
September 30, 2003 1:20 WSPC/140-IJMPB 02219

International Journal of Modern Physics B
Vol. 17, Nos. 22, 23 & 24 (2003) 4209–4214
c© World Scientific Publishing Company

CONTROLLING CHAOS IN A NEURAL NETWORK

BASED ON THE PHASE SPACE CONSTRAINT

HE GUOGUANG

Department of physics, Zhejiang University, Zhe Da Road 38,

Hangzhou, 310027, China

CAO ZHITONG, CHEN HONGPING and ZHU PING

Institute of Applied physics, Zhejiang University, Zhe Da Road 38,

Hangzhou, 310027, China

Received 8 August 2002

The chaotic neural network constructed with chaotic neurons exhibits very rich dynamic
behaviors and has a nonperiodic associative memory. In the chaotic neural network,
however, it is difficult to distinguish the stored patters from others, because the states of
output of the network are in chaos. In order to apply the nonperiodic associative memory
into information search and pattern identification, etc, it is necessary to control chaos in
this chaotic neural network. In this paper, the phase space constraint method focused on
the chaotic neural network is proposed. By analyzing the orbital of the network in phase
space, we chose a part of states to be disturbed. In this way, the evolutional spaces of
the strange attractors are constrained. The computer simulation proves that the chaos
in the chaotic neural network can be controlled with above method and the network can
converge in one of its stored patterns or their reverses which has the smallest Hamming
distance with the initial state of the network. The work clarifies the application prospect
of the associative dynamics of the chaotic neural network.

1. Introduction

A chaotic neural network constructed with chaotic neurons has exhibit very rich

dynamic behaviors. Compared to the Hopfield neural network, the chaotic neural

network possesses the characters of larger memory content and good tolerance,

etc. Recently, it has received much attention because of its potential application of

the associative dynamics in optimization and information processing, etc.1–3 The

chaotic neural network has shown a nonperiodic associative memory, but its asso-

ciative memory is realized in the chaos dynamic of the network. The outputs of the

network are nonperiodic states which change continuously and can not be stabilized

in one of its stored patterns. One therefore meets difficulties in the application of

the associative memory in information processing. To achieve the information pro-

cessing in the chaotic neural network, we should put the control on the network and

let the network to be stable in an expected pattern. In our previous work, we have
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made an achievement in controlling the chaos of the network by using the pinning

control.5 However, the controlled aim should be assigned prior in above method

so that one still could not apply the associative memory of the chaotic neural net-

work in information processing. In the work, we will propose a new control method

focused on the chaotic neural network, in which the orbital in the phase space is

constrained in a certain region. The computer simulation proves that the method

works well. The chaotic neural network can be stabilized in a stored pattern or its

reverse which has nearest Hamming distance with the initial state while no target

need to be chose in advance.

In the second section we will give a simple description of the chaotic neural

network used as a controlling object. Our new control method will be proposed in

the following section. The computer simulation will be shown in the section too.

The conclusion is in the fourth section.

2. The Chaotic Neural Network Model and its Dynamics

The chaotic neural network model used in the paper is constructed with 100 chaotic

neurons.3,5 The dynamics of the ith chaotic neuron in the chaotic neural network

is described as follows:

xi(t + 1) = f [ηi(t + 1) + ζi(t + 1)] , (1)

ηi(t + 1) = kfηi(t) +

100
∑

j=1

wijxj(t) , (2)

ζi(t + 1) = krζi(t) + αg[xi(t)] + ai , (3)

where ηi(t + 1) and ζi(t + 1) are the internal state variables for feedback input from

the constituent neurons in network and refractoriness, respectively. f(·) and g(·)are

the output function and the refractory function of the neuron, respectively. We

take the output function of the neuron f(x) as Sigmoid function with the steepness

parameter ε, i.e. f(x) = 1/[1 + exp(−x/ε)], refractoriness function as g(x) ≡ x. α

is the refractory scaling parameter. ai(i = 1, 2, 100) are the threshold of neurons.

kf and kr are the decay parameters for the feedback inputs, and the refractoriness,

respectively. wij are synaptic weights to the ith constituent neuron from the jth

constituent neuron, the weights are are defined according to the following symmetric

auto-associative matrix of n binary patterns:

wij =
1

n

n
∑

p=1

(2xp
i − 1)(2xp

j − 1) , (4)

where xp
i is the ith component of the pth binary pattern. In this way, the binary

patterns can be stored as basal memory patterns. We use a picture composed of 10

by 10 matrix to show the stored patterns of the neural network constructed with

100 neurons. A neuron with its outputxi equal to 1, which means the neuron is
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“excited”, is represented by a block “•” while a neuron with its output xi equal

to 0, which means the neuron is “restraining”, is denoted by a dot “·”. Four stored

patterns employed in this paper are shown in Fig. 1.

When the decay parameters of the network are set to certain values, the network

generates non-periodic sequential patterns including the stored ones as its output

sequence. Figure 3 exhibits the sequences of the outputs for the network in which

the parameters are taken as α = 10.0, ai = 2.0, kf = 0.20 and kr = 0.95 and the

initial state is the one as shown in Fig. 2. One can finds that the outputs of the

network exhibits the complex dynamic behave in time and space. The detail can

be found in the Ref. 3. Though the stored patterns are included in the outputs, the

network can not be stabilized in one stored pattern or near it. It is impossible to

carry out the information processing in the network. In order to search the stored

patterns involved in the network, one has to change the chaos dynamics, i.e. put

the control on the chaotic neural network.

(a) (b) (c) (d)

Fig. 1. Four stored patterns.

Fig. 2. Initial state.
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Fig. 3. the sequences of the output neurons.

When the decay parameters of the network are set to certain values, the network

generates non-periodic sequential patterns including the stored ones as its output

sequence. Fig.3 exhibits the sequences of the outputs for the network in which the

parameters are taken as α = 10.0, ai = 2.0, kf = 0.20 and kr = 0.95 and the initial

state is the one as shown in Fig.2. One can finds that the outputs of the network

exhibits the complex dynamic behave in time and space. The detail can be found

in the Ref[3]. Though the stored patterns are included in the outputs, the network

can not be stabilized in one stored pattern or near it. It is impossible to carry out

the information processing in the network. In order to search the stored patterns

involved in the network, one has to change the chaos dynamics, i.e., put the control

on the chaotic neural network.

3. Phase Space Constraint Control Method

Since the pioneer work of Ott, Grebogi and Yorke[6](OGY), much attention has

been paid on study of chaotic control. Several control methods were put forward,

such as chaos synchronization, delayed self-controlling feedback[7], pinning control

and phase space compression[8]. One usually controls chaos of nonlinear systems for

three purposes. The first one is to change a chaotic state into a stable or periodic

state. The second is to let a stable or periodic state become chaotic. The final one

is to transfer from one chaotic state to other. Our work is for the first purpose.

Summing-up of all work in this field, there are two ways to make nonlinear systems

converge in a stable or periodic state from a chaotic state: a feedback control and

a nonfeedback control. In the former case, one chooses an unstable orbital of the

Fig. 3. The sequences of the output neurons.
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3. Phase Space Constraint Control Method

Since the pioneer work of Ott, Grebogi and Yorke (OGY),6 much attention has

been paid on study of chaotic control. Several control methods were put forward,

such as chaos synchronization, delayed self-controlling feedback,7 pinning control

and phase space compression.8 One usually controls chaos of nonlinear systems for

three purposes. The first one is to change a chaotic state into a stable or periodic

state. The second is to let a stable or periodic state become chaotic. The final one

is to transfer from one chaotic state to other. Our work is for the first purpose.

Summing-up of all work in this field, there are two ways to make nonlinear systems

converge in a stable or periodic state from a chaotic state: a feedback control and

a nonfeedback control. In the former case, one chooses an unstable orbital of the

chaotic systems as the goal of the controlling. The parts of outputs are taken as the

feedback controlling variables. The controlling input is very small when system is

well controlled. Our previous pinning control focused on the chaotic neural network

is belong to this case.5 On the contrary, the latter is not related to a certain target.

The controlling aim is achieved by limiting existent space of the chaos. In both

case, the dynamical structure of the controlled system is different from the original

one. The control method to be proposed here is belong to the latter. We change

the dynamical structure of the chaotic neural network by constraining the existent

area of its states. The chaotic motion can be controlled.

For the chaotic system described by Eqs. (1)–(3), the feedback input variable ηi

and the refractoriness variable ζi constitute its phase space. There are three ways to

constrain the phase space of the system. Firstly one can only condense the feedback

input variable ηi. Secondly only the refractoriness variable ζi is compressed. Finally

both ηi and ζi are controlled on certain area. Our simulation has proved that the

chaotic system can quick converge in a stable state when the constraint is put on

ζi only. Considering only the constraint of ζi, the phase space constraint focused

on the chaotic neural network is described with the following equation:

ζi(t + 1) =















ζi(t + 1) ζimin < ζi(t + 1) < ζimax

ζimax ζi(t + 1) ≥ ζimax

ζimin ζi(t + 1) ≤ ζimin

. (5)

Equations (1)–(3) together with above equation constitute the dynamic model of

the controlled chaotic neural network.

The controlled chaotic neural network can be stabilized in one of the stored

patterns when suitable ζmin and ζmax are chosen. We show the sequences of the

outputs for the controlled network with ζmin = −5.0 and ζmax = 5.0 in Fig. 4.

One can find that the controlled network converges in a stable state after a few

steps. The chaotic neural network changes from non-periodic chaotic dynamics to

a stable orbital when its phase space is constrained. In our simulation, the network

start from the state shown in Fig. 2 which is the stored pattern (c) with some

errors. The stable state of the controlled network is the stored pattern (c). Further
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simulation has proved that the network can converge in the stored pattern (c) when

ζmax is chosen less than 11.0 and ζmin larger than −7.4. The values ζmin and ζmax

are chosen in terms of the simulation experiments,which depended on the neural

network model and the selected stored patterns.

When we chose some states which have a big Hamming distance with the four

stored patterns as the initial state, the controlled network also quick converge in

one of its stored pattern. The initial states and the corresponding stable outputs of

the controlled network are given in Fig. 5. We list the Hamming distance between

the initial states and the four stored patterns or their reverse patterns in Fig. 5

too. One can observe from Fig. 5 that starting from any initial state the controlled

network can be stabilized in a stored pattern or its reverses which has the smallest

Hamming distance with the initial state. Both the previous pinning control and

the present constraint control are successful in controlling the chaos of the chaotic

neural network. But the controlled aim in former one should be chose in advance,

and the controlled network is employed lesser in practice. In the latter, no target

needs to be set prior. The associative memory of the chaotic neural network can

therefore be applied in the information processing by using the constraint control.
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Fig. 4. The sequences of the outputs of neurons under control.

Fig. 5. The output of the network under control in difference initial states.
∗ The numbers in the Fig. are the Hamming distance between the initial state

and the stored or its reverse pattern

Hamming distance with the initial state. Both the previous pinning control and

the present constraint control are successful in controlling the chaos of the chaotic

neural network. But the controlled aim in former one should be chose in advance,

and the controlled network is employed lesser in practice. In the latter, no target

needs to be set prior. The associative memory of the chaotic neural network can

therefore be applied in the information processing by using the constraint control .

4. Conclusion

Though the chaotic neural network has large memory content and good tolerance, it

is difficult to apply the network in optimization and information processing because

of its chaotic motion. In order to exploit its potential application we must control

the chaotic orbital of the network. It is well known that for nonlinear system the

chaos is caused when its orbital is divergent or spread in one direction or ring. We

have proposed a chaos control method of constraining phase space focused on the

chaotic neural network. Actually, the divergence and spread of an orbital is limited

Fig. 4. The sequences of the outputs of neurons under control.

Fig. 5. The output of the network under control in difference initial states. The numbers in the
figure are the Hamming distance between the initial state and the stored or its reverse pattern.
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4. Conclusion

Though the chaotic neural network has large memory content and good tolerance, it

is difficult to apply the network in optimization and information processing because

of its chaotic motion. In order to exploit its potential application we must control

the chaotic orbital of the network. It is well known that for nonlinear system the

chaos is caused when its orbital is divergent or spread in one direction or ring. We

have proposed a chaos control method of constraining phase space focused on the

chaotic neural network. Actually, the divergence and spread of an orbital is limited

in the method and the chaos is therefore controlled efficiently. The method is easier

to be applied and its physical meaning is clearer compared to OGY method where

one has to collect the characters about the Poincare map about an chaotic system.

The controlled network can reach stability quickly in our method while it take

much steps in some feedback control method. In addition, the control condition is

wide in our method. When ζmax and ζmin are set in a broad area, the controlled

network can be stabilized in one of its stored pattern. The computer simulation has

proved that by employing our proposed constraint method the chaotic motion of

the chaotic neural network can be controlled quickly and high efficiently and the

network converge in one of its stored patterns or their reverse which has shortest

Hamming distance with the initial state of the network. Our work point out a way

to apply the associative dynamics of the chaotic neural network in information

processing and optimization, etc.
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