link between agent Ai and agent Aj.  
• Ni denotes agent Ai’s neighborhood. If Aj ∈ Ni, then 

there exists a link Rij between the two agents. 
• Ci denotes agent Ai’s coordinating neighbors. Ci ⊆ Ni. 

If Aj ∈ Ci, then aj = ai. 
 ⊇ ݅ܥ .denotes agent Ai’s non-coordinating neighbors ݅ܥ •

Ni and ݅ܥ ∩ Ci = φ. If Aj ∈ ݅ܥ, then aj ് ai. 

• We call agent Ai a majority coordinating neighbor if 
|Ci|  |݅ܥ|; we call agent Ai a majority non-
coordinating neighbor if |Ci| < |݅ܥ|. 

Notice that any agent in the network must fall into one of 
the above two categories. 
• We say a network is in a stable clustering state if for 

any agent Ai in the network, |0 = |݅ܥ. 
• We say a group of agents D form a closed cluster if for 

any agent Ai ∈ D, |0 = |݅ܥ, and for any Aj ∈ Ci, Aj ∈ D. 
Also, for any pair of agent Ai and Aj, ai = aj. 

• We say an agent has a free connection when the agent 
broke one old connection and gains the right to connect 
to a new neighbor. 

• We call an agent a free action agent when it is possible 
for the agent to become either a majority coordinating 
neighbor or a majority non-coordinating neighbor by 
connecting to different new neighbors. 

• We define whipping as the following process: every 
time when a free action agent looks for new neighbors, 
it only connects to the agent who uses different action 
from it. In this way, the agent will keep flipping 
between the two possible actions. Since the agent’s 
neighbors may have high tolerance on the relationships 
between them and the agent, even when they play 
different actions the connection won't be broke 
immediately. Therefore, we let the agent’s neighbor go 
through the whipping process too. Eventually, we let 
the agent's neighbors keep flipping between the two 
possible actions in the way that each time the agent 
and its neighbors use different action. In this way, the 
reward for these connections will be constantly 0. 
After at most k turns, the agent will lose all of its 
neighbors and becomes isolated. 

6.2 Theorem and Proof 
We have the following assumption: 

Assumption. In a two-action coordination game, if the 
network has not reached a stable clustering state yet, then 
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there will always be connections broken between agents 
playing different actions. And there always exists agents 
adopting different actions with free connections. 

Theorem 1. If in a network all agents are majority 
coordinating neighbors, then there it is possible that the 
network will reach stable clustering state in k turns. 

Proof for Theorem 1. If we only allow the agent to 
connect to same action agents, then after k turns the agents 
will only keep connection with the neighbors who adopt the 
same action as them. In this way, for any agent Ai we see 
  .and the network reaches the stable clustering state ,0 = |݅ܥ|
                                                                                             � 
Theorem 2. If a network has at least one closed cluster, 
then it is possible for the network to reach a stable 
clustering state within g(n) turns. 

Proof for Theorem 2. We prove this theorem by case 
analysis. First we check whether there exists any majority 
non-coordinating agent. If there doesn't exist, then by 
Theorem 1 we know it's possible for the network to reach 
stable clustering state in k turns. If there exists at least one 
majority non-coordinating agent, we select one and check 
whether this agent is a free action agent. If not, we pull free 
connections from non-coordinating agents to make the 
agent a free action agent. Then we let all of its free 
connections connect to a closed cluster when they try to 
link new neighbors. If there is no closed cluster at the 
moment, we can change the current agent into a closed 
cluster through the whipping process. In this way, the 
original majority non-coordinating agent forms a closed 
cluster by itself. When the majority non-coordinating agent 
tries to connect to the closed cluster, if the agent has more 
free connections than the agents in the closed network, we 
can let the majority non-coordinating agent go through the 
similar process we describe above, except this time we will 
make the agent keep one free connection at last and use that 
connection to connect to the closed cluster. In this way, the 
agent becomes part of the closed cluster. We repeatedly run 
the above steps until there is no more majority non-
coordinating agent left in the network. Then by Theorem 1, 
the network is possible to reach stable clustering state in k 
turns.                                                                                    � 

Theorem 3. Given a pure coordination game, placing no 
constraints on the initial choices of action by all agents, and 
assuming that all agents employ the HWR rule, then the 
following holds: 

• For every ε > 0 there exists a bounded number M 
such that if the system runs for M iterations then 
the probability that a stable clustering state will be 
reached is greater than 1− ε. 

• Once the stable clustering state is reached, it will 
never be left. 

• If a stable clustering state is reached then the all 
agents are guaranteed to receive optimal payoff 
from all connections. 

Proof for Theorem 3. Similar to the proof for Theorem 2, 
we check whether there exists any majority non-
coordinating agent first. If there doesn't exist any, then by 
Theorem 1 we know that there is a probability p = 1/f(n) 
the network will reach a stable clustering state in the next 
turn. If there is at least one majority non-coordinating 
agent, then we repeat the processes described above in 
order to make the agent become a closed cluster or part of 
an existing closed cluster. For each agent, there is a 
probability p = 1/g(n) that this process can happen in h(n) 
turns. We repeat the above process until there is no 
majority non-coordinating agent or the network reaches 
stable clustering state. 

As a result, if the system runs for M = x×[n×g(n) 
×h(n)+f(n)] iterations then the probability that a stable 
clustering state will not be reached is at most e-x. Taking     
x > −log(ε) yields the desired result. 

For the second part of Theorem 3, since there only 
exist connections between agents who play the same 
actions when the stable clustering state is reached, every 
connection will be optimal and no agent will try to break 
any connection. Therefore the stable clustering state will 
never be left. 

For the third part of Theorem 3, as mentioned above, 
since all connections are optimal, all agents are also 
guaranteed to receive optimal payoff from all connections. 

                                                                                      � 

7. PRELIMINARY EXPERIMENT 
To demonstrate the theorems, we have run several 
preliminary experiments and indeed observed the desired 
results. Agents are connected by a random network and 
play the two-action pure coordination game defined in 
Table 1. The time discount c=0.95. The memory limit 
L=10. The experiments are run in a relative small scale 
with only 300 agents. Each result is the average of 30 trials. 
The system is initialized with 50% “cooperate” agents and 
50% “defect” agents. Throughout the trial, we keep track of 
four attributes:  

• Total Neighbor Lost: this is the number of the 
connections broken in each turn.  

• Number of Cooperation: this is the number 
representing the size of cooperation camps.  

• Number of Defect: this is the number representing 
the size of defect camps.  

• Number of Perfect Agents: here we call an agent a 
perfect agent when all of its neighbors play the 
same actions as it does. An agent with no neighbor 
can also be viewed as a perfect agent.  

Figure 1 shows the change of the Total Neighbor Lost 
(y-axis) along time steps (x-axis). 
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