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Abstract

Since their debut in 1987, snakes (active contour models) have
become a standard image analysis technique with several variants
now in common use. We present a portable, reusable, software
package called “United Snakes”. The package unites the most
popular snake variants, including finite difference, B-spline, and
Hermite polynomial snakes within the mathematical framework of
a general finite element formulation with a choice of shape func-
tions. The package furthermore incorporates a recently proposed
snake-like technique known as “livewire”. We integrate snakes
and livewire by introducing an effective method for imposing hard
constraints on snakes. Our experiments demonstrate that snakes
and livewire have complementary strengths and that their union
offers a more powerful tool for interactive image analysis, espe-
cially for medical imaging applications. United Snakes is imple-
mented in Java as a JavaBean so that it can easily be integrated in
end-user application systems.

1. Introduction

Snakes (active contour models) quickly gained popularity fol-
lowing their debut in 1987 [7]. They have proven especially useful
in medical image analysis [10, 14] and for tracking moving objects
in video [17, 3], among other applications. Variants such as finite
element snakes [4], B-snakes [11, 3], and Fourier snakes [15], have
been proposed in an effort to improve aspects of the original finite
difference implementation (e.g., to decrease initialization sensitiv-
ity, increase robustness against noise, improve selectivity for cer-
tain classes of objects, etc.). No formulation has yet emerged as
a “gold standard”. Rather, the variants seem well-suited to differ-
ent applications with particular image modalities and processing
scenarios.

Given the confusing array of choices for the user, there is a need
for a portable and reusable snakes implementation which unites
the best features of the variants while maintaining the simplicity
and elegance of the original formulation. To this end, our first con-
tribution in this paper is to unify the most important snakes vari-
ants, including finite difference, B-spline, and Hermite polynomial
snakes, in a comprehensive finite element framework where a par-
ticular type of snake can be derived by simply changing the finite

element shape functions.
A technique, known as “livewire” or “intelligent scissors”

[12, 2, 13, 5], has recently emerged as an effective interactive
boundary tracing tool. Based on dynamic programming [5] or Di-
jkstra’s graph search algorithm [13], it was originally developed as
an interactive 2D extension to earlier optimal boundary tracking
methods. Livewire features several similarities with snakes, but it
is generally considered in the literature as a competing technique.
Our second contribution in this paper is the idea that livewire and
snakes are in fact complementary techniques that can advanta-
geously be combined via a simple yet effective method to impose
hard constraints on snakes.

We call our software implementationUnited Snakes, because it
unites several snake variants with livewire to offer a general pur-
pose tool for interactive image segmentation that provides more
flexible control while reducing user interactions. We have imple-
mented United Snakes in Java as a JavaBean (reusable Java soft-
ware component), so that it may easily be integrated into any end-
user application system.

We describe our finite element framework in Section 2 and
show how several snake variants can be integrated within it. Sec-
tion 3 describes the livewire technique. We justify the idea of
combining snakes with livewire in Section 4 and develop a hard
constraint mechanism in Section 5 that makes this combination
possible. Section 6 presents results utilizing the United Snakes
system in a medical image segmentation scenario. We conclude in
Section 7 and propose future extensions of United Snakes.

2. Finite Element Unification of Snakes

A snake is a time-varying parametric contourv(s; t) =
(x(s; t); y(s; t))> in the image plane(x; y) 2 <2, wherex andy
are coordinate functions of the parameters 2 [0; L] andt is time.
The shape of the contour subject to an imageI(x; y) is dictated by
an energy functionalE(v) = S(v) + P(v). The first term is the
internal deformation energy defined as

S(v) = 1
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where�(s) controls the “tension” of the contour and�(s) regu-
lates its “rigidity”. The second term is an external image energy



P(v) =
Z L

0

PI(v) ds; (2)

which couples the snake to the image via a scalar potential func-
tionPI (x; y) typically computed fromI(x; y) through image pro-
cessing. The Lagrange equations of motion for a dynamic snake
are
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The first two terms represent inertial forces due to the mass den-
sity �(s) and damping forces due to the dissipation density
(s).
The next two terms represent the internal stretching and bending
deformation forces. On the right hand side are the external forces
q(v) = �rPI(v) + f , where the image forces are the nega-
tive gradient of the image potential function. The user may guide
the dynamic snake via time-varying interaction forcesf(s; t) (usu-
ally applied through a mouse), driving the snake out of one energy
minimizing equilibrium and into another. Viewed as a dynamical
system, the snake may also be used to track moving objects in a
time-varying (video) imageI(x; y; t).

2.1. Finite Element Formulation

In a finite element formulation, the parametric domain0 � s �
L is partitioned into finite sub-domains, so that the snake contour
is divided into “snake elements”. Each elemente is represented
geometrically with shape functionsN(s) involving shape parame-
tersue(t). The shape parameters of all the elements are collected
together into the snake parameter vectoru(t). This leads to a dis-
crete form of the equations of motion (3) as a system of second
order ordinary differential equations inu(t):

M�u+C _u+Ku = g; (4)

whereM is the mass matrix,C is the damping matrix,K is the
stiffness matrix, andg is the external force vector. Appendix A
details the finite element formulation.

The stiffness matrixK is assembled from element stiffness
sub-matricesKe which depend on the shape functionsN (the ma-
tricesM,C, and the vector of nodal external forcesg are assem-
bled in a similar way and also depend onN). The shape functions
generate different stiffness matrices and, in turn, yield different
snake behaviors suitable for different tasks. For example, snakes
that use B-spline shape functions are typically characterized by a
low number of degrees of freedom, typically use polynomial basis
functions of degree 2 or higher, and are inherently very smooth.
Therefore, these “B-snakes” [11, 3] can be effective in segmen-
tation or tracking tasks involving noisy images where the target
object boundaries may exhibit significant gaps in the images. On
the other hand, object boundaries with many fine details or rapid
curvature variations may best be segmented by a snake that uses
simpler shape functions and more degrees of freedom, such as a
finite difference snake [7]. The unification of these different shape
functions in a single framework enhances the range of object mod-
eling capabilities.

The following sections address Hermitian shape functions, B-
spline shape functions, and “shape functions” for finite difference

snakes. Since the two coordinate functionsx(s) andy(s) of the
snakev(s) are independent, we shall discuss the shape functions
in terms of only one componentx(s); the shape functions fory(s)
assume an identical form.

2.2. Hermitian Shape Functions

In the case of Hermitian snakes,x(s) (0 � s � l, wherel is
the element parametric length) is approximated with a cubic poly-
nomial function, parameterized by positionx and slope� at the
endpointss = 0 and s = l of an element. We can show that
x(s) = Nhu

ei , whereuei = [xi �i xi+1 �i+1]
> are the shape

parameters of elementei andNh = sH are the Hermitian shape
functions, withs = [1 s s2 s3] and theHermitian shape matrix

H =

2
64

1 0 0 0
0 1 0 0

�3=l2 �2=l 3=l2 �1=l
2=l3 1=l2 �2=l3 1=l2

3
75 : (5)

It is reasonable to assume that the tension function�(s) and rigid-
ity function�(s) are constant within the element. Hence, the stiff-
ness matrices associated with the tension and rigidity components
for elementei are respectively

K
ei
� =

�i
30l

2
64

36 3l �36 3l
3l 4l2 �3l �l2

�36 �3l 36 �3l
3l �l2 �3l 4l2

3
75 ; (6)

K
ei
� =

�i
l3

2
64

12 6l �12 6l
6l 4l2 �6l 2l2

�12 �6l 12 �6l
6l 2l2 �6l 4l2

3
75 : (7)

An analytic form of the external forcesq(v) in (3) is generally
not available. Therefore, Gauss-Legendre quadrature may be em-
ployed to approximate the value of the integral for the element
external force vectorFe. For elementei we have

F
ei
x =

Z l

0

Nh
>
qx(v(s)) ds

= l
X
j

�jNh(�j)
>
qx(v(�j)); (8)

where the subscriptx indicates the association with coordinate
function x(s), and where�j and �j are thejth Gaussian inte-
gration point and its corresponding weighting coefficient, respec-
tively. Feiy is derived in a similar fashion.

To make the global matrix assembly process identical for all
shape functions, we introduceassembling matrices. Suppose that
we have a snake withn elements andN nodes (N = n if the
snake is closed andN = n + 1 if it is open). For theith element
ei of the snake (0 � i � n � 1), the assembling matrices are
G

ei
� = G

ei
� = G

ei
F = Gei , where

(Gei )jk =

�
1 if (j + di) mod (dN) = k
0 otherwise,

(9)



are(2 � d) � (d � N) matrices, withd the number of degrees of
freedom of each node in an element (hered = 2). Hence,K�,
K� andF may be assembled as follows:

K� =

n�1X
i=0

(Gei
� )>Kei

� (Gei
� ); (10)

K� =

n�1X
i=0

(Gei
� )>Kei

� (Gei
� ); (11)

F =

n�1X
i=0

(Gei
F )>Fei : (12)

Only the shape matrix and the assembling matrices are deter-
mined by specific polynomial shape functions. Therefore, in the
following section we shall focus only on the derivation of the shape
matrix and the assembling matrices for B-spline shape functions,
and briefly mention other kinds of shape functions which are suit-
able for snakes.

2.3. B-Spline Shape Functions

For B-spline shape functions, thex(s) coordinate function of
v(s) is constructed as a weighted sum ofNB basis functions
Bn(s), n = 0; :::; NB � 1 as follows:x(s) = B(s)>Qx, where
B(s) = [B0(s); :::;BNB�1(s)]

> ;Qx = [x0; :::; xNB�1]
> and

xi are the weights applied to the respective basis functionsBn(s).
A B-spline span serves as an element in our finite element for-

mulation (hence “span” and “element” are interchangeable terms).
Consequently, we shall determine the nodal variables (i.e. snake
shape parameters), the shape matrix, and the assembling matrix
associated with a span. When all spans are unit length, the knot
multiplicities at the breakpoints arem0; :::; mL (L is the num-
ber of spans and the total number of knotsNB =

PL

i=0
mi),

the knot valueski are determined byki = l, such that0 �
(i�Pl

j=0
mi) < ml+1. Furthermore, thenth polynomialB�

n;d

in span� can be computed as follows:

B�
n;1(s) =

�
1 if kn � � < kn+1
0 otherwise

(13)

B
�
n;d(s) =

(s+ � � kn)B
�
n;d�1(s)

kn+d�1 � kn
+
(kn+d � s� �)B�

n+1;d�1(s)

kn+d � kn+1
(14)

For span �, the index b� for the first basis function
whose support includes the span can be determined as
b� = [(

P�

i=0
mi) � d] mod NB . Therefore, I =

[b�; (b� + 1) mod NB ; :::; (b� + d� 1) mod NB ] are the in-
dices of the nodal variables and also those of thed polynomials
B�
n;d.1 Now, the shape matrix for span� can be constructed by

collecting the coefficients of each of thed polynomialsB�
n;d as

its columns. For example, the shape matrix of a regular cubic B-

1In an open B-spline snake,d knots are introduced at the two ends. As
a result, the index for the first basis function in the first span is zero (i.e.
b0 = 0) and the index of the last basis function in the last span isNB � 1.
For a closed B-spline snake, the index needs to be wrapped properly.

spline is

H =

2
64

1=6 2=3 1=6 0
�1=2 0 1=2 0
1=2 �1 1=2 0

�1=6 1=2 �1=2 1=6

3
75 (15)

and the element stiffness matrices for elementei are

K
ei
� = �i

2
64

0:0500 0:0583 �0:1000 �0:0083
0:0583 0:2833 �0:2417 �0:1000

�0:1000 �0:2417 0:2833 0:0583
�0:0083 �0:1000 0:0583 0:0500

3
75 ;

(16)

K
ei
� = �i

2
64

0:3333 �0:5000 0 0:1667
�0:5000 1:0000 �0:5000 0

0 �0:5000 1:0000 �0:5000
0:1667 0 �0:5000 0:3333

3
75 :

(17)
The assembling matrixGei can be defined as

(Gei)jk =

�
1 if (j + b�) mod NB = k
0 otherwise.

(18)

In a similar fashion as above, we may construct other kinds
of shape functions; for instance, NURBS shape functions [16],
Catmull-Rom shape functions, B´ezier shape functions and Fourier
shape functions. The latter are global shape functions over the
whole snake [15], thus the associated assembling matrix becomes
an identity matrix.

2.4. Finite Difference Snakes in Element Form

Despite the differences between finite element snakes and fi-
nite difference snakes, the finite difference snakes can also be con-
structed in the finite element fashion, using the Dirac delta func-
tion �(s) as the shape function. The construction primitives are as
follows: For a snake withn nodes,Kei

� is a2 � 2 matrix and its
corresponding assembling matrixGei

� is a2�n matrix as follows:

K
ei
� = �i

�
�1 1

�> � �1 1
�

= �i

�
1 �1

�1 1

�
; (19)

(Gei
� )jk =

�
1 if (j + i) mod n = k
0 otherwise,

(20)

where0 � i � n � 2 for an open snake and0 � i � n � 1 for
a closed snake.Kei

� is a3 � 3 matrix and with it is associated a
3� n assembling matrixGei

� as follows:

K
ei
� = �i

�
1 �2 1

�> �
1 �2 1

�
= �i

"
1 �2 1

�2 4 �2
1 �2 1

#
; (21)

�
G

ei
�

�
jk

=

�
1 if (j + i) mod n = k
0 otherwise,

(22)



where0 � i � n� 3 for an open snake and0 � i � n� 1 for a
closed snake. The1 � n assembling matrixGei

F
is defined as

(Gei
F
)
0;k

=

�
1 if i = k
0 otherwise,

(23)

where0 � i � n � 1 for both open and closed snakes.
With the above formulation of finite difference snakes, we have

a uniform finite element construction for a variety of snake rep-
resentations, which leads to a relatively straightforward United
Snakes implementation in an object-oriented programming lan-
guage, such as Java.

3. Livewire

Livewire is a recently proposed interactive boundary tracing
technique [12, 2, 13, 5]. It has two essential components, a local
cost function that assigns lower cost to image features of inter-
est, such as edges, and an expansion process that forms optimal
boundaries for objects of interest based on the cost function and
seed points provided interactively by the user.

3.1. Trace Formation

Boundary finding in livewire can be formulated as a directed
graph search for an optimal (minimum cost) path using Dijkstra’s
algorithm. First, nodes in the graph are initialized with the local
costs as described in the next section. Once the user selects a seed
point, it will be used as the starting point for a recursive expansion
process. In the expansion process, the local cost at the seed point
is summed into its neighboring nodes. The neighboring node with
the minimum cumulative cost is then further expanded and the pro-
cess produces a dynamic “wavefront”. The wavefront expands in
order of minimum cumulative cost. Consequently, it propagates
preferentially in directions of highest interest (i.e. along edges).
This process requires onlyn iterations over the wavefront for paths
of lengthn. Furthermore, since the wavefront is maintained in a
sorted list, the expansion happens at interactive rates.

Therefore, for any dynamically selected goal node (i.e., the free
point) within the wavefront, the optimal path back to the seed point
which forms a livewire (trace) can be displayed in real time. When
the cursor (the free point) moves, the old livewire trace is erased
and a new one computed and displayed in real time. The expan-
sion process aims to compute an optimal path from a selected seed
point to everyother point in the image and lets the user choose
among paths interactively, based on the current cursor position.

Livewire may be implemented very efficiently in multi-
threaded programming languages, such as Java, because the ex-
pansion process and the user interface can execute in separate,
parallel threads. Since the free point is generally near the target
object boundary, the expansion process will most likely have al-
ready advanced beyond that point and the livewire trace can be
displayed immediately. That is, the livewire trace can typically be
displayed before the expansion process has finished sweeping over
the entire image.

3.2. Local Cost Function

There are different ways to define the local cost function. We
follow the definition given by Mortensen and Barrett [12]. The
local costl(p;q) on the directed link fromp to a neighboring
pixel q is defined as a weighted sum of three local component
costs created from various edge features:

l(p;q) = !Z fZ(q) + !DfD(p;q) + !GfG(q); (24)

wherefZ(q) is the Laplacian zero-crossing function atq, fD(p;q)
is the gradient direction fromp to q, fG(q) is the gradient mag-
nitude atq, and!Z ; !D and!G are their corresponding weights.
The Laplacian zero-crossing functionfZ(q) is a binary function
defined as

fZ(q) =

�
0 if IL(q) = 0
1 otherwise,

(25)

whereIL(q) is the Laplacian of the imageI at pixelq. The gra-
dient magnitude serves to establish a direct connection between
edge strength and cost. The functionfG is defined as an inverse
linear ramp function of the gradient magnitudeG

fG =
max(G0)�G0

max(G0)
= 1� G0

max(G0)
(26)

whereG0 = G�min(G). When calculatingl(p;q), the function
fG(q) is further scaled by 1 ifq is a diagonal neighbor top and
by 1=

p
2 if q is a horizontal or vertical neighbor. The gradient di-

rectionfD(p;q) adds a smoothness constraint to the boundary by
associating a higher cost for sharp changes in boundary direction.
WithD(p) defined as the unit vector normal to the gradient direc-
tion at pixelp (i.e.,D(p) = [Iy(p);�Ix(p)]), the formulation of
the gradient direction cost is

fD(p;q) =
2

3�
farccos[dp(p;q)] + arccos[dq(p;q)]g ; (27)

wheredp(p;q) = D(p)�L(p;q) anddq(p;q) = L(p;q)�D(q)
are vector dot products and

L(p;q) =
1

jjp� qjj

�
q� p if D(p) � (q� p) � 0
p� q if D(p) � (q� p) < 0

(28)
is the normalized bidirectional link or unit edge vector between
pixelsp andq.

4. Combining Snakes and Livewire

With livewire, the user has no control of traces between seed
points. When the shape of the object boundary is complex, or
when it is near other strong but uninteresting object boundaries,
many seed points are needed in order to generate an acceptable re-
sult. Furthermore, when a section of the desired object boundary
has a weak edge relative to a nearby strong edge, the livewire snaps
to the strong edge rather than the desired weaker boundary. In or-
der to mitigate this problem, Mortensen and Barrett proposedon-
the-fly training[13]. However, this method relies on the assump-
tion that the edge property is relatively consistent along the ob-
ject boundary. For example, in the lung image of Figure 1(a), the
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Figure 1. Delineation of the lung (a) and heart (b) in
X-ray fluoroscopy images using livewire (seed points
are shown). (c) Delination with Hermite snake con-
structed from livewire trace using first seed point as
a hard constraint. (d) Result using B-snake (and con-
trol polygon) constructed from livewire trace.

livewire snaps to the strong edges of the elliptical viewport rather
than the desired lung boundary. In this case, on-the-fly training
is ineffective since the edge property of the lung boundary varies
considerably over it extent.

Livewire is fundamentally image-based. Thus, it cannot effec-
tively bridge gaps where the desired object boundaries are missing,
and the smoothness of the traces can hardly be guaranteed. For in-
stance, in Figure 1(b), part of the livewire trace from seed point 1
to seed point 2 is a straight line where the cardiac boundary is
missing. The livewire technique does not generate an acceptable
cardiac boundary from seed point 3 to seed point 1, and we have
manually drawn a rough curve between the points.

Therefore, it is desirable to allow the user to exercise control
over the livewire traces between seed points, impose smoothness
on livewire traces, and bridge gaps along object boundaries. This
is what snakes are very good at doing. Snakes adhere to edges
with sub-pixel accuracy and they may also be adjusted interac-
tively as parametric curves with intuitively familiar physical be-
haviors. Furthermore, snakes have the power to track moving ob-
jects, while livewire does not.

In most cases, however, livewire can quickly give much better
results than casual manual tracing. Hence, the resulting livewire
boundary can serve to initialize a snake. The livewire seed points
reflect the user’s prior knowledge of the object boundary. They can
therefore serve as either hard or soft point constraints for the snake,
depending on the user’s confidence in the accuracies of these seed
points.

Because a livewire-traced initial object boundary is more ac-
curate than a hand-drawn boundary, and with the further incorpo-

(a) (b) (c)

Figure 2. Performance of United Snakes demon-
strated using a noisy synthetic image. (a) A livewire
is sensitive to noise (the required seed points are
shown). (b) The United Snake is robust against noise.
(c) The segmented boundary accurately conforms to
the ideal boundary.

ration of the seed points as snake constraints, the snake will very
quickly lock onto the desired object boundary. If necessary, the
user may correct mistakes inherited from the livewire-generated
boundary by applying mouse-controlled spring forces to the snake.
Because the user still has the opportunity to correct the mistakes
on the traces as the snake is deforming, the number of seed points
needed by livewire to generate the object boundary can be further
reduced. Consequently, a coarse object boundary can be generated
very quickly using livewire.

Other hard or soft constraints may be added during the snake
deformation process as well. Because constrained values may be
changed dynamically, the user may adjust the seed points to fur-
ther refine object boundaries as the snake deforms. In the lung seg-
mentation example, a Hermite snake constructed from the livewire
traces with the first seed as a hard constraint can firmly adhere to
the lung apex, and it can easily be pulled out of the strong edge
and lock onto the lung boundary as shown in Figure 1(c) without
on-the-fly training. For the heart, a least squares approximation to
the initial livewire curve with a 5-knot cubic B-spline is used to
initialize a B-snake. A hard constraint may be further imposed on
the control polygon node 3 to effectively bridge the gap along the
heart boundary. The result is shown in Figure 1(d) after only a few
iterations. The user may move the control polygon node 3 to refine
that segment of the heart boundary if necessary.

As further evidence that United Snakes improves upon the ro-
bustness and accuracy of its component techniques, Fig. 2 shows a
synthetic image of a known curve degraded by strong Gaussian
white noise (variance 0.25). Given its image-based nature, the
livewire is sensitive to noise as shown in Fig. 2(a). A snake ini-
tialized with the livewire gives a better result (Fig. 2(b)). Fig. 2(c)
shows that the United Snakes result is very close to the boundary
in the ideal image, despite the strong noise. This performance is
a consequence of the imposed hard constraints, without which the
snake would slip away from high curvature points.

5. Hard Constraints

The combination of snakes and livewire relies on an efficient
constraint mechanism. A constraint on a snake may be either
soft or hard. Hard constraints generally compel the snake to pass
through certain positions or take certain shapes (generic hard con-
straints are discussed in [6]), while soft constraints merely encour-



age a snake to do so. Two kinds of soft constraints, springs and
volcanos, were described in the original snakes paper [7] and they
are incorporated into our finite element formulation. Hard con-
straints have been used to prevent snake nodes from clustering in
dynamic programming snakes [1]. In this section, we propose a
convenient mechanism, calledpins, as a simple yet effective way
to impose hard constraints on snakes for the integration of snakes
and livewire.

Suppose that we wish to guarantee that the snake nodei sticks
at position(xci ; y

c
i ) in the Hermitian parameterization. Recall that

in the Hermitian parameterization, the polynomial shape of each
element is parameterized by the position and slope ofx(s) and
y(s) at the two nodes (position and slope variables occupy alter-
nating positions in the nodal variable vectoru). Therefore, the
snake stiffness matrixK may be updated with

K2�i;j =

�
1 if 2i = j
0 otherwise

(29)

where0 � j � 2(N � 1) andN is the number of snake nodes,
and the system force vectorF is updated as

F
x
2�i = xci ; F

y
2�i = yci ; (30)

wherex andy indicate coordinate functionx(s) andy(s), respec-
tively. It is then guaranteed that the snake nodei is always at
position(xci ; y

c
i ).

A drawback of this simple technique, however, is that the up-
dated system stiffness matrix is no longer symmetric. Conse-
quently, we are unable to economically save the stiffness matrix
using skyline storage, nor factorize it inLDL> form (see Ap-
pendix A). Nevertheless, since the position of nodei is given,
a constant force may be derived from the stiffness matrix for each
degree of freedom and subtracted from its corresponding position
in the system force vector so that we can restore the symmetry
of the stiffness matrix while keeping the system in balance. That
is, the system force vectorF and the stiffness matrix are further
updated with

F
x
j = F

x
j �Kj;2i � xci if j 6= 2i (31)

F
y
j = F

y
j �Kj;2i � yci if j 6= 2i (32)

Kj;2i =

�
1 if 2i = j
0 otherwise

(33)

We can constrain the slope in the same way. If we constrain
two node variables of an element in both position and slope, this
element will be frozen. Its two neighboring elements will also
be influenced by the constraint. The constraints on a B-snake are
imposed on the nodes of its control polygon. Imposing hard con-
straints in this manner also lessens computational cost, in terms
of both memory and time, since the number of entries in the
skyline storage of the stiffness matrix is reduced. Consequently,
theLDL T factorization and forward/backward substitutions can be
performed more efficiently (see Appendix A). It is also possible
to apply more general constraints to any point on the snake as is
described in [16].

In the formulation above, the updated stiffness matrix only in-
dicates which degrees of freedom of the snake are constrained, it

does not contain any constraint values. These are recorded in the
system force vector. As a result, the constraint values may be up-
dated dynamically during snake deformation. In other words, the
user has the ability to move the constraint points around the im-
age plane to refine the object boundary as the snake is deforming.
This property is very useful when integrating snakes with livewire.
While a snake is deforming, additional hard constraints may be im-
posed on the snake to restrict its deformation. Because these con-
straints are unknown before the snake is constructed, they may be
incorporated on-the-fly using reaction forces on the system force
vector without changing the stiffness matrix. However, small time
steps are required to ensure the stability of the snake. In our im-
plementation, we create a new snake from the current snake plus
the hard constraints, since theLDL> factorization is fast.

6. Applying United Snakes

In the United Snakes system, the user begins an image segmen-
tation task using a livewire. An initial seed point is placed near the
boundary of the object of interest. As the cursor, or free point, is
moved around, the livewire or trace, is interactively displayed from
the seed point to the free point. If the displayed trace is acceptable,
the free point is collected as an additional seed point. For exam-
ple, we can roughly capture a cell boundary in Figure 3(a) with
just three seeds.

The livewire tends to stick to the object boundary using the
seed points as a guide. The trace between the two adjacent seeds
is frozen. The user has no further control over these traces other
than backtracking. In order to generate a more accurate result in
the area indicated by a rectangle, more seed points may be placed
as in Figure 3(b). Although the livewire boundary is somewhat
jagged and exhibits small errors, it is in general as accurate as
manual tracing, but more efficient and reproducible.

Next we construct a snake using the livewire-generated bound-
ary to initialize the snake and the seed points to constrain it. The
user may select a shape function for the snake which is suitable
for the object boundary. In our cell segmentation example, if the
livewire result with five seed points is used to construct a finite
difference snake, it is able to tolerate the livewire errors and very
quickly and accurately lock onto the cell boundary (Figure 3(c))
without any need for further user interaction (the asterisks indi-
cate the pins—imposed hard constraints). Using the livewire re-
sult with three seed points, the snake becomes “stuck” in the prob-
lematic area (Figure 3(d)) due to the livewire-generated boundary
errors. However, this situation can be easily remedied using the
mouse spring (Fig. 3(e)). Furthermore, as the snake is deforming,
the hard constraints may be adjusted to refine the snake boundary.
In Fig. 3(f) for example, constraint point 2 is moved to illustrate
this snake boundary adjustment capability. By contrast, it is not
nearly as easy to adjust a seed point in the livewire algorithm.

This form of livewire-snake integration is referred to asstatic
integration—once the livewire result is used to initialize a snake,
the segmentation process continues using only the constrained,
user-controlled snake. The user may also set the United Snakes
system to a moredynamicintegration “mode”: Once the livewire
trace between the last seed point and the free point is formed, a cor-
responding open snake with constraints at the seed point and the
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Figure 3. Using United Snakes to segment neuronal
EM images (see text).

free point is constructed and automatically activated. When the
free point is collected as a seed point, this open snake is merged
with the snake constructed from the previous livewire traces (if
they exist). All seed points are automatically applied as con-
straints. Fig. 3(g–h) illustrates this process, where “+” indicates
the current free point. Since the snake is automatically set in mo-
tion, the user may use the mouse spring to correct it in any prob-
lematic areas along the snake (Fig. 3(h)).

In summary, the information from livewire including the user
guidance and expert prior knowledge is fully utilized by the snake;
the snake very quickly locks onto the image features of interest
with reasonable tolerance to mistakes in the livewire traces. Thus,
the integration of snakes and livewire creates an efficient, repro-
ducible, accurate, semiautomatic segmentation tool which com-
bines the power and flexibility of both techniques. We have ap-
plied United Snakes to several different medical image analysis
projects in [8], demonstrating the generality, accuracy, robustness,

and ease of use of the tool.

7. Conclusion

We have unified several snake variants in a finite element
framework, argued that snakes and livewire are complementary
to one another, and through an effective hard constraint mech-
anism, demonstrated that a snakes/livewire union enhances the
power of snakes for interactive image segmentation. Furthermore,
to meet the demand for a portable, reusable, comprehensive snake
software package, we have implemented our work as a JavaBean
which may easily be integrated into application systems.

We the creators of the United Snakes, in order to form a
more perfect union of snake technologies, plan to incorporate
within our framework, affine cell image decomposition methods
for snake topological adaptability [9], advanced snake motion
tracking mechanisms [17, 3], and other snake techniques. We an-
ticipate that such efforts will further enhance the effectiveness of
this image segmentation tool.
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A. Finite Element Snakes Formulation

To develop the finite element formulation and the correspond-
ing matrix equations, we apply Galerkin’s method to the Euler-
Lagrange equation
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which expresses the necessary condition for the snake at equilib-
rium. The average weighted residual is
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wherew(s) is an arbitrary test function. By performing integra-
tions by parts once for the first term and twice for the second term
of equation (35), we arrive at the weak formulation of the snake
model:Z
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are the boundary conditions at the two boundary points,s = 0 and
s = L. We approximatev as

v = Nu; (38)

whereN = [N1(s);N2(s); :::; Nn(s)] are the shape functions,
u = [u1; u2; :::; un]

> then nodal variables (degrees of freedom)
of the snake model. In Galerkin’s method, the arbitrary test func-
tionw takes the form

w = Nc; (39)

whereN are the same shape functions as in equation (38), andc

is an arbitrary vector. Asw is a scalar, we have

w = w> = c
>
N

>: (40)

Substituting (38) through (40) into (36) yields

Ku� F+P = 0; (41)

whereK is the stiffness matrix,F the force vector, andP the
boundary forces, defined as follows:
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Equation (41) gives the finite element formulation for the whole
snake. To achieve acceptable accuracy in the finite element ap-
proximation, the integration domain should be discretized into a
number of small subdomains resulting in the finite element mesh.
That is, the snake contour is divided into small segments (ele-
ments), each of which can still be considered a snake. Applying
equation (41) to an element, we haveKeue � Fe + Pe = 0,
whereKe is the element stiffness matrix,Fe the element force
vector, andPe the element boundary forces applied to the bound-
ary points of the element. Assembling the element matrices results
in the system matrix equation

Ku = F; (47)

whereF is the generalized system force vector.
To solve the discrete form of the equations of motion (4),

we replace the time derivatives ofu with the backward fi-
nite differences�u = (u(t+�t) � 2u(t) + u(t��t))=(�t)2; _u =
(u(t+�t) � u(t))=�t, where the superscripts denote the quantity
evaluated at the time given in the parentheses and the time step is
�t. This yields the update formula

Au
(t+�t) = bu

(t) + cu(t��t); (48)

whereA =M=(�t)2+C=�t+K andb = 2M=(�t)2+C=�t
andc = �M=(�t)2: BecauseA is symmetric and banded, it can
be economically saved in skyline storage, and efficiently factor-
ized uniquely into the formA = LDL>, whereL is a lower trian-
gular matrix andD is a diagonal matrix. The solutionu(t+�t) to

equation (48) is obtained by first solvingLs = bu(t) + cu(t��t)

with forward substitution, thenL>u = D�1swith backward sub-
stitution. SinceA is constant, only a single factorization is nec-
essary. Therefore, at each time step only the forward/backward
substitutions are performed to integrate the snake forward through
time.
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