
Finding Reusable Data Structures

Guoqing Xu

University of California, Irvine

guoqingx@ics.uci.edu

Abstract

A big source of run-time performance problems in large-

scale, object-oriented applications is the frequent creation of

data structures (by the same allocation site) whose lifetimes

are disjoint, and whose shapes and data content are always

the same. Constructing these data structures and computing

the same data values many times is expensive; significant

performance improvements can be achieved by reusing their

instances, shapes, and/or data values rather than reconstruct-

ing them. This paper presents a run-time technique that can

be used to help programmers find allocation sites that create

such data structures to improve performance. At the heart

of the technique are three reusability definitions and novel

summarization approaches that compute summaries for data

structures based on these definitions. The computed sum-

maries are used subsequently to find data structures that have

disjoint lifetimes, and/or that have the same shapes and con-

tent. We have implemented this technique in the Jikes RVM

and performed extensive studies on large-scale, real-world

programs. We describe our experience using six case stud-

ies, in which we have achieved large performance gains by

fixing problems reported by our tool.

Categories and Subject Descriptors D.3.4 [Programming

Languages]: Processors—Memory management, optimiza-

tion, run-time environments; F.3.2 [Logics and Meaning

of Programs]: Semantics of Programming Languages—

Program analysis; D.2.5 [Software Engineering]: Testing

and Debugging—Debugging aids

General Terms Language, Measurements, Performance

Keywords object reuse, data structure encoding, memory

management, performance optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’12, October 19–26, 2012, Tuscon, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction

Large-scale object-oriented applications commonly suffer

from run-time performance problems that can lead to signif-

icant degradation and reduced scalability. Experiences [28,

39, 44] show that many such bottlenecks in Java applica-

tions are caused by chronic run-time bloat, a term that is used

to refer to excessive memory usage and computation to ac-

complish relatively simple tasks. Although modern compil-

ers offer sophisticated optimization techniques, these tech-

niques cannot effectively remove bloat, because large appli-

cations often lack hot spots [42]—inefficient operations ex-

ist throughout the program, making it extremely difficult for

the (intraprocedural) compiler analyses to find and remove.

In addition, traditional optimizers detect opportunities based

primarily on control profiling, while large bottlenecks are of-

ten closely related to data activities [39]. Finding these bot-

tlenecks requires the invention of novel techniques that can

better understand how data is computed and aggregated dur-

ing the execution of a real-world program.

In many cases, systemic bloat stems from performance-

unconscious design/implementation choices, which are some-

times encouraged by the culture of object-orientation. For

example, programmers are taught to freely create objects

even for extremely simple tasks, taking for granted that the

object creation and garbage collection (GC) are entirely

free. However, this is only true for applications that need

to process a very small amount of data. For large allocation-

intensive applications (such as web graph processing sys-

tems and social networks) that often have massive-scale data

to process, the excessive creation of objects can cause the

heap to quickly grow, leading to significantly increased GC

effort and reduced scalability. In a managed language (such

as Java) that does not support explicit memory management,

one way to effectively reduce the allocation and GC pressure

is to reuse existing objects in the heap for certain repeated

tasks instead of reclaiming them and creating new objects,

because, in many cases, objects created for different tasks

(e.g., iterations of an event loop, database transactions, etc.)

have completely disjoint lifetimes and can never be used

simultaneously during the execution.

Poor performance does not come only from excessive

object creation and garbage collection; creating one single

object often involves the creation of a set of other objects,

class SSAGraph{

void findEquivalentNodes() {

for(CFG cfg: cfgs){

cfg.visit(new TreeVistior(){

void visitBlock(Block b){b.visitBlockNodes();}

});

} ...

} ...

}

class Block{

void visitBlockNodes(){

for(Statement s: statements){

s.visit(new NodeVisitor(){

void visitExpression(Expr e){e.visitChildren();}

});

} ...

} ...

}

class Expr{

void visitChildren(){

for(Expr child: children){

child.visit(new ExprVisitor(){...});

} ...

} ...

}

(a)

for(String dateStr : dates){

SimpleDateFormat sdf = new SimpleDateFormat();

try{

Date newD = sdf.parse(dateStr);

...

}catch(...) {...}

}

(b)

Figure 1. Real-world examples of reusable data structures:

(a) Iteratively visiting a graph using the visitor pattern; and

(b) creating a SimpleDateFormat object per iteration of

the loop whose shape and data are completely independent

of the loop.

the computation of their data content, and the combination

of these objects into a valid data structure. Repeating this

process is unnecessarily expensive if the reference structure

and/or the data content are unchanged. Hence, additional

performance benefits may be obtained if we reuse not only

object instances, but also their reference relationships and

data content, because the heavy value computation can be

avoided.

Figure 1 (a) and (b) show two real-world examples that

illustrate, respectively, the problems of excessive object cre-

ation and of frequent construction of data structures with the

same shapes and content. The code snippet in Figure 1 (a)

is adapted from bloat, a static bytecode optimization frame-

work for Java. Method findEquivalentNodes in class

SSAGraph identifies expressions of equivalent types in a

set of control flow graphs (CFGs) by iteratively visiting pro-

gram entities in them, such as basic blocks, statements, and

expressions. To implement this traversal, bloat declares an

anonymous visitor class for each type of program entity

and creates an object of the class to visit each entity ob-

ject. However, many of these visitor objects are created in

nested loops. The numbers of their instances can grow expo-

nentially with the layer of loop nesting, putting significant

run-time pressure on the object allocator and GC.

In this example, it is easy to observe that the lifetimes

of instances of a visitor class are entirely disjoint—the in-

stances are never needed simultaneously during the execu-

tion. To optimize this case (including visitors not shown in

Figure 1 (a)), we implemented a singleton pattern for each

visitor class and used a single visitor object to visit all pro-

gram entities of the same type throughout the execution. The

content of this object is reset every time it is used to visit a

different entity. This has led to a 37.3% running time reduc-

tion, a 16.7% reduction on the number of GC invocations,

and a 11.1% reduction on the peak memory consumption

(on Sun Hotspot 1.6.0 27).

Figure 1 (b) shows an example (extracted from an IBM

application) where a more aggressive optimization can be

applied. In this example, a new SimpleDataFormat ob-

ject is created in each iteration of the loop to parse a string

into a Date object. Note that the data structure rooted at

this object is completely loop-invariant: it cannot escape the

iteration where it is created, and its shape and data content

never change. We can simply hoist this allocation site out of

the loop in order to reuse (1) the object instance, (2) all ob-

jects reachable from it and their reference relationships, and

(3) their data content. These reusable data structures are the

focus of this paper—we develop a novel dynamic analysis

technique that can help developers find such data structures

in a program during its representative runs.

Focus on allocation sites The first challenge in this

work is how to find an appropriate static object abstraction

so that reuse opportunities can be detected among the set of

run-time objects that map to the same abstraction. In this pa-

per, we focus on allocation sites, that is, our technique com-

pares data structures created by the same allocation site to

determine whether or not there exist opportunities with this

allocation site. Our tool eventually ranks and reports alloca-

tion sites where reuse opportunities can be found. For exam-

ple, for the programs in Figure 1 (a) and (b), our analysis

would report the allocation sites that create visitor objects

and that create SimpleDateFormat object, respectively.

While there are many other types of abstractions that may

also be considered for object reuse, we find that focusing

on allocation sites achieves the right balance between the

amount of optimization opportunities that can be detected

and the difficulty of developing fixes. Considering a coarser-

grained abstraction such as a class can miss reuse opportuni-

ties that exist in individual instantiations of the class, while

considering a finer-grained abstraction such as an allocation

site under a specific calling context [4, 11, 21, 35] may lead

to the reporting of problems that are difficult to fix. It is often

not easy to understand how to reuse a data structure only un-

der certain calling contexts. Note that simply ranking alloca-

tion sites based on their execution frequencies cannot reveal

reuse opportunities. For example, in a typical large applica-

tion, the most frequently executed allocation site is one in

HashMap.put that keeps creating Map$Entry objects to

for(int i = 0; i < N; i++) { A a= new A(); a.f = 1; B b = new B(); b.g = 1; a.link = b; �; a.f(); //use a }

for(int i = 0; i < N; i++) {

A a= A.getInstance();

a.f = 1;

B b = B.getInstance();

b.g = 1;

a.link = b;

�; a.f();

}

static A instance = null;

static A getInstance() {

if(instance == null)

instance = new A();

return instance;

}

static B getInstance() {�}

(a) Original program

(b) Optimization based on

instance-reusability

for(int i = 0; i < N; i++) {

A a= A.getInstance();

a.f = 1;

a.link.g = 1;

�; a.f();

}

static A instance = null;

static A getInstance() {

if(instance == null) {

instance = new A();

B b = new B();

instance.link = b;

}

return instance;

}

(c) Optimization based on

shape-reusability

for(int i = 0; i < N; i++) {

A a= A.getInstance();

�; a.f();

}

static A instance = null;

static A getInstance() {

if(instance == null) {

instance = new A();

instance.f = 1;

B b = new B();

instance.link = b;

b.g = 1;

}

return instance;

}

(d) Optimization based on

data-reusability

Figure 2. A simple program and its optimizations based on the three reusability levels.

store newly-added keys and values. Objects created by this

allocation site are not reusable at all. Hence, it is necessary

to develop new metrics for allocation sites that can strongly

correlate with their reusability.

Levels of reusability In order to fully exploit reuse

opportunities in a program, we classify allocation sites of

interest into three categories, each at a different reusability

level.

The first category (I) includes allocation sites that ex-

hibit instance reusability. For each such allocation site, the

number of its instances needed simultaneously during the

execution is very small (e.g., bounded by a constant value).

If this allocation site is frequently executed, we may cache

its instances and reuse them to reduce the allocation/GC ef-

fort. The second reusability level is shape reusability. This

level corresponds to a category (S) of allocation sites such

that not only their instances can be reused but also the run-

time shapes of the data structures rooted at these instances

are unchanged. By reusing both the instances and the ref-

erence relationships among them (i.e., object graph edges),

we may get additional performance benefits from saving the

effort to form the shape many times. The highest reusability

level is data reusability. Each allocation site in this category

(D) creates data structures that are completely equivalent to

each other—their instances, shapes, and data values can all

be reused.

Figure 2 shows a simple program with redundancies and

the possible optimizations based on these three reusability

definitions. In the program, the loop keeps constructing the

same data structure (rooted at an object of type A). At the

level of instance reusability (shown in Figure 2 (b)), an opti-

mization can employ a singleton pattern for each class, and

reuses the instances of A and B to ameliorate the high object

creation and GC pressure. As a further step, a more aggres-

sive optimization can additionally reuse the reference edge

between the two objects, based on the observation that the

shape of the structure is unchanged (shown in Figure 2 (c)).

Finally, once we find that the data values written into a.f and

b.g are also independent of the loop, we can develop an op-

timization that reuses the entire data structure including the

instance, the shape, and the data (shown in Figure 2 (d)). In

this example, it is possible to further optimize the program

by hoisting the call A a = A.getInstance(). How-

ever, how to hoist an allocation site is out of the scope of

this paper. In addition, in a real-world program, an alloca-

tion site that exhibits high reusability may be far (e.g., many

calls) away from the main event loop, making it difficult for

the developer to hoist it. Our experience shows that a more

common and practical way to reuse data structures is to em-

ploy singleton patterns, as illustrated in Figure 2.

The relationship among the three categories is D ⊆ S ⊆
I. As the reusability level increases (from I to D), the per-

formance gains resulting from the data structure reuse may

also increase. The proposed technique aims to expose oppor-

tunities at all the three levels to help a programmer maximize

the possibility of improving performance through reusing

data structures. Particularly, for each reusability category,

we report a ranked list of allocation sites to the developer

for manual inspection. Note that this technique does not fix

problems automatically. The optimizations in Figure 2 are

shown only for illustration purposes. They demonstrate typ-

ical fix patterns that can be employed by a real-world pro-

grammer to reuse data structures. In fact, our experience

shows that true problems reported in each reusability cat-

egory can always be fixed using one or a combination of

these patterns. Details of our experiments can be found in

Section 4.

Garbage Collector

Online Data

Structure Encoder

Offline Reusable Data Structure Detector

Reusable

Instance

Detector

Reusable

Shape

Detector

Reusable

Data

Detector

Instance

Summaries

Category I

Data Stru.
Category S

Data Stru.

Shape

Summaries

Data

Summaries

Top M Data Stru. In

Category I

Top M Data Stru. In

Category S

Top M Data Stru. In

Category D

User

Runtime

Profiling

Postmortem

Analysis

Figure 3. An overview of our technique.

Approximations It is not always possible to precisely

understand the three reusability properties for each data

structure at run time. For example, finding reusable instances

requires the precise identification of object lifetimes, which

is very difficult in a managed language like Java because

objects do not die immediately after they are no longer used.

Their lifetimes are determined by the GC points in the exe-

cution. As another example, understanding whether two data

structures contain the same data values requires value pro-

filing [12], an expensive technique that cannot scale to large

applications. In order to improve scalability, we develop an

approach to approximate each level of reusability instead

of attempting to compute precise solutions. In particular,

we develop a new metric to approximate instance reusabil-

ity, and summarize data structure shapes and value content

to approximate shape and data reusability. The detailed ap-

proximation algorithms are described in Section 2.

Overview The overview of our technique is shown in

Figure 3. Our tool has two major components: (1) an online

data structure encoder that uses various approximations to

summarize data structures, and (2) an offline reusable data

structure detector that compares summaries to find reuse

opportunities at the end of the execution (but before the

JVM exits). The encoder piggybacks on garbage collection

to encode heap data structures based on their allocation

sites. The detector consists of three stages to find reusable

data structures after all summaries are generated. It starts

with scanning all allocation sites and ranking them based

on their instance reusability (e.g., instance summaries shown

in Figure 3). The top M allocation sites on the list are then

reported to the user for manual inspection. M can be given

by the user as a parameter to our analysis. A part of this

ranked list (whose length is much larger than M) is fed

to the next stage—the reusable shape detector will scan

only these allocation sites to find those that exhibit high

shape reusability. This is because data structures at a certain

reusability level must also exhibit reusability at all lower

levels in order to be reused. For example, it can be very

difficult, if not impossible, to reuse data structures that have

the same data values but different shapes and overlapping

instances.

We have implemented this technique in Jikes RVM 3.1.0

(http://jikesrvm.org), a high-performance Java-in-Java vir-

tual machine, and successfully applied it to large-scale ap-

plications such as Eclipse. The implementation is described

in Section 3. Our technique incurs an overall 10.8% run-

ning time overhead and a 30.3% space overhead. The de-

tailed execution statistics are reported in Section 4.2. While

the overhead is probably too high for production runs, we

found it acceptable for performance tuning and debugging.

Using our tool, we have identified reuse opportunities in

all programs in our benchmark set. Section 4.1 presents six

case studies on applications where large improvements (e.g.,

37.3% running time reduction and 22% GC time reduction)

were achieved from problem fixes. The experimental results

strongly indicate that the proposed technique can be adopted

in real-world development and tuning to help programmers

quickly find optimization opportunities and reuse data struc-

tures for increased efficiency.

The main contributions of this work are:

• A three-level reusability definition that aims to help pro-

grammers maximize their chances of finding optimiza-

tions opportunities.

• A run-time technique that consists of three algorithms to

approximate reusability at these levels.

• An implementation of this technique in the Jikes RVM

that piggybacks on garbage collection to find reusable

data structures.

• Six case studies demonstrating that our technique can

help programmers quickly identify reuse opportunities

and fix problems for large performance gains.

2. Encoding Data Structures to Approximate

Reusability

In this section, we describe our key algorithms that encode

data structures to find reuse opportunities. As observed in

prior work on heap analysis (e.g., [1, 31]), garbage collec-

tion (GC) in a managed language execution is particularly

suitable for computing heap-related program properties. Be-

cause GC requires a traversal of all live objects in the heap, it

is a natural idea to associate an object graph traversal-based

analysis with GC so that the analysis can be performed along

with the regular GC traversal to avoid the additional run-

time cost. In this paper, we employ a similar approach: the

encoder (as shown in Figure 3) summarizes heap data struc-

tures for each allocation site during GC runs, and the detec-

1

2

3

4

5
6

1 2

Figure 4. An example illustrating the lifetimes of different

instances of the same allocation site.

tor eventually analyzes the generated summaries and finds

reusable opportunities.

2.1 Approximating Instance Reusability

Finding an allocation site that exhibits instance reusability

requires the understanding of whether the lifetimes of its

instances can overlap. The smaller the number of instances

whose lifetimes can overlap is, the more likely it is for a

developer to cache and reuse instances for this allocation

site. Because it is generally undecidable to determine object

liveness in a managed language, approximations have to

be employed. A typical handling is to use reachability to

approximate liveness—a set of checkpoints is scattered over

the execution and object reachability is inspected at each

checkpoint. If an object is not reachable (from a set of root

objects) at a checkpoint, its lifetime is treated as the time

distance between this checkpoint and the point when it was

created. Very often, GC runs are used as checkpoints because

GC necessitates a reachability analysis.

In our analysis, however, using this approximation could

cause a large number of objects (created by the same alloca-

tion site) to have overlapping lifetimes, leading to the failure

of detecting many truly reusable data structures. To illus-

trate, consider the example shown in Figure 4. We use Oi to

denote the i-th object created by the allocation site. At the

checkpoint GC1, all the first five objects (O1, . . . , O5) have

overlapping lifetimes based on this approximation, even

though three of them (O2, O3, O4) are completely disjoint.

Clearly, this approximation is too conservative to be used in

our analysis. As a more precise handling, the Merlin [19] ap-

proach may be used to generate an object event trace that can

be subsequently analyzed to compute lifetimes of objects.

However, performing dynamic whole-heap object tracing

and trace analysis can incur a prohibitively large overhead

for allocation-intensive applications (e.g., 70-300× slow-

down reported in [19] even for relatively small programs).

Hence, it is more suitable for an offline analysis than an

online analysis such as the one proposed in the paper.

2.1.1 A New Approximation

To alleviate the problem, we propose a new metric to approx-

imate instance reusability. This metric considers, at each GC,

the ratio between the number of dead objects and the num-

ber of live objects created by the same allocation site. This

ratio is referred to as the DL ratio in the rest of the paper.

For an allocation site, the larger its DL ratio is, the higher

instance reusability it exhibits. This is because of the fol-

lowing two reasons: (1) the number of live objects at a GC

is an (under-)approximation of the objects that are needed

simultaneously from an allocation site. The larger this num-

ber is, the less likely the instances of this allocation site are

to be reused; and (2) the number of dead objects at a GC is

an (over-)approximation of the objects whose lifetimes are

disjoint. The higher this number is, the more likely it is to

reuse instances created by the allocation site.

To make more sense of this metric, consider the following

two extreme cases. In the first case, there is an allocation

site that creates completely disjoint instances during the

execution. At any GC, the number of live objects for this

allocation site is at most 1, and the number of dead objects is

at least the number of objects created (since the last GC) - 1.

If the number of live objects is 0, we cannot compute a valid

DL ratio and thus this information is discarded; otherwise,

the DL ratio is a big number that implies high instance

reusability.

In the second case, all objects created by an allocation

site are stored in a container and are needed simultaneously

for a certain task. After the task is done, all of them die

together. In this case, the number of live objects at a GC is

either the total number of objects created by the allocation

site or 0, and the number of dead objects is either 0 or

the total number of objects created. If the number of live

objects is 0, the information is discarded again; otherwise,

the number of dead objects must be 0 and thus the DL ratio

is 0, implying a very low chance for reuse. Eventually, the

DL ratios computed at all GCs are averaged so that the

information loss due to the lack of live objects at some GCs

would not have big impact on our analysis outcome.

It is clear to see that using DL ratio computed at a GC

to approximate liveness may lead to both false positives

and false negatives. For example, in the first case (described

above), if the number of live objects is 0, no DL ratio is com-

puted, resulting in a false negative (because the objects are

indeed disjoint). In the second case, if GC occurs in the mid-

dle of a resource release process where many objects (cre-

ated by the allocation site) are dead but a few are still live, a

big DL ratio may be generated for this allocation site lead-

ing to a false positive. However, despite the information loss

and the imprecision at one single GC, we found that averag-

ing DL ratios at all GC points for an allocation site can sig-

nificantly reduce both false positives and false negatives—

because GC points are generally independent of each other,

it is much less likely that DL ratios computed at different

GCs for an allocation site are affected by the same mistreat-

ment of its object lifetimes. This is the case especially for

large-scale and long-running applications that often have a

great number of GC runs. A detailed measurement of false

positives reported by our tool can be found in Section 4.1.

Example Consider again the example in Figure 4. At

GC1 and GC2, the DL ratios for the allocation site are 3/2

and 2/1, respectively, making its final DL ratio 1.75. This ra-

tio does not indicate any problem by itself, unless it is com-

pared with DL ratios for other allocation sites. In this pro-

gram, however, reuse opportunities do exist. For example,

in an ideal case, creating 2 instances would be sufficient—

at any point in the execution, the maximum number of in-

stances needed simultaneously is 2.

2.1.2 Computing DL Ratios

In order to compute the DL ratio for each allocation site, we

need to identify both its live objects and dead objects at GCs.

This is done through tagging each object with its allocation

site ID. Finding live objects is straightforward: during the

GC heap traversal, the number of reachable objects tagged

with the same ID is counted and stored into a DL table.

This table records, for each allocation site, the numbers of

its live objects and dead objects at each GC. These numbers

are used to calculate a final DL ratio when a report is about

to be generated.

Finding dead objects It is much more difficult to iden-

tify dead objects at a GC. These objects cannot be found in a

regular object graph traversal because they are unreachable.

A naive way of finding such objects is to create a separate

whole-heap traversal pass in GC that works after the reach-

able object graph traversal. In this pass, each heap cell is

visited to check if it contains a reference to a valid object

that has not been marked as live. However, visiting all cells

in a big heap can be expensive and may thus incur a large

run-time overhead.

We use a modified reference-counting algorithm to effi-

ciently detect dead objects. Performing this algorithm re-

quires an additional space in each object to store its ref-

erence counter. Generally, at each heap store a.f = b (or

A.f = b), the old object originally contained in a.f (or

A.f) is retrieved and its reference counter is decremented,

and then the reference counter of the object pointed to by b
is incremented. If an object’s reference counter becomes 0,

it is added to a dead object queue for further processing.

There are many objects whose references are never as-

signed to heap locations. They are referenced only by stack

variables and die immediately after their containing meth-

ods return. If we instrument only heap write statements,

these objects would not be added into the queue. To effec-

tively find them, we additionally instrument each heap load

b = a.f to check the reference counter of the accessed ob-

ject: if the reference counter of the object pointed to by a
is 0, this object is also added to the queue. It will be re-

moved if its reference is written into a heap location later.

1 2 3 4 5

L

dead data

structure

Call stack

6

Figure 5. An example of dead object queue.

The only kind of (dead) objects that may still be missing in

the queue are those that are never read and written during

their lifetimes. Such objects are extremely rare and can be

easily optimized away by a compiler optimization (e.g., via

dead code removal).

At each GC, the dead object queue contains root (dead)

objects from which (almost) all dead objects in the heap can

be reached. The queue may also contain some live objects

(that are referenced only by stack variables). These objects

are filtered out and will not be processed. In the garbage

collector, we create a separate pass after the regular object

graph traversal to iteratively identify dead objects. When

this pass executes, all live objects in the heap have already

been visited and marked. This pass then traverses the object

graph starting from the (root) dead objects in the queue to

find those that are not marked (as live). An example dead

object queue is shown in Figure 5. Object O6 is a live object

referenced by a stack variable and is not processed in this

pass. There are many objects reachable from O4, among

which only objects not marked ‘L’ (live) are identified.

2.1.3 Objects v.s. Data Structures

Reporting reuse opportunities for data structures (with mul-

tiple levels of objects) can be more useful than doing so

for individual objects. To do this, for each GC, we compute

DL ratios only for allocation sites whose objects are in the

dead object queue. These objects are usually the roots of data

structures containing many other objects. To account for the

size of each data structure in our metric, the DL ratio for an

allocation site a is modified to S * (D/L), where D/L is the

original DL ratio described earlier and S is a size measure-

ment of the dead data structures created by a. The value of

S is computed by calculating the average number of dead

objects (directly and transitively) reachable from a’s objects

in the queue. Hence, S measures the size of the data struc-

ture that has the same liveness property as the root object.

This part of object graph may be reused together with the

root. It is also the target for our shape and data summariza-

tion described later in this section. In the example shown in

Figure 5, the dead data structure rooted at O4 is highlighted

in the box, and the value of S for O4’s allocation site is 5.

These new DL ratios are used as instance summaries (shown

in Figure 3) to rank allocation sites in the end.

2.2 Encoding Shapes

The second reusability level is shape reusability. The goal

of our analysis at this level is to find allocation sites that

keep generating data structures with the same shapes (i.e.,

reference relationships). As described earlier in this section,

data structures we are interested in are the dead data struc-

tures rooted at objects in the dead object queue (shown in the

box in Figure 5), because objects in these data structures die

together and thus may have the same liveness property. In

this stage, we compare the shapes of all dead data structures

rooted at objects created by the same allocation site through-

out the execution to determine the shape reusability for this

allocation site. Two heap data structures are considered to

have the same shape if (1) their object subgraphs are isomor-

phic and (2) the corresponding objects in the two subgraphs

are created by the same allocation sites. Allocation sites are

considered because it may not be possible to reuse the shape

if objects constituting the shape in different data structures

are created by different allocation sites.

Determining whether two graphs are isomorphic is known

to be NP-complete. What makes the problem even more

complicated is that two data structures created by the same

allocation site are not always available for comparison, be-

cause at the time one data structure exists in the heap, the

other one may have already been garbage collected. In order

to enable efficient comparison, we compute a shape sum-

mary for each dead data structure and record it with its root

allocation site in a shape table. This summary encodes both

the shape of a subgraph and its allocation site information.

Summaries for data structures created by the same allocation

site are compared later to determine the shape reusability for

the allocation site.

2.2.1 Balanced-Parentheses Tree Encoding Algorithm

While there exist many techniques to encode trees and

graphs (primarily in the theory community), their focus is

the space efficiency and the ability of quickly performing

common data structure operations (such as subtree, chil-

dren, root, etc.) in the encoded form. On the contrary, our

top concern is how to encode the allocation site IDs of the

objects in a data structure with its run-time shape.

We have studied a set of related encoding algorithms

(e.g., [5, 17, 20, 29]), and found that the balanced-parentheses

(BP) encoding algorithm is particularly suitable for our

shape summarization. The BP algorithm is proposed by

Munro and Raman [29, 30] to efficiently represent binary

trees, rooted ordered trees, and balanced parenthesis expres-

sions. This algorithm uses an amount of space within a lower

order term of the information theoretic minimum and sup-

ports a rich set of navigational operations in constant time.

The key idea is to represent a tree containing n nodes with a

string of balanced parentheses of length 2n. A node is rep-

1

2
6 8

3 4 5 7 9 10

1

2

3 4 5

6

7

8

9 10

3
3 5 7

5
3

7
3 5

+1

3 × 2 +

3 × 3 + 5 × 4 + 7 × 5

+ 5 × 6

...

... + ... + 8 + ...7 ×

3 × 9 + 5 × 103 × 7

Figure 6. An example showing our data structure shape

encoding algorithm: (a) the balanced-parentheses encoding

of an ordered tree; (b) assigning factors to nodes; and (c) the

actual shape summary computation.

resented by a pair of matching parentheses ‘(’ . . . ‘)’, which

denote, respectively, the starting point (i.e., ‘(’) and the fin-

ishing point (i.e., ‘)’) of a depth-first traversal of the subtree

rooted at this node. All descendants of the node are encoded

in order between its matching parentheses. A detailed ex-

ample of this encoding is illustrated in Figure 6 (a). It is

straightforward to see that the resulting string records the

depth-first traversal of the entire tree and it can be efficiently

stored in a bit vector.

This algorithm is suitable for our analysis for the follow-

ing three reasons. First of all, each node is explicitly repre-

sented in the summary, making it easier for us to incorporate

allocation site IDs (note that in a heap object graph, the num-

ber annotated with each node is its allocation site ID). Sec-

ond, it can be computed efficiently by a single tree traversal,

which fits well into the pass that we create for computing

DL ratios (described in Section 2.1). Finally, the BP encod-

ing respects the order of nodes in a tree. This is important

for our shape encoding, because different fields in an object

are ordered based on their offsets. Two data structures that

reference the same objects in different orders should have

different summaries.

2.2.2 Our Encoding Algorithm

In order to adapt the BP algorithm that encodes only acyclic

data structures, we first have to break cycles in our data

structures to turn them into trees. This can be easily done

by computing a spanning tree of a data structure using a

depth-first traversal, which is needed anyway to perform the

BP encoding. While this causes information loss, we may

miss only a very small number of (back) edges. Because

our summaries are used for comparison purposes (i.e., not

for recovering the shape), these back edges are not critically

important. In fact, we did not find any significant false report

due to the lack of such edges in our experiments.

The original BP bit vector representation is insufficient

when allocation sites are taken into account. The major chal-

lenge here is how to incorporate allocation site IDs into the

BP parentheses. Explicitly recording an allocation site ID

with its corresponding parentheses would not be scalable,

because, to do this, a bit vector has to be expanded to an

integer vector, which consumes orders of magnitude more

space. It is too expensive to record one such integer vector

per run-time data structure for the postmortem comparisons.

To solve this problem, instead of using a vector to represent

a data structure, we develop a new algorithm that computes a

(probabilistically) unique value for the data structure shape,

together with its allocation site IDs, and uses this value as

the shape summary of the data structure. This is conceptu-

ally similar to encoding a dynamic calling context with a

(probabilistically) unique value [11]. Our encoding function

ϕ for a node i in the tree is recursively defined as:

(1) ϕ (i) = ‘(’Ni + Σj∈[0,#children−1]fj ×ϕ(child (j)) ‘)’

where Ni is the number associated with node i. For a heap

object, Ni is its allocation site ID, and child (j) denotes the

j-th reference-typed field of the object. ‘(’ and ‘)’ are the

parentheses for node i in the BP bit vector representation.

They are not explicitly represented in the summary, and are

shown here only for illustration purposes. For each node in

the tree, this recursive definition allows us to compute a sum-

mary for each subtree of the node separately (i.e., rooted at

child (j)) and compose them to form the summary for the

node. Node i’s summary is computed as the sum of its own

ID and each of its children’s summary ϕ(child (j)) multi-

plied by a factor fj . Different child (i.e., subtree) is assigned

a different fj , and thus the order of fields is respected in the

summary. For the j-th child (j starts from 0), fj is simply

defined as 2 × j + 3. It is guaranteed to be an (non-1) odd

number, which is less likely (compared to an even number)

to cause different fj × ϕ(child (j)) to have the same result.

Obviously, the function is non-commutative because of the

mixture of addition and multiplication. Figure 6 (b) shows

the factor assignment for each node (except the root). The

actual summary computation based on the BP string and the

assigned factors is shown in Figure 6 (c).

As discussed earlier, the summary computed for each

data structure is recorded in a shape table for further com-

parison. Because an allocation site can have a great number

of distinct data structures, recording encoded values for all

of them is not scalable. To make our analysis scale to real-

world applications, we reserve a fixed-size array (e.g., s) of

slots for each allocation site in the table to store summaries.

The summary of each data structure created by this alloca-

tion site is mapped into a slot using a simple mod operation.

In other words, for each summary ϕ computed, we incre-

ment the counter stored in s[ϕ % |s|]. Eventually, the shape

reusability for this allocation site is calculated as

(2) maxi∈[0,|s|−1] s[i] / Σi∈[0,|s|−1]s[i]

The higher this value (whose maximum is 1) is, the more

data structures created by the allocation site may have the

same shape. In our experiments, we have tried a number of

different sizes (from 4 to 11) for this array. We found that (1)

a large number (i.e., more slots) preserves more information

than a small number (for obvious reasons) and (2) a prime

number preserves more information than a composite num-

ber. We chose 7 as the size of this array in our experiments,

because it is the largest prime number for which all programs

in our benchmark set could correctly run. OutOfMemory er-

ror was seen in some large programs (such as Eclipse) when

the next prime number (i.e., 11) was used.

2.2.3 Computing Shape Summaries

As dead data structures are our focus, the shape summary

computation is done along with the DL ratio computation in

the additional GC pass (described earlier in Section 2.1) that

traverses dead objects. One challenge here is that the object

graph traversal implemented in GC is often a worklist-based

breadth-first algorithm, while our summary computation re-

quires a depth-first traversal, which, if implemented naively

(e.g., using recursion), cannot scale to large object graphs

that are often hundreds of layers deep.

We develop an efficient depth-first traversal algorithm to

compute summaries. This algorithm is conceptually similar

to the one used in [1] to check the assert-ownedBy

assertions. The algorithm is still based on worklist but does

depth-first traversal by coloring objects. Algorithm 1 shows

the details of this algorithm.

We maintain three worklists in parallel—an object work-

list O that stores objects for processing, a factor worklist F

that contains factors (fi) for the corresponding objects in O,

and a summary worklist Φ that contains the encoded sum-

maries for the subtrees rooted at the corresponding objects

in O. There are three colors that can be used to mark ob-

jects: WHITE, GREY, and BLACK. Each object is marked

WHITE initially. The first time an object is reached by the

depth-first traversal, it is marked GREY, indicating its sub-

tree is currently being visited. When this traversal is done,

the object’s color is changed to BLACK, indicating this ob-

ject has been visited.

Each iteration of the main loop (line 5) retrieves an object

from worklist O (line 6). This object is not processed if it

has already been visited before or it is still live (line 7). Live

objects cannot be part of a dead data structure. If it is the

first time to see this object during the traversal (line 11-

18), we mark it GREY and push it back onto the worklist

Algorithm 1: Computing shape summary for a dead

data structure.
Input: Object o in the dead object queue
Output: Shape summary ϕ for the data structure rooted at o

1 mark(o,’WHITE’)

2 Object worklist O← {o}

3 Factor worklist F← {1}

4 Summary worklist Φ← allocID(o)

5 while O 6= ∅ do

6 a← pop(O)

7 if color(a) = ’BLACK’ or isLive(a) = ’TRUE’ then

8 pop(F)

9 pop(Φ)

10 else

11 if color(a) = ’WHITE’ then

// The first time we see it

12 mark(a,’GREY’)

13 push(O, a)

14 foreach Non-null object b referenced in the i-th field of a do

15 mark(b,’WHITE’)

16 push(O, b)

17 push(F, 2 ∗ i + 3)

18 push(Φ, allocID(b))

19 else

// The traversal of its subtree is done

20 mark(a,’BLACK’)

21 fa ← pop(F)

22 ϕa ← pop(Φ)

23 index ← findObjectWithColor(O, ’GREY’)

24 F(index)← F(index) + fa ∗ ϕa

25 if O = ∅ then

26 ϕ = ϕt

27 return ϕ

(line 12-13). All its children (i.e., objects it references) are

pushed onto the worklist O (line 14-16). In addition, for

each child i, we compute its factor fi based on its index and

push the factor onto the factory worklist F (line 17). Its own

allocation site ID is pushed onto the summary worklist Φ as

its initial summary (line 18). This value will be updated once

the summaries for its subtrees are computed. It is clear to see

that the sequence of GREY objects in O identifies the path

currently being explored by the traversal.

Seeing this GREY object again (line 19-26) implies that

its entire subtree has been visited and the summary for

the subtree has been appropriately computed. We mark it

BLACK (line 20), and retrieves its corresponding factor fa

and summary ϕa (line 21-22). Next, we need to attribute this

node’s fa × ϕa to the summary of its parent. The index of

its parent node can be easily obtained by finding the next

GREY object in O (line 23). The summary of the parent

node (i.e., F(index)) is then updated accordingly (line 24).

Example To illustrate, Figure 7 contains the first seven

steps of computing the shape summary for the root node in

Figure 6. O,F, and Φ are the three worklists in Algorithm 1.

While in reality O contains object references, their allocation

site IDs are used here for illustration purposes. Figure 7

(a) shows the initial state of the worklists (corresponding to

lines 2–4 in Algorithm 1): O contains the root object, the

initial factor for the root object is 1 (in F), and Φ contains

the allocation site ID of the root object, which is 1. The first

step of the algorithm pops the object out of O, changes its

color to GREY, and pushes back onto O (lines 6, 12, and 13

in Algorithm 1). All objects directly referenced by the first

object are found and pushed onto O, as shown in Figure 7

(b). At this point, the factors for objects 2, 6, and 8 are

determined (i.e., they are 3, 5, and 7) and pushed onto factor

worklist F. Φ contains their initial allocation site IDs.

Next, object 8 is processed, and its children (objects 9

and 10) are pushed onto O. Figure 7 (c) shows the state of

the worklists during the processing of object 10. Note that

objects whose colors are GREY in O form the current ex-

ploration path (i.e., 1 → 8 → 10) in the depth-first traver-

sal. At this moment, object 10 does not have any children

and its color is GREY, so it is popped out of O (line 21 in

Algorithm 1) and marked BLACK. BLACK nodes are not

displayed in the example, because they are not part of any

worklist. Object 10’s f * φ is calculated (line 23–24 in Al-

gorithm 1) and added to the summary of its parent (i.e., the

next GREY object in O), making the summary of object 8 58
(= 8+5∗10), as shown in Figure 7 (d). Similarly, object 9 is

popped and its f * φ (= 3∗9 = 27) is added to the summary

of object 8. In step (e), the processing of the subtree rooted

at object 8 is done, and its shape summary is 85. Object 8

is then popped and its f * φ (= 7 ∗ 85 = 595) is attributed

to the summary of its parent, which is the root object. The

last two steps show the worklist updates when the subtree

rooted at object 6 is traversed. When the depth-first traversal

finishes and object 1 is popped, worklist Φ will contain the

shape summary for the entire data structure.

2.3 Encoding Data

The third stage of the analysis is to find allocation sites that

produce data structures with the same data content. Finding

such allocation sites requires the encoding of data values

contained in primitive-typed fields of each dead data struc-

ture. We develop an algorithm similar to the shape summa-

rization approach to encode data values. Based on a depth-

first traversal, all primitive-typed data in a dead data struc-

ture are encoded into a (probabilistically) unique value, and

then the value is mapped to a slot in a fixed-size array for the

allocation site. The data summary for a data structure rooted

at object o is defined as:

(3) ψ (o) = Σj∈[0,#fields−1]fj × pj

pj =

{

child(j) The j-th field has a primitive type

ψ(child (j)) otherwise

Unlike the shape summary computation that considers al-

location site IDs and reference-typed fields, this definition

focuses on values in primitive-typed fields and summarizes

all such values in a recursive manner. Allocation site IDs of

objects are not considered in this algorithm. Similarly to the

(a) (b) (c) (d) (e) (f) (g)

O F Φ

1 1 1

1

2

6

8

1

3

5

7

1

2

6

8

O F Φ

1

2

6

8

1

3

5

7

1

2

6

8

9

10

3

5

9

10

O F Φ

1

2

6

8

1

3

5

7

1

2

6

58

9 3 9

O F Φ

1

2

6

8

1

3

5

7

1

2

6

85

O F Φ

1

2

6

1

3

5

596

2

6

7 3 7

O F Φ

1

2

6

1

3

5

596

2

O F Φ

27

Figure 7. A step-wise example illustrating the shape summary computation for the tree in Figure 6.

shape summarization, a factor fj is assigned to each field,

regardless of its type. If the field has a primitive type, its

value is retrieved directly and multiplied with the factor; oth-

erwise, we recursively compute data summary for (the object

referenced by) this field and then attribute the resulting sum-

mary to the final summary for the data structure. The same

function (i.e., 2 ×j + 3) is used to determine fj for a field.

Data summary computation is performed together with

shape summary computation in one single depth-first traver-

sal of the objects in the dead object queue. Our technique

summarizes all types of data values. The final data summary

ψ is a 64-bit double value and this value is converted to a

long value for the mod operation. For each primitive-typed

array, we summarize all its elements, and for each reference-

typed array, we recursively summarize all its containing ob-

jects. Similarly to the shape summary computation, the final

data summary for an allocation site is a ratio (between 0 and

1) computed by formula (2).

Example Figure 8 shows an example of computing

the data summary for a data structure that contains 4 ob-

jects. Each object is represented by an array and each cell in

the array represents a field. For each primitive-typed field,

its value is directly shown in the cell, while a cell for a

reference-typed field contains a link pointing to another ob-

ject. The factor assigned to each field is shown under the

cell for the field. Similarly to the shape summarization, each

factor is an odd number starting from 3. The data summary

for each object is computed based on formula (3) and then

used to compute the data summary for its parent. The de-

tailed computation steps are listed aside. If a primitive-typed

field contains a boolean or a char value, it is first converted

to an integer before the computation is performed. Finally,

summary DS0 is converted to a long value (i.e., 35479) on

which the mod operation (i.e., mod 7 in our experiments)

is performed. The counter in the 3-rd (= 35479%7) slot of

the array reserved for the allocation site in the data table is

incremented.

2.4 Ranking and Reporting

At the end of the execution, each allocation site in the pro-

gram has three summaries computed by the encoder—the

average data structure DL ratio (discussed in Section 2.1.3)

as its instance summary, and the ratios computed by formula

(2) on the encoded shapes and the encoded data values as

its shape and data summary. To report reuse opportunities,

all allocation sites are first ranked based on their instance

summaries. There are two ways to use this ranked list. The

top N allocation sites are forwarded to the next stage (i.e.,

reusable shape detector) for re-ranking. The top M allocation

sites (M< N) are reported to the user directly for manual in-

spection. Regardless of whether or not larger opportunities

can be found in later stages, these M allocation sites may

point to interesting problems themselves and are thus worth

inspecting. In our experiments, M and N are set to 20 and

200, respectively. It appears that these are the appropriate

choices—M is a small enough so that it does not overwhelm

the user and N is big enough so that the forwarded allocation

sites retain most of the optimization opportunities.

The N (= 200) allocation sites are then re-ranked based

on their shape summaries. Similarly to the first step, the top

M (= 20) allocation sites are reported to the user directly

while a longer list (whose length is 150) is forwarded to the

reusable data detector, which, in turn, re-ranks the list based

on their data summaries and reports the top 20 allocation

sites for manual inspection. Note that although these specific

numbers are chosen for our experiments, they can be easily

changed by a different user via JVM command-line options.

3. Implementation

We have implemented our reusable data structure detector in

Jikes RVM 3.1.0, a high-performance Java Virtual Machine.

We add one word (32-bit) to the header of each object.

This space is shared by the allocation site ID (the lower

16 bits) and the reference counter (the upper 16 bits). We

found that this space is sufficient to store these two pieces

of information even in large applications such as Eclipse.

During the dead object graph traversal, the upper 16 bits

1 0.3 6 �c�

8.7 9 T 4.1 5

�b� �e� �e�

Header

...

...

...

3 5 7

3 5 7
3 5 7

3 5 7 9 11 13

DS3 = 3 * 142 + 5 * 145 + 7 * 145

= 2166

DS2 = 3 * 1 + 5 * 4.1 + 7 * 5

= 58.5

DS1 = 3 * DS3 + 5 * 8.7 + 7 * 9

= 6604.5

DS0 = 3 * 1 + 5 * DS1 + 7 * 0.3 + 9 * DS2 + 11 * 6 + 13 * 143 = 35479.1

Factors

Figure 8. An example of data summary computation.

are also used to store the color of each visited object (see

Algorithm 1) because the reference counter of a dead object

is no longer needed.

We have modified both the baseline compiler and the op-

timizing compiler to do the instrumentation. Our tool adds

instrumentation at each allocation site that stores its ID into

the allocated object’s header space. This ID can be used to

find the source code location (class, method, and line num-

ber) of the allocation site. As described earlier in Section 2.1,

our tool also instruments each heap access statement to per-

form appropriate reference counter updates. Objects whose

reference counters are 0 are added to the dead object queue

while objects that are already in the queue but are written to

heap locations are removed from the queue. An optimization

here is to use one bit to mark an object when it is added into

the queue so that we do not enqueue the object again if it is

encountered in a heap read. The bit is cleared if it is removed

from the queue.

Although the technique piggybacks on garbage collec-

tion, it requires only a very small set of changes to an ex-

isting garbage collector. In addition to adding a pass to sum-

marize dead data structures, we need to modify the regular

object graph traversal to count the number of live objects

for each allocation site. Our current implementation supports

all non-generational tracing garbage collectors (e.g., Mark-

Sweep, MarkCompact, and Immix). The algorithms may not

work well with a generational GC because a nursery GC

scans only part of the heap, which may prevent our shape

and data summarization algorithm from correctly identify-

ing dead objects.

4. Evaluation

We have performed a variety of studies with our reusable

data structure detector primarily using the DaCapo bench-

mark set [8]. Our benchmarks (shown in Table 2) include

11 programs in the DaCapo 2006 release, an additional set

of 2 programs in its recent (9.12-bach) release, and the

SPECJbb2000 benchmark. Some large (server) programs in

the DaCapo 9.12-bach release were not chosen, because they

could not run on the version of the Jikes RVM we used (i.e.,

3.1.0). DaCapo programs were executed with their large

workloads, and SPECJbb2000 was executed under its stan-

dard configuration (i.e., ramp up seconds = 30 and measure-

ment seconds = 120). All experiments were run on a quad-

core machine with an Intel Xeon E5620 2.40GHz processor,

running Linux 2.6.18. The maximum heap size specified for

each program run was 1GB.

4.1 Case Studies

We have carefully inspected the tool reports and found op-

timization opportunities in all of the 14 benchmarks. In this

subsection, we report our studies on 6 benchmarks: bloat,

chart, luindex, lusearch, xalan, and SPECJbb2000. Problems

in these programs are chosen to report because they point

to large optimization opportunities—by reusing the reported

data structures, we have achieved either large total running

time reduction (e.g., 37.3% in bloat) or large GC time re-

duction (e.g., 22% in xalan). It took us about 1.5 weeks to

find the problems and implement the fixes for these 6 appli-

cations we were not familiar with. More insightful changes

could have been made if their developers had seen the re-

ports and come up with fixes themselves. Although we used

the Jikes RVM to find reusable data structures, performance

statistics (before and after problem fixes) were collected on

Hotspot 64-bit Server VM build 1.6.0 27. Jikes RVM ap-

peared to be unstable—we often saw inconsistent perfor-

mance reports for different runs of the same application on

it. In order to avoid the compilation cost and the execution

noise, each application was run 5 times and the median of

the running times is reported in this subsection.

chart chart is a graph plotting toolkit that plots a num-

ber of complex line graphs and renders them as pdf via itext.

The No. 1 allocation site in all the three reusability reports

was at line 767 of class dacapo.chart.Datasets,

which creates an array of XYSeries objects in method

createPtrAgeHistData. The average size of the (dead)

data structures created by this allocation site was 94663 and

all their shapes were the same (i.e., its shape reusability

was 1). Although their data values were different (its data

reusability is 0.66), we found a way to reuse their shapes

and instances. Because different instances of the array (as

well as the XYSeries objects in them) are never needed si-

multaneously in the program, we moved this allocation site

out of the method createPtrAgeHistData and made it

referenced by a static field. As such, not only the array object

but also its containing XYSeries objects are cached. We

inserted code into the method to reinitialize an XYSeries

object (by resetting it with the new content) only if it is re-

quested. In fact, we found that in many executions of the

method, a number of XYSeries objects were not used at

all, and thus, the effort to recreate and reconstruct these

objects was completely saved by our fix. The fix led to a

running time reduction of 24.2% (from 7073ms to 5364ms).

The number of GC runs and the total GC time were reduced,

respectively, by 6.5% and by 15.3%. No reduction was seen

on the peak memory consumption.

luindex luindex is a text index tool that indexes a set

of documents. The allocation site related to the problem was

No. 2 in the reusable instance report and No. 1 in the reusable

shape report. It created an array of Posting objects in

methodsortPostingTable of class DocumentWriter.

The average size of the data structures created by this allo-

cation site was 2094. The method takes a Hashtable as input,

sorts the elements of this table using a quicksort algorithm,

and returns a list containing the sorted elements. Because its

implementation of quicksort works only on arrays, this allo-

cation site creates an array simply to store the elements of

the Hashtable to be processed by quicksort. After the sort-

ing finishes, a new list is created. The sorted elements are

copied from the array to the list, which is finally returned.

We implemented two fixes: we first pulled out the list alloca-

tion site and used a static field to cache its instance, because

one instance of the list would suffice for all executions of

the method. Second, we eliminated this array allocation and

used an insertion sort algorithm to gradually copy elements

from the Hashtable to this list. We saw a 17.6% running time

reduction (from 8298ms to 6783ms) and a 21.8% reduction

on the total number of objects created (from 36019657 to

28183309). The number of GC runs and the total GC time

were reduced from 35 to 28 (20%) and from 1048ms to

929ms (11.4%), respectively. The peak memory consump-

tion was reduced from 46468KB to 41384KB (12.3%).

bloat bloat is a bytecode-level optimization tool for Java

that analyzes and optimizes some of its own classes. Almost

all allocation sites in the three reports point to reuse oppor-

tunities. One major category of problems was the pervasive

use of anonymous classes (implementing the visitor pattern),

as described in Section 1. By reusing instances and content

of these allocation sites, we achieved a reduction of 37.3%

in running time (from 28783ms to 18053ms). The number

of GC runs and the total GC time were reduced from 66 to

Bench Categories

I S D

chart 5 5 4

bloat 0 0 0

luindex 8 6 2

lusearch 6 4 2

xalan 0 0 0

jbb 4 4 1

Table 1. Numbers of false positives in the top 20 allocation

sites of each reusability category for the programs we have

studied.

55 (16.7%) and from 4132ms to 3694ms (10.6%), respec-

tively. The peak memory consumption was reduced from

813264KB to 732140KB (11.1%).

lusearch lusearch is a text search tool that looks for

keywords over a corpus of data. The first allocation site

in the reusable instance report was at line 119 in method

parse of class QueryParser. This allocation site cre-

ates a QueryParser object each time a new query string

is generated in order to parse the string into a Query ob-

ject. Because the parser object never escapes to the heap,

each thread needs only one instance of this data struc-

ture at any point during the execution. To solve the prob-

lem, we created a static QueryParser array that main-

tains one QueryParser object per thread, and added

a reset method in class QueryParser. Each time a

QueryParser object is needed, this method is invoked to

reset its content. While this simple fix did not lead to signif-

icant running time reduction on Hotspot (only from 1872ms

to 1867ms), it reduced the number of GC runs from 34 to

31 (9%) and the peak memory consumption from 78.6MB

to 75.0MB (4.7%).

xalan xalan is an XSLT processor for transforming

XML documents. The first allocation site in the reusable

instance report was in the constructor of class XPath that

created an XPathParser object to parse each expres-

sion string into an XPath object. Similarly to the han-

dling of QueryParser in lusearch, we created a static

field to cache its instance and reset it upon request. In ad-

dition, a few allocation sites in the reusable data report in-

dicated that objects of type TransformerImpl might

have the same content. Upon code inspection, we found

that these objects were transitively created by a call in

dacapo.xalan.XalanHarness. This call site is lo-

cated in a while loop and creates an XML transformer per

iteration of the loop to transform an incoming XML file. Be-

cause these transformer data structures are exactly the same,

we hoisted this call site out of the loop. These fixes reduced

the total number of GC runs from 50 to 37 (26%), and the

total GC time from 2819ms to 2200ms (22.0%). No signif-

icant reduction was seen on the running time and the peak

memory consumption.

SPECJbb2000 SPECJbb2000 simulates an online trad-

ing system. The first five allocation sites in the three reports

were the same. Each of these allocation sites creates an ob-

ject of a transaction type (i.e., DeliveryTransaction,

OrderStatusTransaction,PaymentTransaction,

NewOrderTransaction, and StockLevelTransac-

tion) per iteration of the main loop, while all transaction

objects of the same type are completely disjoint, and have

the same shapes and data content. We employed a thread-

singleton pattern in the implementation of each transaction

class, and this fix improved the overall throughput from

148128 opr/sec to 155414 opr/sec (4.7%). No reduction was

seen on GC running time and memory consumption, be-

cause the performance of SPECJbb2000 is evaluated based

on a fixed-time execution. A more efficient implementation

should process a larger workload in a specified period of

time (reflected by the improved throughput), but does not

necessarily reduce the GC effort and the memory require-

ment.

Summary and discussion Despite the approximations

used in our analysis, we did not find many false positives in

the tool reports. Table 1 shows the numbers of false positives

we identified during the inspection of the top 20 allocation

sites for each program. An allocation site is considered as a

false positive if either it is clearly not a problem or we could

not develop a solution to reuse its objects. We found that an

important source of false positives is the use of linked data

structures. For example, both luindex and lusearch create a

great number of Token objects during the parsing of expres-

sions. These objects are linked through their next field and

any regular operation of the list can break a link and make

many such objects become unreachable. The allocation sites

creating them often have big DL ratios while their objects

are not truly reusable. We did not find any false positives

resulting from the hash collisions in the shape and data sum-

marization algorithms. Data structures (among the top 20 re-

ported allocation sites) whose shape and data summaries are

1 are indeed completely invariant. False positives found in

the second and third stage reports are all inherited from the

first stage report. This is not surprising because precisely ap-

proximating object lifetimes is the most difficult part in the

detection of reusable data structures.

While it is interesting to understand the collision rates in

the shape/data summarization, they are difficult to measure

for large programs. To verify whether run-time data struc-

tures created by the same allocation site have the same shape

or data content would require a whole program execution

trace that records all heap accesses and values during the ex-

ecution. Such a trace can only be obtained through whole

program dynamic slicing [2, 48, 49, 50] and value profil-

ing [12], a task that is impossible to scale to real-world ap-

plications.

We found that true problems are often very easy to fix.

One solution or a combination of solutions shown in Figure 2

is always sufficient for us to reuse the identified data struc-

tures. Another important observation is that shape reusabil-

ity often couples tightly with data reusability. In each pro-

gram we studied, more than half of the allocation sites in the

shape reusability report also appear in the data reusability

report. This in fact makes it easier for us to implement fixes

because the overlap often points to data structures that are

completely invariant during the execution. For a few alloca-

tion sites in SPECJbb2000, we classified them as false posi-

tives because we could not understand why they are reusable

by inspecting only the allocation sites. These allocation sites

are located in factory methods that create objects, arrays, and

strings for many different components of the program, and

therefore, it is difficult to understand under what contexts

these objects can be reused without more detailed informa-

tion. Future work may consider to add context profiling into

this analysis to provide developers with more useful debug-

ging information.

4.2 Reusability and Overhead Measurements

All overhead statistics reported in this subsection were col-

lected from Jikes RVM 3.1.0, running a high-performance

configuration FastAdaptiveImmix. This configuration uses

the optimizing compiler to compile both the JVM code and

the application code, and the Immix garbage collection al-

gorithm [7]. Section (a) in Table 2 reports the measure-

ments of reuse opportunities. Each column in Section (a)

shows, for each program, the size of the intersection of the

reported allocation sites in different categories. The higher

these numbers are, the easier it is for human developers to

find optimization opportunities and implement fixes. Note

that many allocation sites appear in all of the three reports

(shown in I ∩ S ∩ D), which strongly indicates reuse op-

portunities. Column #Inv reports the numbers of invariant

data structures—both their shapes and their data values are

unchanged throughout the execution. Even if their instances

may not be reusable, these allocation sites may point to deep

design/implementation issues (e.g., designing an algorithm

that is unaware of the characteristics of its input data) and

fixing these issues can often lead to larger performance im-

provement (than just reusing data structure instances).

Section (b) of the table shows the overhead of the tech-

nique. The running time measured for our tool (shown in

column T1) includes both the time for the program execu-

tion (including the online summarization) and the time for

the postmortem analysis, because the analysis is performed

before the JVM completely exits. Overall, our tool slows the

programs down by 10.8%. The space overhead is measured

by identifying the maximum post-GC memory consumption

during the execution. The overall space overhead is 30.3%,

which is primarily due to the additional header space per ob-

ject and the dead object queue. In one case (i.e., jython), the

peak memory consumption for our tool is even lower than

that for the original run, presumably because GC is triggered

at a different set of program points (in the modified run)

Bench (a) Reusability measurements (b) Overhead measurements

I ∩ S S ∩ D I ∩ S ∩ D #Inv T0(s) T1(s) S0(MB) S1(MB)

antlr 6 14 4 1 10.8 11.7 (8.7%) 42.3 59.1 (39.7%)

bloat 3 13 3 1 41.2 43.2 (4.8%) 63.7 89.1 (39.9%)

chart 8 4 3 13 43.9 44.9 (2.5%) 37.2 63.1 (69.6%)

eclipse 8 14 7 1 15.3 17.0 (11.0%) 35.3 78.9 (123.0%)

fop 11 14 6 22 1.1 1.2 (14.7%) 66.2 97.3 (30.3%)

hsqldb 3 17 3 18 6.5 8.0 (23%) 32.6 36.5 (12.0%)

jython 5 18 5 19 25.7 30.4 (18.3%) 108.6 85.2 (-21.5%)

luindex 8 12 3 10 11.9 13.6 (13.8%) 48.9 85.7 (75.3%)

lusearch 9 16 5 10 5.7 13.9 (143%) 74.7 97.3 (30.3%)

pmd 4 15 4 12 11.6 12.7 (9.6%) 90.8 111.0 (22.3%)

xalan 3 17 3 25 13.1 29.7 (127.4%) 17.8 23.4 (31.1%)

avrora 15 18 13 28 22.1 22.9 (3.4%) 66.3 70.0 (5.6%)

sunflow 10 11 5 21 43.5 43.9 (1.0%) 104.9 129.7 (23.7%)

SPECJbb 11 13 7 15 110583⋆ 104936⋆ (5.1%) 513.7 513.9 (0%)

GeoMean 10.8% 30.3%

Table 2. Reusability and overhead measurements: Section (a) shows the numbers of allocation sites that appear in both the

report of instance reusability and that of shape reusability (I ∩ S), the numbers of allocation sites that appear in the reports

of instance and data reusability (S ∩ D), the numbers of allocation sites that appear in all the three reports (I ∩ S ∩ D), and

the numbers of allocation sites whose shape summaries and data summaries are 1 (#Inv); section (b) reports the running times

of the original (T0) and the instrumented (T1) programs, and their peak memory consumptions (S0 and S1 respectively). ⋆We

measure throughput instead of running time.

that happens to have a lower maximum reachable memory

size. While these overheads may be too high in a produc-

tion setting, we found they are acceptable for performance

tuning and debugging purposes—they have not prevented us

from collecting data from any real-world application. Future

work could use sampling to reduce overhead. We may also

define a tradeoff framework between the quality of the re-

ported information and the frequency of running the addi-

tional (dead data structures scanning) pass, and find a bal-

ance point where sufficient information can be reported at

acceptably low cost.

5. Related Work

GC-based heap analysis There exists a body of work that

piggybacks on garbage collection to discover heap-related

program properties, such as object staleness [10, 45], types

with growing instances [22], and object reachability prop-

erties [1, 4, 37]. Merlin [19] is an efficient algorithm that

can provide precise time-of-death statistics for heap objects

by computing when objects die using collected timestamps.

While our work also falls into this category, our goal is dif-

ferent from all existing techniques—we use garbage collec-

tion to find reusable data structures.

Heap optimization for Java programs Object Equality

Profiling (OEP) [23] is a run-time technique that discov-

ers opportunities for replacing a set of equivalent object in-

stances with a single representative object to save space.

Unlike our approach that encodes data structure shapes and

values to approximate their reusability, OEP records an ex-

ecution trace and uses it to detect equivalent objects offline.

Hence, OEP can incur a significantly higher overhead than

our summarization-based approach. In addition, by focus-

ing on allocation sites and comparing objects created by the

same allocation site, our analysis is able to produce more

specific diagnostic information than OEP, which attempts to

find opportunities among arbitrary objects of the same type.

Sartor et al. [33, 34] propose run-time techniques to com-

press heap data, particularly arrays. Instead of optimizing

programs at such a low (system) level, our technique targets

logical data structures and attempts to find both space and

time optimization opportunities by detecting reusable data

structures.

Software bloat analysis As large-scale object-oriented ap-

plications are pervasively used and their performance prob-

lems become significant, a body of work has been devoted

to software bloat analysis [3, 25, 27, 28, 36, 40, 41, 42,

43, 44, 47] that attempts to find and remove performance

problems due to inefficiencies in the code execution and

the use of memory. Prior work [24, 25] proposes metrics to

provide performance assessment of use of data structures.

Mitchell et al. [26] propose a manual approach that detects

bloat by structuring behavior according to the flow of infor-

mation, and their later work [25] introduces a way to find

data structures that consume excessive amounts of memory.

Work by Dufour et al. [15] uses a blended escape analysis to

characterize and find excessive use of temporary data struc-

tures. This work approximates object lifetimes using control

flow regions such as a method invocation or a sequence of

method invocations, whereas our work is more concerned

about whether lifetimes of different objects created by the

same allocation site can overlap, which is much more diffi-

cult to find using static analysis.

Shankar et al. propose Jolt [36], which makes aggressive

method inlining decisions based on the identification of re-

gions that make extensive use of temporary objects. Work by

Xu et al. [42] detects memory bloat by profiling copy chains

and copy graphs. Other work [35] dynamically identifies in-

appropriately used Java collections and recommends to the

user those that should really be used. Recent work [13] iden-

tifies 11 common patterns of memory inefficiencies and pro-

poses a ContainerOrContained model to detect such patterns

in heap snapshots. Different from all existing work, our tech-

nique is a new type of bloat analysis that aims to find reuse

opportunities in the program using GC-based heap analysis.

Static liveness approximation Escape analyses [9, 14, 16,

38] are designed to identify objects whose lifetimes are

within the lifetime of the stack frame of the method that al-

locates the objects. These objects can be stack allocated for

increased performance. Work by Ruggieri and Ruggieri [32]

attempts to use static dataflow analysis to approximate ob-

ject lifetimes in order to enable various optimizations on ob-

ject allocation and deallocation. Gheorghioiu et al. propose a

static analysis [18] to identify unitary allocation sites whose

instances are completely disjoint so that these instances can

be pre-allocated and reused. While this is similar to the de-

tection of reusable instances in our work, we can find more

opportunities such as reusable shapes and reusable data. Re-

cent work such as [6, 46] uses static analysis to identify

reusable data structures created in a loop. However, in a

large-scale application, reuse opportunities may be located

in methods far away from a loop, limiting significantly the

real-world usefulness of these analyses. In addition, static

techniques can find only data structures that are reusable for

all possible runs and thus may miss opportunities that exist

only for certain executions. Our work overcomes the prob-

lem by finding reusable data structures completely online,

leading to the detection of more opportunities and the im-

proved usefulness.

6. Conclusions and Future Work

The paper presents the first dynamic technique to find data

structures that can be reused for better performance. In

order to fully expose optimization opportunities, we de-

fine reusability at three different levels: instance reusabil-

ity, shape reusability, and data reusability, each providing

a unique perspective in finding reuse opportunities. It is

impossible to compute precise reusability information, and

thus, for each reusability category, we develop a correspond-

ing approximation to find data structures that fall into this

category. Particularly, we compute Dead/Live ratios to ap-

proximate instance reusability, and summarize data struc-

ture shapes and data values to approximate shape and data

reusability, respectively. We have implemented this tool in

the Jikes RVM and applied it to a set of large-scale appli-

cations. Our experimental results demonstrate that the tool

incurs a reasonable overhead and reports problems that can

be easily fixed for large performance gains.

The positive results from this work would serve as the

motivation for the further investigation of the problem of

reusing objects/data structures. For example, the existence

of a large number of reusable data structures strongly calls

for a new runtime system that can automatically cache and

reuse data structures during the program execution. We plan

to develop such a system in the future.

Acknowledgments

We would like to thank Michael Bond for his helpful com-

ments on an early draft of the paper. We also thank the OOP-

SLA reviewers for their valuable and thorough comments.

References

[1] E. E. Aftandilian and S. Z. Guyer. GC assertions: Using the

garbage collector to check heap properties. In ACM SIGPLAN

Conference on Programming Language Design and Imple-

mentation (PLDI), pages 235–244, 2009.

[2] H. Agrawal and J. R. Horgan. Dynamic program slicing.

In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 246–256, 1990.

[3] E. Altman, M. Arnold, S. Fink, and N. Mitchell. Performance

analysis of idle programs. In ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), pages 739–753, 2010.

[4] M. Arnold, M. Vechev, and E. Yahav. QVM: An efficient

runtime for detecting defects in deployed systems. In ACM

SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA),

pages 143–162, 2008.

[5] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman,

and S. S. Rao. Representing trees of higher degree. Algorith-

mica, 43:275–292, 2005.

[6] S. Bhattacharya, M. Nanda, K. Gopinath, and M. Gupta.

Reuse, recycle to de-bloat software. In European Conference

on Object-Oriented Programming (ECOOP), pages 408–432,

2011.

[7] S. M. Blackburn and K. S. McKinley. Immix: a mark-region

garbage collector with space efficiency, fast collection, and

mutator performance. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI),

pages 22–32, 2008.

[8] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.

McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-

ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,

J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,

D. von Dincklage, and B. Wiedermann. The DaCapo bench-

marks: Java benchmarking development and analysis. In ACM

SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA),

pages 169–190, 2006.

[9] B. Blanchet. Escape analysis for object-oriented languages.

Applications to Java. In ACM SIGPLAN International Confer-

ence on Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA), pages 20–34, 1999.

[10] M. D. Bond and K. S. McKinley. Bell: Bit-encoding online

memory leak detection. In International Conference on Archi-

tectural Support for Programming Languages and Operating

Systems (ASPLOS), pages 61–72, 2006.

[11] M. D. Bond and K. S. McKinley. Probabilistic calling con-

text. In ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages, and Applica-

tions (OOPSLA), pages 97–112, 2007.

[12] B. Calder, P. Feller, and A. Eustace. Value profiling. In In-

ternational Symposium on Microarchitecture (MICRO), pages

259–269, 1997.

[13] A. E. Chis, N. Mitchell, E. Schonberg, G. Sevitsky,

P. O’Sullivan, T. Parsons, and J. Murphy. Patterns of mem-

ory inefficiency. In European Conference on Object-Oriented

Programming (ECOOP), pages 383–407, 2011.

[14] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff.

Escape analysis for Java. In ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), pages 1–19, 1999.

[15] B. Dufour, B. G. Ryder, and G. Sevitsky. A scalable technique

for characterizing the usage of temporaries in framework-

intensive Java applications. In ACM SIGSOFT Interna-

tional Symposium on the Foundations of Software Engineer-

ing (FSE), pages 59–70, 2008.

[16] D. Gay and B. Steensgaard. Fast escape analysis and stack

allocation for object-based programs. In International Con-

ference on Compiler Construction (CC), LNCS 1781, pages

82–93, 2000.

[17] R. F. Geary, R. Raman, and V. Raman. Succinct ordinal trees

with level-ancestor queries. In ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 1–10, 2004.

[18] O. Gheorghioiu, A. Salcianu, and M. Rinard. Interprocedu-

ral compatibility analysis for static object preallocation. In

ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL), pages 273–284, 2003.

[19] M. Hertz, S. M. Blackburn, J. E. B. Moss, K. S. McKinley, and

D. Stefanović. Generating object lifetime traces with Merlin.

ACM Transactions on Programming Languages and Systems,

28(3):476–516, 2006.

[20] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct

representation of ordered trees. In ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 575–584, 2007.

[21] R. E. Jones and C. Ryder. A study of Java object demograph-

ics. In International Symposium on Memory Management

(ISMM), pages 121–130, 2008.

[22] M. Jump and K. S. McKinley. Cork: Dynamic memory leak

detection for garbage-collected languages. In ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Lan-

guages (POPL), pages 31–38, 2007.

[23] D. Marinov and R. O’Callahan. Object equality profiling. In

ACM SIGPLAN International Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOP-

SLA), pages 313–325, 2003.

[24] N. Mitchell. The runtime structure of object ownership.

In European Conference on Object-Oriented Programming

(ECOOP), pages 74–98, 2006.

[25] N. Mitchell and G. Sevitsky. The causes of bloat, the lim-

its of health. ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages, and Ap-

plications (OOPSLA), pages 245–260, 2007.

[26] N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling runtime

behavior in framework-based applications. In European Con-

ference on Object-Oriented Programming (ECOOP), pages

429–451, 2006.

[27] N. Mitchell, E. Schonberg, and G. Sevitsky. Making sense

of large heaps. In European Conference on Object-Oriented

Programming (ECOOP), pages 77–97, 2009.

[28] N. Mitchell, E. Schonberg, and G. Sevitsky. Four trends

leading to Java runtime bloat. IEEE Software, 27(1):56–63,

2010.

[29] J. Munro and V. Raman. Succinct representation of balanced

parentheses, static trees and planar graphs. In IEEE Sym-

posium on Foundations of Computer Science (FOCS), pages

118–126, 1997.

[30] J. I. Munro and V. Raman. Succinct representation of balanced

parentheses and static trees. SIAM J. Comput., 31(3):762–776,

2001.

[31] C. Reichenbach, N. Immerman, Y. Smaragdakis, E. Aftandil-

ian, and S. Z. Guyer. What can the GC compute effi-

ciently? A language for heap assertions at GC time. In ACM

SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA),

pages 256–269, 2010.

[32] C. Ruggieri and T. P. Murtagh. Lifetime analysis of dynam-

ically allocated objects. In ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages (POPL),

pages 285–293, 1988.

[33] J. B. Sartor, M. Hirzel, and K. S. McKinley. No bit left

behind: the limits of heap data compression. In International

Symposium on Memory Management (ISMM), pages 111–

120, 2008.

[34] J. B. Sartor, S. M. Blackburn, D. Frampton, M. Hirzel, and

K. S. McKinley. Z-rays: divide arrays and conquer speed and

flexibility. In ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), pages 471–

482, 2010.

[35] O. Shacham, M. Vechev, and E. Yahav. Chameleon: Adaptive

selection of collections. In ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI),

pages 408–418, 2009.

[36] A. Shankar, M. Arnold, and R. Bodik. JOLT: Lightweight

dynamic analysis and removal of object churn. In ACM

SIGPLAN International Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA),

pages 127–142, 2008.

[37] M. Vechev, E. Yahav, and G. Yorsh. PHALANX: Parallel

checking of expressive heap assertions. In International Sym-

posium on Memory Management (ISMM), pages 41–50, 2010.

[38] J. Whaley and M. Rinard. Compositional pointer and escape

analysis for Java programs. In ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Lan-

guages, and Applications (OOPSLA), pages 187–206, 1999.

[39] G. Xu. Analyzing Large-Scale Object-Oriented Software to

Find and Remove Runtime Bloat. PhD thesis, The Ohio State

University, 2011.

[40] G. Xu and A. Rountev. Precise memory leak detection for Java

software using container profiling. In International Confer-

ence on Software Engineering (ICSE), pages 151–160, 2008.

[41] G. Xu and A. Rountev. Detecting inefficiently-used containers

to avoid bloat. In ACM SIGPLAN Conference on Program-

ming Language Design and Implementation (PLDI), pages

160–173, 2010.

[42] G. Xu, M. Arnold, N. Mitchell, A. Rountev, and G. Sevitsky.

Go with the flow: Profiling copies to find runtime bloat. In

ACM SIGPLAN Conference on Programming Language De-

sign and Implementation (PLDI), pages 419–430, 2009.

[43] G. Xu, M. Arnold, N. Mitchell, A. Rountev, E. Schonberg,

and G. Sevitsky. Finding low-utility data structures. In ACM

SIGPLAN Conference on Programming Language Design and

Implementation (PLDI), pages 174–186, 2010.

[44] G. Xu, N. Mitchell, M. Arnold, A. Rountev, and G. Sevitsky.

Software bloat analysis: Finding, removing, and preventing

performance problems in modern large-scale object-oriented

applications. In FSE/SDP Working Conference on the Future

of Software Engineering Research (FoSER), pages 421–426,

2010.

[45] G. Xu, M. D. Bond, F. Qin, and A. Rountev. Leakchaser:

Helping programmers narrow down causes of memory leaks.

In ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 270–282, 2011.

[46] G. Xu, D. Yan, and A. Rountev. Static detection of loop-

invariant data structures. In European Conference on Object-

Oriented Programming (ECOOP), pages 738–763, 2012.

[47] D. Yan, G. Xu, and A. Rountev. Uncovering performance

problems in Java applications with reference propagation pro-

filing. In International Conference on Software Engineering

(ICSE), pages 134–144, 2012.

[48] X. Zhang. Fault Localization via Precise Dynamic Slicing.

PhD thesis, University of Arizona, 2006.

[49] X. Zhang and R. Gupta. Cost effective dynamic program slic-

ing. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation (PLDI), pages 94–106,

2004.

[50] X. Zhang, R. Gupta, and Y. Zhang. Precise dynamic slicing

algorithms. In International Conference on Software Engi-

neering (ICSE), pages 319–329, 2003.

	Introduction
	Encoding Data Structures to Approximate Reusability
	Approximating Instance Reusability
	A New Approximation
	Computing DL Ratios
	Objects v.s. Data Structures

	Encoding Shapes
	Balanced-Parentheses Tree Encoding Algorithm
	Our Encoding Algorithm
	Computing Shape Summaries

	Encoding Data
	Ranking and Reporting

	Implementation
	Evaluation
	Case Studies
	Reusability and Overhead Measurements

	Related Work
	Conclusions and Future Work

