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It is difficult to write programs that behave correctly in the presence of run-time errors. Proper be-
havior in the face of exceptional situations is important to the reliability of long-running programs.
Existing programming language features often provide poor support for executing clean-up code
and for restoring invariants.

We present a data-flow analysis for finding a certain class of exception-handling defects: those
related to a failure to release resources or to clean up properly along all paths. Many real-world
programs violate such resource usage rules because of incorrect exception handling. Our flow-
sensitive analysis keeps track of outstanding obligations along program paths and does a precise
modeling of control flow in the presence of exceptions. Using it, we have found over 1,300 exception
handling defects in over 5 million lines of Java code.

Based on those defects we propose a programming language feature, the compensation
stack, that keeps track of obligations at run time and ensures that they are discharged. We
present a type system for compensation stacks that tracks collections of obligations. Finally,
we present case studies to demonstrate that this feature is natural, efficient, and can improve
reliability.
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1. INTRODUCTION

While software is becoming increasingly important, much of it remains unre-
liable. It is easier to fix software defects if they are found before deployment.
It can be difficult to use testing, the traditional approach to finding defects
early, to evaluate programs in exceptional situations [Sinha and Harrold 1999;
Malayeri and Aldrich 2006]. For example, testing coverage metrics may require
knowledge of implicit control flow from exceptional situations, and testing er-
ror handlers may require special fault-injecting test harnesses [Candea et al.
2003]. We present an analysis for finding a class of program defects that lead
to resource-handling failures in exceptional situations. We also propose a new
language feature, the compensation stack, to make it easier to fix such defects.

We define an exceptional situation to be one in which something external
to the program behaves in an uncommon but legitimate manner. For example,
a file write may fail because the disk is full or the operating system is out of
file handle resources. Similarly, a packet send may fail because of a network
breakdown. These examples represent actions that typically succeed but may
fail through no fault of the requesting program.!

Modern languages like Java [Gosling et al. 1996], C++ [Stroustrup 1991] and
C# [Hejlsberg et al. 2003] use language-level exceptions to signal and handle
exceptional situations. The most common semantic framework for exceptions
is the replacement model [Goodenough 1975]. Exception handlers are typically
lexically scoped and may be quite labyrinthine. Language-level exceptions in-
troduce implicit control flow, a potential source of software defects related to
reliability. Our experiments show that some program failures arise from de-
fects in the handling of multiple cascading exceptions and in the handling of
multiple resources in the presence of a single exception.

Testing a program’s behavior in exceptional situations can be difficult be-
cause such situations, often called run-time errors, must be systematically and
artificially introduced. Not all run-time errors are created equal, however. We
present a fault model that formalizes which faulty exceptional situations we
are considering and when they may occur.

A program can be tested or analyzed by simulating an environment in which
faults occur as dictated by the fault model. The desired faults must still be
injected during testing while the program is running. Some have used physi-
cal techniques (e.g., pulling a network cable while the program is running to
simulate an intermittent connectivity problem) [Candea et al. 2003]. Others
have used special program analyses and compiler instrumentation approaches

LPopping an empty stack and dividing by zero are also exceptional situations: our analysis will find
defects related to using language-level exceptions for such cases, but we limit our initial discussion
to external conditions. See Section 3.2 for more details.
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[Fu et al. 2004, 2005] to inject faults at the software or virtual machine level.
These testing-based approaches still require indicative workloads and test
cases.

We present a static data-flow analysis for finding program defects. The de-
fects are reported with respect to both the fault model and also a formal partial-
correctness specification of proper resource handling. A defect report from the
analysis includes a program path, one or more run-time errors and one or more
resources governed by the specification. Such a report claims that if the run-
time errors occur at the given points along the program path, the program may
violate the specification for the given resources. The analysis is path-sensitive
and intraprocedural. It models the flow of control, including the control-flow
related to the exceptions in the fault model, precisely. It abstracts away data
values and only keeps track of the resources mentioned in the specification.
The analysis reported no false positives in our experiments but it can miss real
defects. The analysis found over 1,300 defects in over five million lines of code.

Based on that work finding defects we propose the compensation stack, a
language feature for ensuring that simple resources and API rules are handled
correctly even in the presence of run-time errors. We draw on the concepts of
compensating transactions [Korth et al. 1990], linear sagas [Alonso et al. 1994,
Garcia-Molina and Salem 1987], and linear types [DeLine and Fahndrich 2001]
to create a model in which obligations are recorded at run-time and are guar-
anteed to be executed along all paths. By enforcing a certain ordering and
moving bookkeeping from compile-time to run-time, we provide more flexibil-
ity and ease-of-use than standard language approaches to adding linear types
or transactions. We formalize a static semantics for compensation stacks and
we present case studies to show that they can be used to improve software
reliability.

Aside from providing a unified overview presentation of our previously pub-
lished work [Weimer and Necula 2004, 2005] on this subject, this article in-
cludes:

—A more detailed fault model (Section 3.2).

— A full description of the data-flow analysis in the presence of typestate speci-
fications (Section 5.3), including a discussion of its strengths and weaknesses
(Section 5.6).

—Additional experiments on the importance of the defects found (Section 6.3)
and effects of our filtering heuristics on false positives and false negatives
(Section 6.2).

— A static semantics for compensation stacks (Section 9).

— A discussion of the tradeoffs involved in using compensation stacks to manage
resources (Section 9.2).

This article deals with defects in run-time error-handling code that lead to
failures under the assumptions given by a fault model. We clarify our use of the
relevant terms here to prevent confusion. In this article, we use mistake to refer
to a human action that causes a software fault or defect. A defect refers to a flaw
in the software system or program that contributes to a failure. A failure refers
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to an observed unacceptable behavior of a system, such as violating a safety
policy. Run-time error and exceptional situation are used to refer to failures or
environmental conditions in the software system or its components that are
signaled at the language level. A fault model refers to a formal consideration
of which run-time errors may occur. Finally, error-handling code deals with a
signaled run-time error in order to prevent a true failure from occurring.

The rest of this article is organized as follows. We describe the state of the
art in handling exceptional situations at the language level in Section 2. In
Section 3, we motivate and describe simple specifications and present our fault
model for linking run-time errors and language-level exceptions. We build
a control-flow graph that includes exceptional control flow in Section 4. We
present a static data-flow analysis that uses the fault model and the CFG in
Section 5. In Section 6, we present the results of our analysis, including ex-
periments to measure the importance of the defects found and the false pos-
itives and false negatives associated with the analysis. We discuss finalizers
and destructors in Section 7 and highlight some of their weaknesses in this
context. In Section 8, we propose the compensation stack as a language fea-
ture and describe our implementation. We present a static type system in
Section 9 that tracks compensation stacks but not individual resources. In
Section 10, we report on case studies in which we apply compensation stacks
to run-time error-handling in real programs in order to improve reliability.
Section 11 describes a number of important areas of related work and we con-
clude in Section 12.

2. HANDLING EXCEPTIONAL SITUATIONS IN PRACTICE

An IBM survey [Cristian 1982, 198 7] reported that up to two-thirds of a program
may be devoted to handling exceptional situations. We performed a similar
survey, examining a suite of open-source Java programs ranging in size from
4,000 to 1,600,000 lines of code (see Figure 9). We found that while exception
handling is a lesser fraction of all source code than was previously reported, it
is still significant.

We found that between 1% and 5% of program text in our survey was com-
prised of exception-handling catch and finally blocks. Between 3% and 46%
of the program text was transitively reachable from catch and finally blocks,
which often contain calls to cleanup methods. For example, if a finally block
calls a cleanUp method, the body of the cleanUp method is included in this
count. While it is possible to handle run-time errors without using exceptions
and to use exceptions for purposes other than run-time error handling, com-
mon Java programming practice links the two together. Sinha and Harrold
[2000] found that on average 8.1% of methods contained exception-handling
constructs, while the JESP tool [Ryder et al. 2000] found that 16% of meth-
ods contain some kind of exception handling. Later work [Sinha et al. 2004]
found patterns associated with complex implicit control flow in all of the sub-
ject programs it studied. These broad numbers suggest that handling run-time
errors is an important part of modern programs and that much effort is devoted
to it.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 8, Publication date: March 2008.



Exceptional Situations and Program Reliability . 8:5

01: Connection cn;
02: PreparedStatement ps;
03: ResultSet rs;

04: try {

05: cn = ConnectionFactory.getConnection(/* ... */);
06:  StringBuffer qry = ...; // do some work

07: ps = cn.prepareStatement(qry.toString());

08: rs = ps.executeQuery();

09: ... // do I/0-related work with rs

10: rs.close();
11:  ps.close(Q);
12: } finally {

13:  try {

14: cn.close();

15:  } catch (Exception el) { }
16: }

Fig. 1. Ohioedge CRM Exception Handling Code (with defect).

In general, the goal of an exception handler is program-specific and situation-
specific within that program. For example, a networked program may handle
a transmission exception by attempting to resend a packet, while a file-writing
program may handle a storage exception by asking the user to specify an al-
ternate destination for the data. We will not consider such high-level policy
notions of correctness. Instead, we will consider more generic low-level policies
related to resource handling and correct API usage.

2.1 Exception Handling Example

We begin with a motivating example showing how run-time error-handling fail-
ures can occur in practice. Consider the Java language code in Figure 1, taken
from Ohioedge CRM [SourceForge.net 2003], the largest open-source customer
relations management project. This program uses language features designed
to handle run-time errors (i.e., it uses nested try blocks and finally clauses
rather than checking and returning error codes, as one might in a C-language
program), but many problems remain. Connections, PreparedStatements and
ResultSets are resources associated with an external database. Our specifica-
tion of correct behavior, which we will formalize later, requires the program to
close each allocated resource.

In some situations, the exception handling in Figure 1 works correctly. If a
run-time error occurs on line 6, the run-time system will signal an exception,
and the program will close the open Connection on line 14. However, if a run-
time error occurs on line 9, the resources associated with ps and rs may not be
freed.

One common solution is to move the close calls from lines 10 and 11 into the
finally block, as shown in Figure 2. This approach is insufficient for at least
two reasons. First, the close method itself can raise exceptions (as indicated
by the fact that it is surrounded by try-catch and by its type signature), so an
exceptional situation while closing rs on line 12 might leave ps dangling.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 8, Publication date: March 2008.



8:6 . W. Weimer and G. C. Necula

01: Connection cn;
02: PreparedStatement ps;
03: ResultSet rs;

04: try {

05: cn = ConnectionFactory.getConnection(/* ... */);
06:  StringBuffer qry = ...; // do some work
07: ps = cn.prepareStatement(qry.toString());
08: rs = ps.executeQuery();

09: ... // do I/0-related work with rs

10: } finally {

11 try {

12: rs.close();

13: ps.close();

14: cn.close();

16:  } catch (Exception el) { }

16: }

Fig. 2. Revised Ohioedge CRM Exception Handling Code (with defect).

01: Connection cn;
02: PreparedStatement ps;
03: ResultSet rs;

04: cn = ConnectionFactory.getConnection(/* ... */);
05: try {

06: StringBuffer qry = ...; // do some work
07: ps = cn.prepareStatement(qry.toString());
08: try {

09: rs = ps.executeQuery();

10: try {

11: ... // do I/0-related work with rs
12: } finally {

13: rs.close();

14: }

15:  } finally {

16: ps.close();

17: }

18: } finally {

19: cn.close();

20: }

Fig. 3. Nested Try-Finally Ohioedge CRM Exception Handling Code (correct).

The code in Figure 2 may also close an object that has never been created.
If a run-time error occurs on line 6 after cn has been created, control will jump
to line 12 and invoke rs.close (). Since rs has not yet been allocated, this will
signal a “method invocation on null object” exception and control will jump
to the catch block in line 15, with the result that cn is never closed.

Using standard language features there are two common ways to ad-
dress the situation. The first, shown in Figure 3, involves using nested try-
finally blocks. One block is required for each important resource that is dealt
with simultaneously. This approach has a number of software engineering
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01: Connection cn = null;
02: PreparedStatement ps = null;
03: ResultSet rs = null;

04: try {

05: cn = ConnectionFactory.getConnection(/* ... */);
06:  StringBuffer qry = ...; // do some work

07: ps = cn.prepareStatement(qry.toString());

08: rs = ps.executeQuery();

09: ... // do I/0-related work with rs

10: } finally {

11:  if (rs !'= null) then try { rs.close(); } catch (Exception e) { }
12:  if (ps != null) then try { ps.close(); } catch (Exception e) { }
13: if (cn != null) then try { cn.close(); } catch (Exception e) { }
14: }

Fig. 4. Run-Time Check Ohioedge CRM Exception Handling Code (correct).

disadvantages, most notably that the code becomes confusing. For example,
programs in our survey (see Figure 9) commonly use three to five important
resources simultaneously but programmers are rarely willing to use three to
five nested try-finally blocks.

The second standard approach uses sentinel values or run-time checks. In
Figure 4, the database objects are initialized to the sentinel value null. This
approach has the advantage that one try-finally statement can handle any
number of simultaneous resources. Unfortunately, such bookkeeping code of-
ten contains defects in practice (see Section 6). For example, if the guarded
code contains control-flow, that control-flow must be duplicated in the finally
clause.

2.2 Exception Handling Example Summary

The Ohioedge CRM code is typical and highlights a number of important obser-
vations. First, the programmer is aware of the safety policies: close is common.
Second, the programmer is aware of exceptional situations: language-level ex-
ception handling (e.g., try and finally) is used prominently. Third, there are
many paths where exception handling is poor and resources may not be dealt
with correctly. Finally, fixing the problem typically has software engineering
disadvantages: the distance between any resource acquisition and its associ-
ated release increases, and extra control flow used only for exception-handling
must be included. In addition, if another procedure wishes to make use of
Connections, it must duplicate all of this exception handling code. This du-
plication is frequent in practice: the Ohioedge source file containing the above
example also contains two similar procedures that contain the same defects. De-
velopers have cited this required repetition to explain why exception handling
is sometimes ignored [Brown and Patterson 2003]. In general, correctly deal-
ing with N resources requires N nested try-finally statements or a number of
run-time checks (e.g., checking each variable against null or tracking progress
in a counter variable). Handling such exceptional situations is complicated and
error-prone in practice.
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~ new Socket

), opened
) Socket.close
< new ServerSocket

1) opened
g ServerSocket.close
Fig. 5. A manually-derived specification for Java Socket resources (left) and hibernate Session
resources (right).
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In the next section, we will use this intuition for what often goes wrong to
help formalize a partial model for program behavior.

3. SPECIFICATIONS AND EXCEPTIONAL SITUATION FAULT MODELS

A specification and a fault model are used together by our static analysis to find
program defects. Intuitively, the specification describes what the program must
do (e.g., free every resource it acquires) and the fault model describes what can
go wrong (e.g., division by zero, network congestion).

3.1 Specifications

A specification is a formal description of correct program behavior. In this ar-
ticle, we will consider only partial specifications: those that describe a partic-
ular aspect of a program’s behavior, such as how it handles certain resources.
Full functional specifications are often written in specification languages that
are based on formal logic [Abrial et al. 1980]. We will use lighter-weight
partial specifications based on finite state machines [Ball and Rajamani 2001a;
DeLine and Fahndrich 2001].

We use finite state machines (FSMs) to formalize how how programs should
manipulate certain important resources and interfaces. The FSM edge labels
represent program events that manipulate the internal states of resources. For
example, one event may correspond to the creation of a resource and another
may correspond to the disposal of a resource. We associate one FSM specifica-
tion with every dynamic instance of such a resource: each resource instance is
tracked separately. Resources acquired in loops are still individually governed
by the specification.? Each FSM must end the program in an accepting state
or the program is said to violate the specification for that resource instance.
In addition, the program violates the specification if if the FSM ever makes an
illegal transition.

Figure 5 shows a simple safety specification for Java Socket objects. Both
Sockets and ServerSockets are based on file handles and should be freed
[Campione et al. 2000]. We formally represent a specification using the

2The specification is separate from the means of enforcing or verifying it. It may be difficult to
verify that every resource acquired in a loop is handled correctly, but it is easy to specify.
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standard five-tuple finite state machine (2, S, so, §, F') [Hopcroft et al. 2000].
The first specification in Figure 5 would be given as:

¥ = {new Socket, Socket.close}

S = {closed, opened}

so = closed

3 = {(closed, new Socket) > opened, (opened, Socket.close) > closed}
F = {closed}

Figure 5 also shows a more complicated example of a finite state machine spec-
ification [Weimer and Necula 2005] governing the use of sessions and transac-
tions in the hibernate object persistence framework [Hibernate 2004]. Correct
usage involves opening a session via the factory, beginning a transaction, ei-
ther committing or aborting the transaction, and then closing the session. The
majority of our standard library policies were simple two-state, two-edge “must
call A after calling B” policies [Engler et al. 2000; Reimer et al. 2004]. Full fi-
nite state machines are used instead of such A-B pairs in order to specify more
complicated resource interactions.

Our standard set of specifications [Weimer and Necula 2004] for using Java
library resources includes the socket policy above as well as similar ones for
Streams [O’Hanley 2005], file handles, and JDBC database connections.

As a concrete example, the Oracle9i JDBC Developer’s Guide and Reference
makes clear the results of violating the JDBC policy: “The drivers do not have
finalizer methods. . . . If you do not explicitly close your ResultSet and Statement
objects, serious memory leaks could occur. You could also run out of cursors
in the database.” [Perry et al. 2002] Running out of database cursors lowers
transactional throughput not just for the ill-behaved client but for all other
clients sharing that database. Programmers are typically very concerned with
closing these objects as quickly as possible.

Users of our approach can add their own application-specific specifications
by listing sy, § and F' (since X and S can be inferred) or by using a subset of
the syntax of an FSM specification language such as SLIC [Ball and Rajamani
2001b].

3.2 Exceptional Situation Fault Model

Our fault model applies to the operation of software and details which excep-
tional situations might arise. A fault can be officially defined as “an accidental
condition that causes a functional unit to fail to perform its required function.”
[General Services Administration 1996] In our model a fault occurs when a
method fails to adhere to a resource specification because of the implicit control
flow resulting from a checked language-level exception.

Fault models are often related to the specification that is being checked. For
example, a security specification related to remote buffer-overrun vulnerabili-
ties may assume that an attacker has control over all packets that are received
over the network [Wagner et al. 2000], and thus that those packet contents may
take on any value. In reality, an attacker may only control some of the incoming
packets, but a program that is robust in the worst-case scenario is also robust

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 8, Publication date: March 2008.



8:10 o W. Weimer and G. C. Necula

under lighter attacks. We will similarly adopt a worst-case fault model based
on the assumption that many unlikely or uncommon scenarios will eventually
befall a program that is running for a long time.

We wish to observe program behavior in the presence of real-world excep-
tional situations like network connectivity problems or database access viola-
tions. Typically, however, we have access only to the program source code and
cannot mechanically simulate such exceptional situations (e.g., by running the
program for a time and then pulling a plug). Thus, we need a way to bridge
the gap between real world events and software-level artifacts like exception
handles. Previous work by Candea et al. [2003] has found such a connection: “all
faults we injected at the network level (e.g., severing the TCP connection), disk
level (e.g., deleting the file), memory (e.g., limiting the JVM’s heap size), and
database (e.g., shutting DBMS down) resulted [in a checked exception being
signaled at the language-level].”

The Java programming language features two types of exceptions: checked
and unchecked [Gosling et al. 1996]. Unchecked exceptions typically describe
defects in program logic (e.g., dereferencing a null pointer). We do not include
unchecked exceptions in our fault model, and thus do not report defects related
to them, for two reasons. The primary reason is that defect reports related to
hypothetical program executions that include unchecked exceptions are more
likely to be false positives. Programs typically have invariants and checks to
ensure that such unchecked exceptions do not occur. The presence and correct-
ness of such a check is statically undecidable, however, and our fault model
is designed to work with lightweight intraprocedural analyses for defect de-
tection. We view the elimination of false positives as more important than the
completeness of the analysis, and thus do not consider unchecked exceptions.

The second reason we avoid unchecked exceptions is that they do not al-
ways have associated handling behavior. For example, our fault model does not
consider run-time errors related to memory safety (e.g., array bounds-check
violations or null-pointer dereferences), and many techniques already exist to
ensure memory safety (e.g., Gay and Aiken [1998], Hauswirth and Chilimbi
[2004], Necula et al. [2002b] and Tofte and Talpin [1997]). If desired, our fault
model could be refined to include unchecked exceptions for which an enclosing
handler exists. It would also be simple to extend the fault model with entire
classes of unchecked exceptions (e.g., by treating integer division as a “method”
that either returns normally or raises a divide-by-zero exception). In addition,
the compensation stacks we will propose in Section 8 help to guard resources
and restore invariants in the presence of both checked and unchecked excep-
tions. For the purposes of this presentation, however, unchecked exceptions are
not part of the fault model.

Checked exceptions, on the other hand, capture our notion of exceptional situ-
ations that are beyond the program’s control but that must be dealt with. Among
other things, they signal failures related to network connectivity, database
transactions, and physical storage, as well as security violations. The Java Type
System [Gosling et al. 1996] requires that programmers either catch and han-
dle all declared checked exceptions that they might encounter or annotate their
code on a per method basis with a list of exceptions that might propagate to
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the caller. Checked exceptions are part of the contract associated with a Java
interface.

In our fault model, any invoked method can either terminate normally or
signal any of its declared checked exceptions. We expect the program to adhere
to the specifications for its important resources (e.g., Sockets, ResultSets) even
ifa method signals, for example, a checked SecurityException. This fault model
allows for multiple “back-to-back” faults, in which a method invocation inside
a catch or finally block raises an exception.

As a corner case, our fault model forgives all defects when the programmer
explicitly aborts the program. A call to java.lang.System.exit terminates the
program and does not flag any defects even if some of the resources have not
been properly handled. Programmers are typically not careful about cleaning
up resources when they abort a program. We are primarily interested in finding
defects in the exception handling of long-running programs and a call to exit
almost invariably means that the programmer has given up on salvaging the
situation.

Explicit throw statements are considered by our fault model. A program that
allocates a resource, throws an exception and never cleans up the resource
violates its specification under the assumptions of the fault model.

Many programs rely on proprietary third-party libraries for which neither
the source code nor the byte code are readily available to outside analyses.?
Examples include programs that link against proprietary database libraries
and strict subsets of commercial programs that are made publicly available.
Our analysis formally requires complete interfaces. In practice, however, we
have found it useful to employ a heuristic when only partial information is
available.

When we do not have the declared list of checked exceptions for a method we
either reject the program or adopt a fault model such that our static analysis
avoids reporting spurious warnings. We assume that an unknown method can
only signal an exception for which there is a lexically enclosing catch clause.
For example:

public int foo(int b) throws IOException {
try { b = Mystery(); /* unknown method */ }
catch (MysteryException e) { b = 0; }
return b;

}

If we do not have the declaration for the Mystery method in the above code,
we will assume that an invocation of the Mystery method can either terminate
normally or signal a MysteryException. We do not assume that either it can
signal an I0Exception even though the enclosing method foo declares that it
may propagate such exceptions.

Our fault model assumes that language-level exceptions can arise from the
declared checked exceptions of an invoked method and from explicit throw state-
ments. Under our model, every call to a method (regardless of the context or

3Non-obfuscated bytecode is just as good as source code for our purposes.
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argument values) can either raise one of its declared exceptions or terminate
normally. This fault model may fail to expose real defects but will avoid making
hasty conclusions about the presence of defects in the program.

4. BUILDING THE CONTROL FLOW GRAPH

Our fault-finding analysis is detailed in Section 5; this section presents our
treatment of control flow in the presence of language-level exceptions. Our
control-flow graph (CFG) construction is standard [Aho et al. 1986] except for
our handling of method invocations (including constructor calls, etc.) and our
handling of finally. This done based on the fault model; our goal in construct-
ing the CFG is to admit feasible paths and behaviors under the fault model’s
assumptions about exceptions.

We assume a unique start node associated with the method entry point and
a unique end node through which all normal and exceptional control paths
must pass before exiting the method (e.g., Necula et al. [2002]): this intu-
itively amounts to replacing the method body with try {start; body;} finally
{end;}. For an interprocedural analysis it would be necessary to model a CFG
with multiple exit nodes, one per propagated exception type [Sinha and Harrold
2000].

Following the fault model, a method invocation node has an edge leading
to the subsequent statement as well as zero or more edges representing possi-
ble exceptional situations. To determine these edges, we consider in turn each
checked exception declared by the method. For each such exception, we inspect
each lexically enclosing catch clause and determine if the type of the raised
exception is a subtype of the caught exception. If it is, we add an edge from the
method to that catch clause. If it is not, we consider the next catch clause. If
there are no more enclosing catch clauses, then the exception can propagate
out of the enclosing method and we add a control flow edge to the end node of
the CFG.

Finally clauses are the second complication in our CFG construction. We
must record how control reaches a finally block to determine where control
flows after that block. In a try-finally statement, the finally clause is ex-
ecuted either if the try clause terminates normally or if the try clause sig-
nals an exception. If the try clause does not signal an exception, control flows
normally after the finally block. If the try clause signals an exception, that
exception is normally “re-signaled” after the finally clause is executed. How-
ever, if the body of the finally clause itself signals a new exception or exe-
cutes a return statement (or a continue or break statement associated with
a loop outside the finally), that new control flow overrides the “pending”
exception.

We enumerate each possible path through the example code in Figure 6
to illustrate our combined handling of exceptions and finally. For this exam-
ple we assume that SecurityExceptions, I0Exceptions and NetworkExceptions
all derive directly from a base class Exception. In Figure 6, the columns 2—4
record which exceptions were signaled by the methods A, B or C. A hyphen indi-
cates that the method invocation was not reached (and thus could not raise an
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public void A() throws SecurityException, IOException;

public void B() throws NetworkException;

public void C() throws SecurityException;

public void DQ);
public void E();
public void FQ);

try {

try { AO; }
catch (IOException io) { B(); }
finally {

cO;

// control can either transfer to the D() call

// no exceptions
// no exceptions
// no exceptions

// or an exception can be raised here ...

}
DO;

} catch (SecurityException sec) { EQ); }
catch (Exception e) { F(); }

two lines down

8:13

Path Number | A Exception | B Exception | C Exception | Path

1 none - none A.CD..
2 none - Security A.C.E.
3 Security - none A.C.E.
4 Security - Security A.C.E.
5 I0 none none ABCD..
6 I0 none Security ABC.E.
7 I0 Network none ABC..F
8 I0 Network Security ABC.E.

Fig. 6. Example code involving exceptions and finally.

exception) and none indicates that the method terminates without raising an
exception.

Of the eight control flow paths through the code in Figure 6, only the first
is possible if there are no exceptions. Since neither A nor C signaled an excep-
tion, control passes from the associated finally block to the next statement: D.
In all of the other paths the situation is more complicated. Path #2 demon-
strates that a finally block can itself signal an exception. Path #3 shows that
if a try clause raises an exception the finally clause must re-raise that ex-
ception. Path #4 illustrates a common information-masking complaint about
exceptions: without additional information it is not possible to tell at E whether
the exception was raised by A or C. In path #5, the exception signaled by A is
caught and is thus not resignaled after C. Path #6 shows that a finally clause
can signal an exception even after a catch clause has caught or handled one.
In Path #7 the exception handler at B itself signals an exception which is resig-
naled after C. Since NetworkException is not a subtype of SecurityException,
the catch-clause at E is not appropriate and control transfers to F. Finally,
in path #8, everything that can go wrong does and B’s NetworkException is
masked by C’s SecurityException, so control transfers to E instead of F. The
JSR (jump to subroutine) Java bytecode instruction was designed to implement
this behavior [Lindholm and Yellin 1997]. While try-catch-finally is concep-
tually simple, it has the most complicated execution description in the language
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10( Network) =/|_:\

Security)

Security(

Fig. 7. A control flow graph for the example code involving exceptions and finally.

specification [Gosling et al. 1996] and requires four levels of nested “if”’s in its
official English description. In short, it contains a large number of corner cases
that programmers often overlook.

Applying the CFG construction algorithm given above to the code in
Figure 6 yields a CFG similar to the one in Figure 7. Blank edges represent
normal control flow. Labeled edges represent exceptional control flow and are
labeled with the associated exception. If the graph is interpreted directly it in-
cludes some infeasible paths. For example, A-C-F-end is possible in the graph
but is not possible in the original code because it involves the finally block at
C propagating a Network exception that was never signaled along that path. We
do not want our analysis to report defects along infeasible paths.

One solution is to duplicate every finally block once for each exception it
could propagate. This is similar to the common Java compilation technique of
“inlining JSRs”. We chose not to adopt that solution because we are interested
in a more scalable analysis.

The solution we use involves a variant of context-free language reachability
[Reps et al. 1995], as shown in Figure 7. In this framework, a path through the
CFG is only valid if is described by a certain context-free language. Context-
free reachability is typically used with a language of balanced parentheses to
obtain a precise context-sensitive data-flow analysis by matching up method
invocations and returns [Reps et al. 1995]. Here we use left parentheses to
indicate “normal” or “originally-signaled” exceptions and right parentheses for
exceptions that are resignaled after a finally block.

The language is more complicated than a simple nested “{"}"” of balanced
parentheses because it allows both “{”, representing an exception that is not
re-signaled after a finally, and “{}}”, representing an exception that is re-
signaled after multiple finally blocks. For example, consider the code:

try {
try { throw new AQ); }
finally { if (p == 1) throw new B(); }

} finally { p = 0; %

If p==0 on entry, the corresponding string will be “{4}4}4”. If p==1 on entry,
the corresponding string will be “{4{p}5”. Both strings represent valid paths.
Reps et al. allowed unbalanced parentheses to represent a path with a deeper or
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shallower call stack at the end than at the beginning; we use unbalanced paren-
theses to capture propagated and overridden exceptions. In our implementa-
tion, we compute our path-sensitive data-flow analysis via model-checking and
state-space exploration. As a result, we effectively compute the CFL inclusion
check by maintaining an explicit stack of pending exceptions to re-signal.

In addition to exceptions, finally clauses also interfere with return, break
and continue statements in a similar manner. For example, if a return state-
ment is executed inside the try block of a try-finally statement the return
value is remembered and the finally block is executed. If the finally block
terminates normally the pending return is “re-signaled”. If the finally block
signals an exception (or executes a return statement of its own, etc.) it over-
rides the pending return. We implement return as a special kind of pseudo-
exception that can only be “caught” by the end of a method body. Break and
continue statements are handled similarly except that more types of control
flow (e.g., while loops) can “catch” a break or continue pseudo-exception and
such pseudo-exceptions do not override normal pending exceptions if the as-
sociated loop occurs within the finally. This approach is similar to that of
Chatterjee et al. [2001], in which data-flow elements associated with finally
can have many different forms but the CFG construction remains normal.

The CFG construction presented here is strictly less general than the fac-
tored control-flow graph approach of Choi et al. [1999], and our data-flow anal-
ysis could be modified to work in their context. We consider a much smaller set
of exception-throwing instructions: method invocations and instructions that
throw checked exceptions. Their approach uses a modified dominance relation
and keeps large basic blocks. Large basic blocks are useful for compiler op-
timizations and many analyses, but we are specifically concerned with what
happens along exception control flow edges and not with improving the pro-
gram. As a result, we found it more natural to retain a standard CFG struc-
ture in which an instruction dominates all of its successors in the same basic
block.

5. DEFECT-FINDING DATA-FLOW ANALYSIS

The goal of our analysis is to find a path from the start of the method to the end
where a resource governed by the safety policy is not in an accepting state. The
analysis uses the control flow graph constructed according to the fault model
as well as the formal specification. The analysis may spuriously report correct
code as having defects and may fail to report real defects.

5.1 Analysis Summary and Motivation

The analysis is path-sensitive because we want to consider control flow and
because the abstract state of a resource (e.g., “opened” or “closed”) can change
from program point to program point. We have chosen to take a fully static
approach to avoid the problems of test case generation and the unavailabil-
ity of third-party libraries. The analysis is intraprocedural for efficiency since
we track separate execution paths. This leads to false positives, but a set of
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filtering heuristics (see Section 5.4) does eliminate false positives for our sub-
ject programs (see Section 6). Those heuristics may also mask real defects,
however. The analysis abstracts away data values, keeping instead a set of out-
standing resource states with respect to the specification as per-path data-flow
facts. This abstraction can also lead to false positives and false negatives, but
stylized usage patterns allow us to eliminate the false positives in practice.
At join points we keep data-flow facts separate if they have distinct sets of
resources.* We report a violation when a path leaves a method with a resource
that is not in an accepting state.

5.2 Analysis Details

Our analysis considers each method body in turn, symbolically executing
all code paths, paying special attention to control flow, exceptions and the
specification.

Given the control-flow graph, our flow-sensitive data-flow analysis [Fink
et al. 2006; Kildall 1973; Das et al. 2002; Engler et al. 2000; Reimer et al.
2004] finds paths along which programs violate the specification (typically by
forgetting to discharge obligations) in the presence of run-time errors. We ab-
stract away data values, and retain as symbolic data-flow facts a path through
the program and a multiset of outstanding resource safety policy states for that
path. That is, rather than keeping track of which variables hold important re-
sources we merely keep track of a set of acquired resource states. We begin
the analysis of each method body with an empty path and no obligations (i.e.,
resources governed by the specification that are not in an accepting state). If a
data-flow fact at the end of method contains outstanding obligations, we term
it a violation and report it.

The analysis is parametric with respect to a single specification
(%, S, 80,6, F) (see Section 3.1). If a specification contains multiple state ma-
chines we check against each one independently; it is simple to extend this
algorithm to multiple simultaneous specifications. Given such a safety policy
we must still determine what state information to propagate on the graph and
give flow and grouping functions. Much like Fink et al. [2006], the ESP [Das
et al. 2002], Metacompilation [Engler et al. 2000], and SABER [Reimer et al.
2004] projects, we combine a degree of symbolic execution with data-flow and
keep state associated with multiple distinct paths that pass through the same
program point.

Each path-sensitive data-flow fact f is a pair (7, P). The first component 7
is a multiset of specification states. So for each s € 7 we have s € S. We use
a multiset because it is possible to have multiple outstanding obligations with
respect to a single type of resource. The second component P is a path or list of
program points L between the start of the method and the current CFG edge.
The path P is used to report potential violations.

4In the analysis presented, keeping two states will usually yield a violation later. We present the
general join so that if the analysis abstraction is made more precise (e.g., if it captures correlated
conditionals) the join will work unchanged.
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lf lf lf y . lf’

L:if L: meth() L: other

l then lfclsc l]: fr‘: lﬁnhcr
vV

fthcn = eXtend(faL)
felse = eXtend(faL)

extend(f, L) if meth ¢ ¥
) extend({({s'}UT,P),L) if f=(T U{s}, P) and d(({s, meth)) =5
I ") extend({{s}UT,P),L) elseif f=(T,P) and 6({sg, meth)) = s
0 otherwise (indicates a policy violation)
extend(({s'}UT,P),L) if f=(T U{s},P) and §((s, meth)) = s’
Je = and s’ € F
extend(f, L) otherwise

fother = extend(f, L)
- _ | extend(shorter(f, f'), L) it f=(7,P)and f'=(7,P’)
Jiom = extend(f, L) U extend(f’, L) otherwise
extend((7, P), L)
shorter((7, P),(T,P')) = {

{(T.PeL)}
(T,P) if |P| <|P|
(T, P') otherwise

Fig. 8. Analysis flow functions.

5.3 Flow Functions

The analysis is defined by flow functions that are determined by the safety
policy and are given in Figure 8. The four main types of control flow nodes are
branches, method invocations, other statements and join points. Because our
analysis is path-sensitive and does not always fully merge data-flow facts at join
points, each flow function technically takes a single incoming data-flow fact and
computes a set of outgoing data-flow facts. However, in all of the non-join cases
the outgoing set is a singleton set. When an edge does contain a non-trivial set
of data-flow facts the appropriate flow function is applied element-wise to that
set.

We handle normal and conditional control flow by abstracting away data val-
ues: control can flow from an if to both the then and the else branch (assuming
that the guard does not raise an exception) and our data-flow fact propagates
directly from the incoming edge to both outgoing edges. We write extend( f, L) to
mean the singleton set containing fact f with location L appended to its path.

A method invocation may terminate normally, represented by the f,, edge in
Figure 8. If the method is not one of the important events in our safety policy
(i.e., meth ¢ ¥) then we propagate the symbolic state f directly. If the method
is part of the policy and the incoming data-flow fact f contains a state s that
could transition on that method we apply that transition and then append the
label L. This is similar to the way tracked resources are handled in the Vault
type system [DeLine and Fahndrich 2001].
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The third possibility for a method involves creating a new important re-
source. For example, the first time new Socket occurs in a path we create a
new instance of the specification state machine to track the program’s use of
that Socket object. This case and the previous case could be ambiguous if a
constructor function like new Socket has a separate meaning somewhere else
in the specification. We have never seen such a policy in practice and techni-
cally require that any outgoing edge label from the start state occur only at
the start state (e.g., V(sg,e) € Domain(s). V(s’,e’) € Domain(§). e = ¢ — s’ =
So).

The final case for a method invocation indicates a potential defect in the
program. In this case, we have an important event but the analysis is not
tracking any resource in a state for which that event is valid. With our sim-
ple two-state, two-event safety policies these violations almost always rep-
resent “double closes”. With more complicated policies they can also repre-
sent invoking important methods at the wrong time (e.g., trying to write to a
closed File or trying to accept on an un-bound Socket). When we encounter
such a path, we report it and stop processing it to avoid cascading defect
reports.

A method invocation may also raise a declared exception, represented by the
f. edge in Figure 8. Note that unlike the successful invocation case and as per
our fault model, we do not typically update the specification state in the out-
going data-flow fact. This is because the method did not terminate successfully
and thus presumably did not perform the operation to transform the resource’s
state. However, as a special case, we allow an attempt to “discharge an obliga-
tion” or move a resource into an accepting state to succeed even if the method
invocation fails. Thus, we do not require that programs loop around close func-
tions and invoke them until they succeed. Since no programs we have observed
do so, it would create spurious defect reports. The check s’ € F requires that
the result of applying this method would put the object in an accepting state.

The join function tracks separate paths through the same program point
provided that they have distinct multisets of specification states. Our join func-
tion uses the property simulation approach [Das et al. 2002] to grouping sets
of symbolic states. We merge facts with identical obligations by retaining only
the shorter path for defect reporting purposes (modeled here with the function
shorter(sy, s2)). We may visit the same program point multiple times to analyze
paths with different sets 7.

To ensure termination, we stop the analysis and report a defect when a
program point occurs twice in a single path with different obligation sets
(e.g., if a program acquires obligations inside a loop). For the safety poli-
cies we considered, that never occurred. We did encounter multiple programs
that allocated and freed resources inside loops, but the (lack of) run-time er-
ror handling was always such that an exception would escape the enclosing
loop.

For each f = (7, P) that goes in to the end node of the CFG, if3s € 7.5 ¢ F
the analysis reports a candidate violation along path P.In addition, itis possible
to report violations earlier in the process (e.g., double closes).
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Lines | methods with defects paths with defects per
Program of Library Mined library safety policy

Code Policy Policy Database | File | Stream
javad 2000 4k 1 0 0 1
javacc 3.0 13k 4 0 36 0
jtar 1.21 17k 5 0 7 4
jatlite 3.5.97 18k 6 0 4 0
toba 1.1c 19k 6 0 1 20
osage 1.0p10 20k 3 15 0 0
jecc 0.02 26k 0 0 0 0
quartz 1.0.6 27k 17 46 5 20
infinity 1.28 28k 14 4 0 165 1
ejbca 2.0b2 33k 31 0 39 117
ohioedge 1.3.1 40k 15 23 5 0
jogg 1.1.3 47k 7 0 11 2
staf 2.4.5 55k 12 0 76 0
hibernate 2.0b4 57k 13 93 34 6 19
jaxme 1.54 58k 6 1 12 0
axion 1.0m2 65k 15 45 1 61 5
hsqldb 1.7.1 71k 18 35 22 8 13
cayenne  1.0b4 86k 7 18 2 27 6
sablecc 2.17.4 99k 3 0 0 0 6
jboss 3.0.6 107k 40 94 134 5 53
mckoi-sql 1.0.2 118k 37 69 37 6 190
portal 1.8.0 162k 39 99 20 13
pcgen 4.3.5 178k 17 0 120 0
compiere 2.4.4 | 230k 322 715 10 9
aspectj 1.1 319k 27 0 50 48
ptolemy2 3.0.2 | 362k 27 72 0 504 46
eclipse 2/26/0 3.0M 203 0 453 486
total 5.3M 895 430 1129 | 1631 1059
eclipse 5/25/03 | 1.6M 126 0 181 252

Fig. 9. Run-time error-handling defects by program and policy. The “Defects” columns indicate the
total number of distinct methods that contain violations of various policies. The “Database”, “File”,
and “Stream” columns give the total number of acyclic control-flow paths within those methods
that violate the given policy. Results from an older version of eclipse are provided for comparison
purposes but are not included in the “total” row.

5.4 Defect Report Filtering

Finally, we use heuristics as a post-processing step to filter candidate viola-
tions. The analysis as presented finds intraprocedural violations of the policy
with respect to the fault model, but it may also point out spurious warnings.
A spurious defect report is called a false positive. Based on a random sample
of two of our benchmarks, 30% of the defect reports produced by our analysis
as presented before are false positives. We believe that number to be unaccept-
ably high. Based on an exhaustive analysis of the false positives reported by
this analysis, we designed three simple filtering rules, which eliminate all false
positives in our twenty-seven benchmark programs (see Figure 9) and two case
studies (see Section 10).
When a violation (7, P) is reported, we examine its path P.
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(1) Conditional. Every time the path passes through a conditional of the formt =
null we look for a state s € 7 where s ¢ F' and s represents an object of
type t. If we find such a state we remove it from 7. This addresses the very
common case of checking for null resources:

if (sock != null) try { sock.close(); } catch (Exception e) {}

We assume that a path in which t was verified to be null does not make
any further use of it. Since our analysis ignores data values, it would report
a false positive in such cases.

(2) Field. We examine L for assignments of the form field = t. For each such
assignment we remove one non-accepting state of type t from 7. When
important resources are assigned to object fields, that object sometimes
contains a separate “cleanup” method that is charged with releasing those
resources. We assume that such a cleanup method always exists and is
called later; we may thus miss real defects.? Such cleanup methods are com-
mon in our experience. For example, the SessionImpl class of the hibernate
program (see Section 6) features a method called cleanup() that sets one
Boolean field to false and then invokes the clear () method of the objects
associated with nine other fields.

(3) Return. If L contains a return t, we remove one non-accepting state of
type t from 7. Methods with such return statements are effectively wrap-
pers around the standard library constructors and the obligation for han-
dling the resource falls to the caller. While we did observe many such con-
structor wrappers we did not observe any “destructor” wrappers, so we do
not similarly remove obligations based on values passed as function argu-
ments. If our analysis were interprocedural we would not need this filtering
rule.

If the set 7 has been depleted so as to contain only states s € F, there
is no candidate violation and nothing is reported. These three simple filters
eliminate all false positives we encountered but could cause this analysis to
miss real defects. Based on a random sample of two of our benchmarks as well
as an in-depth analysis of false positives on a version of eclipse, applying these
three filters causes our analysis to miss between 5% and 10% of the real defects
(see Section 6.2).

5.5 Usability

We have implemented our analysis in a tool that reports potential error-
handling defects in Java programs with respect to our fault model and vari-
ous safety policies. The tool comes with a predefined set of standard library
policies. Users can also define additional policies by giving the policy a unique
name and listing the resources and transitions involved. For simple two-state
safety policies, this reduces to listing the acquire and release functions; larger

5We could refine this heuristic by searching for a “cleanup” method that calls the appropriate
field.close(), but we would still need to prove that the cleanup method is eventually called later,
possibly in another method, which is beyond the scope of our lightweight intraprocedural analysis.
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policies are defined as a table of transitions. For example, the Socket portion of
the policy in Figure 5 is represented as a small text file:

Socket // policy name

simple_policy // is a simple two-state policy
java/net/Socket.java Socket // acquire function
java/net/Socket.java close // release function

More verbose syntax is available for specifying compilation units declaring mul-
tiple classes or for concepts such as “or any subclass of this class.” The tool is
invoked on a set of policy names and Java files.

The analysis is exponential in the worst case but quite efficient in practice.
For example, performing this analysis, including parsing, typechecking and
printing out the resulting defect paths, took 104 seconds and 46 MB of memory
on a 1.6 GHz machine for the hibernate program. That program has 7,038
methods, totaling 57,580 lines of code, with an average method size of 8.18
lines and a largest method size of 350 lines. As a second example, eclipse 3.2.2
involves 23,801 methods and three million lines of code. The average method
size is 13.34 lines and the largest method is 1,649 lines; the total analysis time
including parsing was 350.8 seconds on a 3.6GHz Pentium4.

Each defect report is given its own context listing its compilation unit and
the relevant resources (policies) and exceptions involved. The path P is given
using source-code line and column offsets; calls to methods, thrown exceptions
and filtering heuristic information are included in the path list. Additional
information, such as a ranking of exceptions by the number of times they occur
in defect reports and the number of times they are handled successfully, is also
given.

5.6 Analysis Weaknesses

The analysis as presented includes a number of sources of false positives and
false negatives. First, even before the analysis itself is used, our fault model
(see Section 3.2) does not consider implicit control flow paths from unchecked
exceptions (such as DivisionByZero). The analysis may thus miss defects along
such paths. Second, the filtering heuristics can introduce false negatives by
masking legitimate defect reports. Third, the intraprocedural nature of the
analysis can lead to false positives, as the analysis will flag both the caller and
the callee procedure if a resource is passed between them.® Finally, abstracting
data values can create both false positives and false negatives. For example,
the analysis will not report a defect associated with creating two resources and
then freeing the second one twice.

A number of simple improvements could be made to the analysis without
reducing its efficiency. For example, the analysis might be combined with an
alias analysis so that data values are not abstracted away completely but in-
stead dealt with by equivalence classes of aliases [Das et al. 2002; Fink et al.

60ur intraprocedural analysis can also have false negatives if a called method throws an exception
that is not declared in its interface, but such situations are not part of our fault model (which
includes only declared checked exceptions).
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Program Application Policy Acquire and Release Events

infinity infinity/gui/WindowBlocker setBlocked false
infinity/gui/WindowBlocker setBlocked true
hibernate | hibernate/SessionFactory openSession
hibernate/Session close

axion axiondb/tools/BatchSqlCommandRunner BatchSqlCommandRunner
axiondb/tools/BatchSqlCommandRunner close

hsqldb hsqldb/1lib/StringInputStream StringInputStream
hsqldb/1lib/StringInputStream close

cayenne cayenne/conn/PoolManager PoolManager
cayenne/conn/PoolManager dispose

jboss jboss/ejb/BeanLock sync

jboss/ejb/BeanLock releaseSync
mckoi-sql | mckoi/database/SimpleTableQuery SimpleTableQuery
mckoi/database/SimpleTableQuery dispose

ptolemy2 ptolemy/kernel/util/Workspace getWriteAccess
ptolemy/kernel/util/Workspace doneWriting

Fig. 10. Example simple two-state application-specific policies.

2006]. As a second example, for method bodies without loops, the analysis might
take a symbolic execution-style approach and associate predicates with data-
flow facts to avoid false positives associated with correlated conditionals. Such
an improvement might obviate the need for the Conditional filtering heuristic.

Despite these weaknesses, the analysis as presented is certainly applicable
to general Java programs that use standard library and program-specific re-
sources in the presence of language-level exception handling, especially since
most such programs treat resources in a highly idiomatic manner. We discuss
the analysis results in the next section.

6. POOR HANDLING ABOUNDS

In this section we apply the analysis from Section 5 and the specifications from
Section 3.1 to show that many programs have defects in their handling of ex-
ceptional situations. We consider a diverse body of twenty-seven Java programs
totaling over five million lines of code. Most of the programs were taken from
the Sourceforge open source program repository [SourceForge.net 2003]. The
programs include databases, business software, networking applications and
software development tools.

Figure 9 shows results from this analysis. The “Defects” column shows the
number of methods that violate at least one policy. We applied our three library
policies to all of the programs.” The largest standard library policy used in
our experiments has 11 edges and 8 states and describes the JDBC database
interface. In addition, for nine of the programs, totaling 1 million lines of code,
a total of 69 program-specific policies (found via specification mining [Weimer
and Necula 2005]) were also available. Figure 10 shows indicative examples of
some two-state application-specific policies used.

TWe also applied the Socket policy from Figure 5 and found 14 paths with violations in 4 of the
programs. Since the number of Socket violations is low when compared to the other policies we
will not discuss them directly.
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In the larger programs, much of the application logic did not interact with our
library policies. For example, in eclipse and ptolemy2 only 10% of the source
files mentioned resources covered by those safety policies. We find many more
defects in ptolemy2 when using ptolemy2-specific specifications, and thus more
frequently occurring, mined policies.

Figure 9 includes every defect report that was not filtered out using the
heuristics from Section 5.4. All of the methods with defects were manually
inspected to verify that they contained at least one defect. This inspection as-
sumed that a method could raise any of its declared exceptions (i.e., it used the
same fault model discussed in Section 3.2). The heuristics eliminate all false
positives that the analysis would report on these programs. Thus, from the
perspective of our fault model, there are zero false positives in Figure 9. The
heuristics cause some false negatives; we present detailed results about them
in Section 6.2.

All paths in Figure 9 arose in the presence of exceptions the program did not
handle correctly. More than half of these paths featured some sort of exception
handling (i.e., the exception was caught), but the resource was still leaked. This
demonstrates that existing exception handlers often contain defects.

The most common problematic exception was the Java I0Exception: it oc-
curred somewhere in 597 of the defects paths and was the final, uncaught excep-
tion in 474 of them. The SQLException was a close second, occurring in 877 paths
and going uncaught in 114 of them. Although the SQLException occurred on
more paths, we rank by counting unique methods with errors. There were more
individual methods with bad handling of I0Exception, while a smaller number
of methods that involved SQLException tended to feature many hidden control-
flow paths involving that exception. While I0Exceptions are more problematic
in absolute terms, it appears to be more difficult to handle SQLExceptions cor-
rectly. The SecurityException was third with 86 mentions and 68 uncaught
instances. These numbers show that programs have some sort of error han-
dling (e.g., SQLExceptions are caught) but that the handling code itself is not
always correct.

A single path may violate multiple safety policies: for example, along an
exceptional path the program might forget to close a Socket and a ResultSet.
Since the leftmost policy in Figure 9 is presumed to be more important, such
cases are categorized in favor of'it. To give one example, of the 59 possible defect
paths reported in hibernate, 34 involved violating multiple policies along a
single path with up to 4 forgotten resources at once. All of the defects that
we report could have been fixed with flags or nested try-finally statements.
However, fixing those 32 paths from hibernate would require four nested try-
finally statements or multiple separate flags. Defects that cross safety policies
argue strongly for the need to have an error-handling mechanism that supports
multiple resources in sequence.

6.1 Sample Defects

We briefly illustrate two indicative defects found by our analysis. In many cases,
language-level exception handling is omitted, as in this example from axion’s
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ObjectBTree class:

01: public void read() throws IOExceptiomn, /* ... */ {
02: File idxFile = getFileById(getFileId());
03: /...

04: FileInputStream fin = new FileInputStream(idxFile);
05: ObjectInputStream in = new ObjectInputStream(fin);
06: // ...

07: in.close();

08: fin.close();

09: }

This happens even though the throws annotation on line 1 and extant han-
dling in other methods mean that the programmer is aware of the possibility
of run-time errors. Such examples show that it would be useful to have an
automatic mechanism that does the right thing in common cases with no pro-
grammer intervention.

We also encountered instances of try-finally statements that protect
some, but not all, operations, as in this example from eclipse 3.2.2’s
JNIGeneratorApp class (all comments added for emphasis):

01: void output(bytel[] bytes, String fileName) throws IOException {
02: FileInputStream is = null;

03: try {

04: is = new FileInputStream(fileName) ;

05: if (compare(new ByteArrayInputStream(bytes),

06: new BufferedInputStream(is))) return;

07:  } catch (FileNotFoundException e) { } // ignored exception
08: finally {

09: try { if (is != null) is.close(); }

10: catch (IOException e) {} // ignored exception
11:  }

12: FileOutputStream out = new FileQutputStream(fileName) ;

13:  out.write(bytes); // no try

14:  out.close(); // no finally

15: }

Care is taken to deal with run-time errors that occur on lines 3-11 when is
is created and used the first time, but writing to out on line 13 is done without
an enclosing try-finally. Successfully opening fileName for reading on line
4 does not guarantee that opening it for writing on line 12 and writing to it
on line 13 will succeed. Such examples show that it would be useful to have
a mechanism for fine-grained control of some error handling but automatic
behavior for others. Additional examples of detected errors can be found in
Weimer and Necula [2004].
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Condition | Field | Return False False Defects | Defects
Positives | Positive % | Found Found %
Yes Yes Yes 0 0% 203 94.4%
Yes Yes - 39 15.8% 207 96.3%
Yes - Yes 12 5.5% 204 94.9%
— Yes Yes 58 21.7% 209 97.2%
Yes - - 51 19.7% 208 96.7%
- Yes - 102 32.3% 214 99.5%
- — Yes 71 25.3% 210 97.7%
- - - 115 34.9% 215 100%

Fig. 11. Number of false positives reported and defects found on eclipse 3.2.2 as a function of
filtering heuristics used.

6.2 Filtering Experiments

The defects that we are prevented from seeing can be as interesting as those
that are reported. We conducted a series of experiments to determine how many
false positives were eliminated by our filtering heuristics and how many false
negatives were created by those same heuristics. Figure 11 shows the result
of turning off various combinations of our filtering heuristics when applying
our analysis to eclipse 3.2.2 2/26/07. Thus the Return heuristic eliminates
at least 39 false positives (or 34% of the total potential false positives), the
Field heuristic eliminates at least 12 false positives (or 10%), and the Condition
heuristic eliminates at least 58 (or 50%).

Note that a candidate defect report can contain properties related to multiple
heuristics and can thus be filtered by either one. For example, there are 12 false
positives without Field and 58 false positives without Condition, but if both are
eliminated then there are 71 (not 70) false positives total. There is thus one
potential defect report that involves both storing the object to a field and also
checking the object against null. The total number of false positives that could
be filtered by more than one rule is small (6 out of 115, or 5%).

Figure 11 shows potential incremental benefits in terms of finding more de-
fects. In this experiment the false negative rate for using the three heuristics
was 5.5%. If the user is willing to accept a 35% false positive rate, the number
of real defect reports dropped by the filtering rules drops to zero. Disabling the
Condition seems to be a reasonable point of compromise: the false negative rate
drops below 3% and the false positive rate is just above 20%. It is our opinion
that software ships with known defects [Liblit et al. 2003] and that making
the tool and analysis easy to use by having no false positives is more impor-
tant than finding 5% to 10% more defects. In a verification or safety-critical
setting, however, removing sources of false negatives would be of paramount
importance.

6.3 The Importance of Detected Defects

Even if a defect is not a false positive and represents an actual violation of
the policy, it may not be worth the development organization’s time to fix the
defect. Defects that are perceived as unlikely to affect real users often go unfixed
at many points in the development cycle because of the perceived dangers of
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code churn and because there are enough “dangerous” defects to fix to keep
programmers occupied.

We report resource leaks along paths that contain one or more run-time
errors. We must thus demonstrate that these defects are a serious problem “in
the real world”. Unfortunately, a thorough evaluation of the importance of a
defect and the frequency of its occurrence at runtime is beyond the scope of
this work and is typically situation-specific. Aspects such as the performance
or security impact of a defect or the cost of fixing it can be difficult to measure
quantitatively. We present some evidence to suggest that the defects we report
are important.

One of the authors of ptolemy2 ranked the defects that we found on his own
five point scale. For that program, 11% of the reported defects were in tutorials
or third-party, and thus unimportant, code; 44% of them rated a 3 out of 5 for
taking place in “little used, experimental code”; 19% of them rated a 4 out of 5
and were “definitely a bug in code that is used more often”; and 26% of them
rated a 5 out of 5 and were “definitely a bug in code that is used often.” The
45% of the defects that rated a 4 or 5 were fixed immediately. The granularity
for “code that is used often” was module-level (e.g., “engine” vs. “testing”), and
thus even a defect in an important module might lie on an uncommon path.
The author claimed that for his long-running servers resource leaks were a
problem that forced them to reboot every day as a last-ditch effort to reclaim
resources. We cannot claim that this breakdown generalizes, but it does provide
one concrete example.

We also performed a so-called time travel experiment to determine whether
the defects found by our analysis were important enough to fix. The direct
experiment of finding defects, reporting them to developers and then count-
ing how many are fixed is difficult to perform, especially in the open-source
community.

We used archival copies and version control systems to obtain a snapshot
of eclipse 2.0.0 from July 2002 as well as a snapshot of eclipse 3.0.1 from
September 2004. We then ran our analysis on eclipse 2.0.0 and chose at ran-
dom 100 of defects reported. Without reporting any of the defects to eclipse
programmers we then looked for those defects in eclipse 3.0.1 to see if they
had been fixed by the natural course of eclipse development. In our case, 43%
of the defects found by our tool in eclipse 2.0.0 had been fixed by eclipse
3.0.1. Between those versions eclipse underwent many refactorings, so man-
ual inspection was necessary because defective code had often moved from one
class to another. Given our stated goal of improving software quality by finding
and fixing defects before a product is released, this number is important and
helps to validate our analysis, our fault model and our specifications. Combined
with our zero false positive rate it suggests that using our analysis is worth-
while because almost half of the defects it reports would have to be fixed later
anyway.

It is difficult to obtain numbers indicating what fraction of the defects re-
ported were later fixed for various defect-finding research projects. Our two
experiments suggest that 44-45% of the defects we report are considered real
by developers. As one external datapoint, the FindBugs project [Hovemeyer
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and Pugh 2004] produced 300 warnings when applied to a 350,000-lines-of-
code Java financial application and the development team considered 17% of
them to be real defects.

7. DESTRUCTORS AND FINALIZERS

Before proposing a new language feature to simplify the programming of re-
source reclamation in the presence of exceptions, we must consider the advan-
tages and disadvantages of existing approaches. Based on the defects found
by our analysis, we claim that try-finally blocks are ill-suited for handling
certain classes of resources in the presence of run-time errors. A more detailed
characterization of the defects found by our analysis can be found in previous
work [Weimer and Necula 2004]. In essence, however, exceptions create hidden
control-flow paths that are difficult for programmers to reason about [Sinha and
Harrold 2000; Sinha et al. 2004; Gupta et al. 2000; Choi et al. 1999; Robillard
and Murphy 2003].

Destructors and finalizers are other existing programming language features
that can help programs deal with resources in the presence of run-time errors.

A destructor is a special method associated with a class. Destructors are
typically used with the language C++ [Stroustrup 1991] but are also present in
other languages like C# [Hejlsberg et al. 2003]. When a stack-allocated instance
of that class goes out of scope, either because of normal control flow or because
an exception was raised, the destructor is invoked automatically. Destructors
are tied to the dynamic call stack of a program in the same way that local
variables are. Destructors thus provide guaranteed cleanup actions for stack-
allocated objects even in the presence of exceptions. However, for heap-allocated
objects the programmer must still remember to explicitly delete the object along
all paths. We would like to extend destructors: rather than one implicit stack
tied to the call stack, programmers should be allowed to manipulate first-class
collections of obligations.

In addition, we believe that programmers should have guarantees about
managing objects and actions that do not have their lifetimes bound to the
call stack (such objects are common in practice—see, for example, Gay and
Aiken [1998]). In many domains, multiple stacks are a more natural fit with
the application. For example, a web server might store one such stack for each
concurrent request. If the normal request encounters an exceptional situation
and must abort and release its resources, there is generally no reason that
another request cannot continue. Destructors can be invoked early, but would
typically have to include a flag to ensure that actions are not duplicated when it
is called again. We believe such bookkeeping should be automatic. Destructors
are tied to objects and there are many cases where a program would want to
change the state of the object, rather than destroying it. We shall return to that
consideration in Section 8.2.

A finalizer is another special method associated with a class. Finalizers are
typically used with Java [Gosling et al. 1996] but are also present in other lan-
guages like C# [Hejlsberg et al. 2003]. A finalizer is invoked on an instance of
a class when that instance is about to be reclaimed by the garbage collector.
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The garbage collector is not guaranteed to find any particular piece of garbage
and is not guaranteed to find garbage in a certain order or time-frame. Com-
pared to pure finalizers, most programmer-specified error handling must be
more immediate and more deterministic. Finalizers are arguably well-suited to
resources like file descriptors that must be collected but need not be collected
right away. However, even that apparently-innocuous use of finalizers is often
discouraged because programs have a limited number of file descriptors and
can easily “race” with the garbage collector to exhaust them [O’Hanley 2005].
In contrast, the elements of the “Database” policy from Section 3.1 should be re-
leased as quickly as possible, making finalizers an awkward fit for performance
reasons. For example, the Oracle9i documentation specifically states that fi-
nalizers are not used and that cleanup must be done explicitly. As a second
example, the SABER project [Reimer et al. 2004] classified as a defect the use
of finalizers to close database connections in a large financial application in the
field.

We want a mechanism that is well-suited to being invoked early, and while
finalizers can be called in advance they suffer from the same disadvantages as
destructors in that regard. Like destructors, finalizers can be invoked early but
doing so typically requires additional bookkeeping.

More importantly, finalizers in Java come with no order guarantees [Gosling
et al. 1996]. For example, a Stream built on (and referencing) a Socket might
be finalized after that Socket if they are both found unreachable in the same
garbage collection pass. For example, in this code if the Stream finalize method
is called first, the Socket will be closed twice:

class Socket {
VA I V4
void finalize() { this.close(); }
}
class Stream {
Socket s ;
/x ... %/
void finalize() { s.close(); this.close(); }

}

If the arbitrary cleanup actions above were to be handled by finalizers on de-
pendent objects, the natural “trick” of adding an extra pointer field to the child
object pointing to the parent object to ensure that the child action is called
before the parent action would not be sound. Thus we desire an error handling
mechanism that can strictly enforce such dependencies and provide a more intu-
itive ordering for cleanup actions. In addition, finalizers must be asynchronous
(and may be so even in single-threaded programs), which complicates how they
must be written. While such dependencies could be encoded in a finalizer sys-
tem, we did not observe such a system in any of the programs we examined in
Section 6.

Finally, note that Java programmers do not make even a sparing use of final-
izers to address these problems. Some Java implementations do not implement
finalizers correctly [Boehm 2003], finalizers are often viewed as unpredictable
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or dangerous, and the delay between finishing with the resource and having
the finalizer called may be too great. In all of the code surveyed in Section 6,
there were only 13 user-defined finalizers (hibernate had 4; osage had 3; jboss
and eclipse had 2 each; javad and aspectj had 1 each). One might also hope
that standard libraries would make use of finalizers, but this is not always
the case. The GNU Classpath 0.05 version of the Java Standard Library does
not use finalizers for any of the resources governed by the safety policies in
Section 6. Sun’s JDK 1.3.1.07 does use them, but only in some situations (e.g.,
for database connections but not for sockets). While other or newer libraries
may well use finalizers for all such important resources, one cannot currently
count on the library to do so in a platform-independent manner. We would like
to make something like finalizers more useful to Java programmers by making
them easier to use and giving them destructor-like properties such as support
for scoping based on the dynamic call stack.

The results in Section 6 argue that language support is necessary: a better
Socket library will not help if Sockets, databases, and user-defined resources
must be dealt with together. Using exception handling to deal with important
resources is difficult. In the next section, we will describe a language mechanism
that makes it easy to do the right thing: all of the defects presented in this paper
could have been avoided using our proposed language extension. The analysis
presented in Section 5 could verify programs that use our mechanism in an
intraprocedural manner (e.g., using the methodScopedStack approach described
in Section 8).

8. COMPENSATION STACKS

Based on existing defects and coding practices, we propose a language exten-
sion that lets program actions and interfaces be annotated with compensations,
which are closures containing arbitrary code. At run-time, these compensations
are stored in first-class stacks. Compensation stacks can be thought of as gener-
alized destructors, but we emphasize that they can be used to execute arbitrary
code and not just call functions upon object destruction.

8.1 Compensations

Our compensation stacks are an adaptation of the database notions of com-
pensating transactions and linear sagas [Garcia-Molina and Salem 1987]. A
compensating transaction semantically undoes the effect of another transac-
tion after that transaction has committed. A saga is a long-lived transaction
seen as a sequence of atomic actions a; - - - a, with compensating transactions
¢1 -+ - ¢,. This system guarantees that either a; - - - a, executesora; - - -apcy - - - ¢1
executes. Note that the compensations are applied in reverse order. We have
found the compensation stack model to be a good fit for saga-style run-time er-
ror handling, although there are other techniques for controlling long-running
multi-step processes (e.g., Dayal et al. [1990]). Many program actions require
that multiple resources be handled in sequence.

Our system links actions with compensations, and guarantees that if
an action is taken, the program cannot terminate without executing the
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associated compensation. Compensation stacks are first-class objects that store
closures. They may be passed to methods or stored in object fields. The Java
language syntax is extended to allow arbitrary closures to be pushed onto
compensation stacks. These closures are later executed in a last-in, first-out
order. Closures may be run “early” by the programmer, but they are usually
run automatically when a stack-allocated compensation stack goes out of scope
or when a heap-allocated compensation stack is finalized. Relying on a final-
izer to deal with a compensation stack opens the door to many of the timing
problems associated with finalizers (see Section 7). However, since the final-
izer is called on the compensation stack and not on an individual compensa-
tion, the compensations within a single stack will still be called in last-in-
first-out order. Multiple compensation stacks that are garbage collected at the
same time may be finalized in any order, but within any stack the compensa-
tions will be run in order. Programmers should not use finalizers for nested
compensation stacks that are being used to achieve a “nested transaction”
effect.

If a compensating action raises an exception while executing, the exception
is logged but compensation execution continues.® When a compensation termi-
nates (either normally or exceptionally), it is removed from the compensation
stack.

Compensation stacks behave like destructors, deallocating resources based
on lexical scoping, but they are also first-class collections that can be put in
the heap and that make use of finalizers to ensure that their contents are
eventually executed. They are as convenient as destructors when lexical and
lifetime scoping coincide and are flexible enough to handle resources when
they do not. Executing some compensations early is important and allows the
common programming idiom where critical shared resources are freed as early
as possible along each path.

In addition, the program can explicitly discharge an obligation without ex-
ecuting the corresponding compensation code (presumably based on outside
knowledge not directly encoded in the safety policy). In our system, ignor-
ing the compensation code requires an explicit function call, which can be
viewed as a programmer declaring that the compensation should be run only
to handle a run-time error. The programmer need only write code for the small
number of non-run-time error paths in this manner, rather than the large
number of implicit control-flow paths associated with run-time errors. Addi-
tional compensation stacks may be declared to create a “nested transaction”
effect.

8Neither Java finalizers nor POSIX cleanup handlers propagate such exceptions. LISP’s
unwind-protect may not execute all cleanup actions if one raises an exception. In analogous sit-
uations, C++ aborts the program. Since our goal is to keep the program running and restore
invariants, we choose to log such exceptions. Ideally, critical compensations would contain their
own internal compensation stacks for error handling. A second option would be to have the type
system statically verify that a compensation cannot raise an exception. In the particular example of
Java, this solution is not desirable. First, it would require checking unchecked exceptions, which is
non-intuitive to most Java programmers. Second, most compensations can, in fact, raise exceptions
(e.g., close can raise an I0Exception).
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8.2 Compensation Stack Implementation

We implemented compensation stacks using a source-level transformation tool
for Java programs. This entails defining a CompensationStack class, adding
support for closures (as in the Pizza project [Odersky and Wadler 1997]), and
adding convenient syntactic sugar for lexically-scoped compensation stacks.
Users of the tool write Java files with the compensation stack syntax described
below and use a variant of javac that saves the original file, applies the trans-
formation, compiles the resulting pure Java file, and then replaces it with the
original source. This approach has the advantage of transparency to the user:
normal build processes can be used. It has the disadvantage that debugging the
resulting program is more difficult as bytecode line-number information related
to compensation stacks will not match the original source code. For example,
single-stepping through the code that manages a compensation stack would be
obscure.

Consider again the client code from Figure 1. The first step in our approach
is to annotate the interface of methods that acquire important resources. For
example, we would associate with the action getConnection the compensation
close at the interface level so that all uses of Connections can be affected.
Consider this code:

public Connection getConnection() throws SQLException {
/* ... do work ... %/
}

We would change it so that a CompensationStack argument is required. The
syntax compensate { a } with { ¢ } using (S) corresponds to executing the
action a and then pushing the compensation code c on the stack S if a completed
normally. The modified definition follows:

public Connection getConnection(CompensationStack S)
throws SQLException {
compensate {
/* ... do work ... */
} with {
this.close();
} using (S);
}

Note that this sort of interface change is not required by our approach. It is
entirely possible for each client to use a local CompensationStack, as in:

compensate { ¢ = getConnection(); }
with { c.close(; }
using (8) ;

We believe it may be easier to modify the method signature once, since there
are presumably many more uses than definitions. Any annotation requirement,
however, limits the applicability of our approach.

As we mentioned in Section 7, this mechanism has the advantages of early
release and proper ordering over just using finalizers. Not all actions and
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compensations must be associated at the function-call level; arbitrary code can
be placed in compensations. After annotating the database interface with com-
pensation information, the client code might look like this:

01: Connection cn;

02: PreparedStatement ps;

03: ResultSet rs;

04: CompensationStack S = new CompensationStack();

05: try {
06: cn = ConnectionFactory.getConnection(S, /x ... x/);
07: StringBuffer qry = ...; // do some work

08: ps = cn.prepareStatement(S, qry.toString());
09: rs = ps.executeQuery(S);

10: ... // do I/0-related work with rs

11: } finally {

12: S.run();

13: }

As the program executes, closures containing compensation code are pushed
onto the CompensationStack S. Compensations are recorded at run-time, so re-
sources can be acquired in loops or other procedures. Before a compensation
stack becomes inaccessible, all of the associated compensations must be exe-
cuted. A particularly common use involves lexically scoped compensation stacks
that essentially mimic the behavior of destructors. We add syntactic sugar al-
lowing a keyword (e.g., methodScopedStack) to stand for a compensation stack
that is allocated at the beginning of the enclosing scope and finally executed
at the end of it. In addition, we optionally allow that special stack to be used for
omitted compensation stack parameters. We thus arrive at a simple, six-line
version of the original client code:

01: Connection cn;

02: PreparedStatement ps;

03: ResultSet rs;

04: cn = ConnectionFactory.getConnection(/* ... */);
05: StringBuffer qry = ...; // do some work

06: ps = cn.prepareStatement (qry.toString());

07: rs = ps.executeQuery();

08: ... // do I/0-related work with rs

All of the release actions are handled automatically, even in the presence of
run-time errors. An implicit CompensationStack based on the method scope is
being used and the resource-acquiring methods have been annotated to use
such stacks.

Compensations can contain arbitrary code, not just method calls. For exam-
ple, consider this code fragment adapted from Brown and Patterson [2003]:

01: try {
02: StartDate = new Date();
03: try {
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04: StartLSN = log.getLastLSN();
05: ... // do work 1

06: try {

07: DB.getWriteLock();

08: ... // do work 2

09: } finally {

10: DB.releaseWriteLock();
11: ... // do work 3

12: }

13:  } finally {

14: StartLSN = -1;

15: }

16: } finally {
17: StartDate = null;
18: }

We might rewrite it as follows, using explicit CompensationStacks:

01: CompensationStack S = new CompensationStack();

02: try {

03: compensate { StartDate = new Date(); }

04: with { StartDate = null; } using (S);
05: compensate { StartLSN = log.getLastLSN(); }
06: with { StartLsSN = -1; } using (S);

07: ... // do work 1

08:  compensate { DB.getWriteLock(); }

09: with { DB.releaseWriteLock();

10: ... /* do work 3 */ } using (8S);
11: ... // do work 2

12: } finally {
13: S.run();
14: %}

Resource finalization and state changes are handled by the same mecha-
nism and benefit from the same ordering. The assignments to StartLSN and
StartDate as well as “work 3” are examples of state changes that are not method
invocations. This also has the advantage that “undo” code is close to its “do”
counterpart.

Traditional destructors are tied to objects, and there are many cases where
a program would want to change the state of the object rather than destroy-
ing it. Destructors could be used here by creating “artificial objects” that are
stack-allocated and perform the appropriate state changes on the enclosing
object. However, such a solution would not be natural. For example, the pro-
gram from which the last example was taken had 17 unique compensations
(i.e., error-handling code that was site-specific and never duplicated) with an
average length of 8 lines and a maximum length of 34 lines. Creating a new ar-
tificial object for each unique bit of error-handling logic would be burdensome,
especially since many of the compensations had more than one free variable
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(which would generally have to be passed as extra arguments to the helper
constructor). Nested try-finally blocks could also be used but are error-prone
(see Section 2.1 and Section 6).

In practice, it is sometimes useful to run compensations “early” rather than in
a strict last-in-first-out order. At run-time, each compensation is associated with
an identifier j. This identifier is returned by the compensate-using expression.
It can be retained by the programmer to run that compensation early or it can be
ignored. In addition, the programmer can specify a that a particular identifier
should be used, using syntax like:

compensate { sock = new Socket(); } with { sock.close(); }
using (compStack) id (sock);

This allows the programmer to use compStack.runEarly(sock) to run the com-
pensation associated with the sock object. In our implementation compensa-
tion stacks are maintained as doubly linked lists that are also indexed by a
hash table. The runEarly () method uses the hash table to provide keyed ac-
cess to compensations. We treat instances of runEarly() as annotations that
the corresponding socket can be executed outside of the normal last-in-first-out
order.

Programmers should follow certain guidelines when programming with
compensation stacks. For example, the intended lifetime of a compensation
stack should just exceed the intended lifetime of all of its compensations. If
a methodScopedStack is used to hold compensations for a resource that is
allocated with the intent of being used by the callers of that method, the
resource will be released prematurely when that method terminates. Simi-
larly, local resources tracked by a global compensation stack might not be
released early enough. We recommend that compensation stacks only be
passed from callers to callees. If a method allocates a resource that is in-
tended to be used by its callers, the caller should pass in a compensation
stack to hold that resource’s compensation. This is a more general instance
of the getConnection() example above: a constructor or allocator that re-
turns a resource should have its interface modified so that it accepts a com-
pensation stack. In general, correctly associating resources and compensation
stacks is akin to the problem of associating memory allocations with regions
[Gay and Aiken 1998].

Previous approaches to similar problems can be vast and restrictive depar-
tures from standard semantics (e.g., linear types or transactions) or lack support
for common idioms (e.g., running or discharging obligations early). We designed
this mechanism to integrate easily with new and existing programs, and we
needed all of its features for our case studies. Using compensation stacks, we
found it easy to avoid the mistakes that resulted in defects that were reported
hundreds of times in Section 6. In the common case of a lexically scoped linear
saga of resources, the run-time error-handling logic needs to be written only
once with an interface, rather than every time a resource is acquired. In more
complicated cases (e.g., storing compensations in heap variables and associat-
ing them with long-lived objects) extra flexibility is available when it is needed.
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e = skip no-op
ey ; ez sequencing
if x then ey else ex non-deterministic choice
while x do e non-deterministic looping

let ¢; = new CompStack() in e compensation stack creation
compensate a; with b; using ¢; compensation stack use

store ¢; store a stack in memory (address not modeled)
let ¢; = load in e load a stack from memory (address not modeled)
run c; discharge all of a stack’s obligations

runEarly a; from ¢; discharge one obligation early

Fig. 12. A simple expression language with compensation stacks.

9. COMPENSATION STACK STATIC SEMANTICS AND DESIGN

We provide a simple static type system for the correct use of explicitly declared
compensation stacks. This allows us to highlight the differences between our
system and a full linear type system for tracking resources. It also provides
a framework in which to describe the ordering guarantees provided by our
system. The theoretical developments in this chapter formalize how we track
compensation stacks but not individual compensations at run-time, and thus
avoid resource-allocation defects.

9.1 Static Semantics

Figure 12 shows a simple expression language involving compensation stacks.
Normal program variables (e.g., integers) and objects (e.g., Sockets) are ab-
stracted away. The join points after the non-deterministic conditional and loop
suffice to model arbitrary control flow. We use ¢; to refer to a particular com-
pensation stack, b; to refer to particular single compensation, and a; to refer
to the action associated with compensation b;.

The compensation expressions are as described in Section 8.2. Each static
let ¢; = new CompStack() in e in the program is annotated with a fresh i (which
can be thought of as the line number on which it occurs) for bookkeeping
purposes. Unless ¢; is stored in memory, its scope is limited to e in the sense
that all of is compensating actions must be executed before the end of e. The
store ¢; expression represents storing a compensation stack in a global variable
and setting a finalizer to run its compensations. Perhaps the most important
detail is that run ¢; and runEarly a; from ¢; remove compensations from stacks
after executing them at run-time. Compensations are removed from stacks even
if those stacks are stored in memory or global variables. Thus, there is no
danger of “double-frees” or “free-and-then-finalize-and-then-free” in calling
run ¢; multiple times.

Each compensation stack in this system is similar to a tracked resource in
a linear type system [DeLine and Fahndrich 2001]. Whenever a compensation
stack is in scope, we know statically at what location i it was allocated (or
loaded). The typing rules for compensation stacks are orthogonal to the typing
rules for normal program variables and objects. The goal of the type system is
to reject programs in which it cannot be guaranteed that all compensations will
be executed.

ACM Transactions on Programming Languages and Systems, Vol. 30, No. 2, Article 8, Publication date: March 2008.



8:36 o W. Weimer and G. C. Necula

, C1,D1te1:C2,Dy C2,Date2:C3,D3
—— skip seq
C,DFskip: C, D Ci1,D1Fe1 ;ex:Cs, D3

Ci1,D1 ey :Co,Dy C1,D1Feg:Cs5,D3 CoUDy=Cs3UDs
C1,D; - if x then e else e : (CQ UCg), (D2 N D3)

if

Ci1,Di1Fe:Co,Dy CrUCy=CoUD>
C1,D1 Fwhilexdoe: CyUC2, D1 N Do

while

C1,Dq U{’l} Fe:Co, D2 D3 ZDQ\{’L}
C1,D; I let ¢; = new CompStack() in e : Ca, D3

let

i1€C
C, D - compensate a; with b; using ¢; : C, D

compC

D2 = D1\ {i}
C, D1 F compensate a; with b; using ¢; : C U {i}, Da
Cy = C1\ {i} i€D

storeC' storeD
C1, D F store ¢; : C2, D U {1} C,DFstorec; : C, D

compD

Clu{i},D1|_€:CQ,D2 CSZCQ\{i}
Cl,Dl let ¢; = load in e: Cg,DQ

loadC

Cq U{i},Dl Fe:Cq, Dy D3= DQ\{Z}
C1,D1 Flet ¢; = load ine: Ca, D3
Co = C1\ {3} i€D
runC
C1,D1 Frun ¢; : Co, DU {3} C,DFrunc; : C,D

loadD

runD

ieCUD
C,D F runEarly a; from¢; : C, D

early
Fig. 13. Expression language static semantics.

A compensation stack, which can potentially store un-executed compensa-
tions, is only allowed to go out of scope if it is stored in a global variable or
if we can prove statically that all of its compensations have been executed.
We approximate this by requiring that runc¢; or store ¢; occur after the last
compensate a; with c; using c; before c¢; goes out of scope. Our typing judgment
maintains two disjoint sets: C, a set of “active” compensation stacks that may
have unexecuted compensations, and D, a set of “inactive” compensation stacks
on which all compensations have been executed or stored in memory. Together,
C and D contain all in-scope compensation stacks. Adding a compensation to
a inactive stack makes it active. Thus, we propose an effect type system for
compensation stacks.

The form of our typing judgment is C, D +~ e : C’, D'. This judgment says that
expression e typechecks in the context of the set of active compensation stacks
C and the set of unused stacks D and that after executing the expression the
set of active stacks will be C’ and the set of unused stacks will be D’.

Figure 13 shows the typing rules for the language in Figure 12. Note that
whenever we write a set difference C\ {i} we require {i} € C. The seq rule shows
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that this is a flow-sensitive type system for compensation stacks. The if rule is
presented in slightly more generality than is warranted by our simple language.
Recalling the invariant that C N D = ), at the join point of the conditional
the resulting active set C3 contains all of the stacks that might possibly be
active after either branch and the inactive set D3 contains all of the stacks
that are definitely inactive after both branches. The rule is thus conservative.
The Cy U Dy = C3 U D3 requirement prevents the program from creating a
new compensation stack on one branch of the conditional. This is impossible
in our simple example language, because newly-created compensation stacks
have local scope, but is possible in our Java implementation.

The while rule is also conservative. If the loop body can make a stack ac-
tive, we assume that it does. If the loop body can make a stack inactive, we
assume that it does not (and thus a well-typed program will have to run those
compensation stacks again later, even if they are empty).

The let rule introduces a new compensation stack and requires that it be
inactive as it goes out of scope. The comp rules are simple since managing the
stacks is deferred to run-time. Adding a compensation to a inactive stack makes
it active and compensations can only be added to valid stacks that are currently
in-scope.

The store rules simulate the user storing a compensation stack in a global
variable and consigning ultimate care of it to the garbage collector. When it
is finalized the run-time system will execute any remaining compensations
associated with it. The storeD rule for storing a inactive stack is provided for
completeness. There is rarely a reason to store a stack with no outstanding
obligations.

The loadC and loadD rules are similar to the let rule except that the stack c;
need not be inactive as it goes out of scope at end of e. Instead, the program is
obligated to discharge any compensations in heap-stored compensation stacks
at some later point (e.g., in a different block containing let ¢; = load in e or via a
finalizer). Compensation stacks stored in memory are not tracked as precisely
as those stored in local variables or method arguments. If all of the obligations
in ¢; have been discharged (i.e., ifi € Dy and the loadD ruleis used) then nothing
remains to be done. If some of the compensations in ¢; remain outstanding (i.e.,
ifi € Ce and the loadC rule is used) then the outgoing Cs will not contain i: the
active and inactive sets in these judgments refer only to compensation stacks
that are not stored in memory.

The run rules execute all remaining compensations in the given stack and
ensure that it is inactive. The run and store rules are the only way to move
a stack from the active set C to the inactive set D, so every stack must pass
through a run or store rule at least once just before going out of scope.

The early rule models our syntax for allowing the user to optionally execute
certain compensations early, if desired. The runEarly a; from ¢; expression does
remove the compensation b; associated with a; from stack ¢; if b; was present.
Our run-time tracking of compensations thus prevents “double frees”. However,
our static type system tracks compensation stacks, not individual compensa-
tions. This has the benefit of making the system tractable, since the number of
compensation stacks is much smaller than the number of compensations. Note
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that b; does not have to be the topmost compensation on the stack ¢;. If the early
rule is used, compensations on a particular stack will not exhibit a strict last-in
first-out order. The early rule is provided as an escape hatch for programmers
and is not intended to be used commonly; we treat it as an annotation that
running b; early is safe.

In any event, if b;, the particular compensation associated with a;, has al-
ready been executed or is otherwise no longer on the appropriate stack, nothing
happens at run-time. Since we do not track individual compensations, we can-
not know if the last outstanding compensation has been discharged by this rule,
so the early rule cannot make a stack inactive.

We say that a program e typechecks if ¢, ¥ - e : ¢, #. Our system can be viewed
as a linear type system for sets of resources rather than a linear type system for
individual resources. A program containing a loop that allocates resources and
puts obligations to deallocate them on a stack ¢; can be statically type-checked
provided that run ¢; occurs after any compensations are added to ¢; on all paths
containing ¢; before it goes out of scope. Similarly, programs in which only one
branch of a conditional adds an obligation to a compensation stack are handled
naturally. We also expect that it will be easier to avoid creating aliasing of
compensation stacks than it is to avoid creating aliases of individual resources
(e.g., in the same way that it is easier to manually allocate and destroy regions
of objects then it is to manually use malloc and free for individual objects).

We do not discuss method calls and returns here. An annotation system
similar to the one described in Vault [DeLine and Fahndrich 2001] suffices:
each function type specifies its requirements for compensation stacks and how
it transforms them (e.g., requiring two active stack arguments and ensuring
that the first one is inactive when it returns). The type system is also amenable
to the standard extension for handling exceptions (i.e., extend the judgment to
produce one pair C, D representing normal termination and another pair C’, D’
for exceptional termination).

9.2 Compensation Stack Weaknesses

Modifying a program to use compensation stacks is an invasive transformation
that may be difficult to reason about. One major concern is that the transfor-
mation is not always semantics-preserving. At one level this is intentional: the
transformed program typically calls cleanup code exactly once per resource,
rather than zero times (e.g., a resource leak) or multiple times (e.g., a double
free). Inasmuch as the transformation fixes defects, it must fail to preserve
the exact program semantics. However, a finally block in the original pro-
gram may not execute at the same point as a compensation in the transformed
program. If there are dependencies between statements in the finally block
and statements after it, the original and transformed program may behave dif-
ferently. For example, in the startLSN code in Section 8.2, in which a finally
block sets startLSN to —1, a statement after that finally block may expect
startLSN to be —1. If the assignment is placed in a compensation it may not be
executed immediately, and later code that depends on startLSN’s value will not
behave correctly.
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The danger of out-of-order compensations is very real, but is mitigated by the
idiomatic way in which Java programs handle cleanup. For example, none of
the defects presented in Section 6.2 and none of the error handling in either of
the case studies discussed in the next section feature dependencies between the
cleanup code and subsequent statements in that method. We do not believe such
out-of-order problems would be common in practice. They are certainly possible,
however, especially for programmers unfamiliar with the new compensation
semantics.

Beyond truly convoluted cases of exception handling, programming with
compensation stacks may not necessarily be simpler than using traditional
exception handling. The reduction from “try { s = new Socket(); } finally
{ s.close(); }” to “s = new Socket();” with implicit stacks and annotated
interfaces adds an optional argument whose flow must be tracked. We believe
that tracking specialized implicit value flow (to correctly handle resources us-
ing compensation stacks) may be easier than tracking the implicit control-flow
of exceptions (to correctly handle resources using try), but this will not always
be the case. A software project that already has a strong try-finally-if-close
discipline for releasing resources will not gain from adopting our approach.

The use of compensation stacks, which are essentially lists of function point-
ers, may complicate static analyses such as control flow analysis or data slicing
more than the original implicit control flow from exceptions did [Sinha and
Harrold 2000]. In this regard, compensation stacks are as difficult to analyze
as finalizers, but would occur frequently in the transformed program.

The use of compensation stacks also adds a new language feature that does
not have standard language semantics. The compensation stack model of build-
ing up obligations which are later discharged may be unintuitive to program-
mers. As a result, training may be required before they can be used in a less
error-prone fashion than standard try-finally blocks.

A simpler “logging” approach might modify the program to record resource
acquisitions and releases at run-time. The program could then be fixed if any
resource leaks are detected in the log. Such a logging approach has many po-
tential advantages and disadvantages over compensation stacks: (1) there is no
danger of executing cleanup actions out of order; (2) subsequent analyses and
debugging efforts are not complicated; (3) no features with nonstandard seman-
tics are added; (4) only defects that appear at run-time will potentially be fixed;
and (5) the run-time monitoring can be disabled if desired, either program-wide
or for a specific region.

We view addressing defects that have not yet been identified using the test
set as an advantage for compensation stacks. Formulating test cases and test
metrics for exceptional situations can be difficult [Sinha and Harrold 1999;
Malayeri and Aldrich 2006]. If the use of compensations does not introduce
additional defects from out-of-order execution, then additional error-handling
defects are fixed early. The logging approach would need an indicative test set
in order to find defects, just as other dynamic analyses do (e.g., Savage et al.
[1997]).

In addition, as we shall argue in the next section, the run-time overhead
of using compensation stacks is low, even if they are always on. The logging
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approach has the advantage of being able to reduce that overhead. However, if
the program is evolved and maintained over time, the compensation stacks may
prove an advantage. For example, if a second Socket is added to a system, the
logging approach must re-enable logging and test both the resource acquire and
the resource release. A system already using compensation stacks continues to
pay the run-time overhead and must test the resource acquire, but the resource
release using the compensation stack mechanism has presumably already
been verified (especially when using the annotated interface approach from
Section 8.2).

Compensation stacks can complicate subsequent analyses. However, the
compensation syntax makes it clear what code is the compensation. For com-
pensation stacks not stored in the heap, that code can only be executed at run ()
or runEarly () method invocations. In the common case of implicitly scoped com-
pensation stacks, the disruption of control is regular: if action a ; is reached, then
compensation b; will be executed just before the end of the method. Analyses
could be slightly extended to handle control-flow graphs with simple compen-
sation stacks in a similar spirit to way that they are extended for factored
control-flow graphs [Choi et al. 1999]. Ultimately, however, this is a weakness
of a compensation stack approach, and uses of compensations can confuse static
analyses.

We believe that the dangers of run-time overhead and out-of-order execution
are minimal in practice and that being able to correct error-handling defects for
which no test cases have been developed is an advantage. However, there are
many situations in which the logging approach described here would be a better
fit, and users of compensation stacks should be aware of their weaknesses.

10. CASE STUDIES

We hand-annotated two programs to show that the run-time overhead is low
and that existing programs can be rapidly modified to use compensation stacks.
Guided by the data-flow analysis in Section 5, the programs were modified
so that their existing run-time error handling made use of compensation stacks;
no truly new run-time error handling was added (even when inspection revealed
it to be missing) and the behavior was otherwise unchanged. In the common
case this amounted to removing an existing close call (and possibly its guarding
finally) and using a CompensationStack instead (possibly with a method that
had been annotated to take a compensation stack parameter). Maintaining the
stacks and the closures takes time, but that overhead was dwarfed by the I/0
latency in our case studies. As a micro-benchmark example, a simple program
that creates hundreds of Sockets and connects each to a website is 0.7% slower
if a compensation stack is used to hold the obligation to close the Socket.

The subject for the first case study, Aaron Brown’s undo-able email store
[Brown and Patterson 2003], can be viewed as an SMTP and IMAP proxy that
uses database-like logging. The original version was 35,412 lines of Java code.
Annotating the program took about four hours and involved updating 128 sites
with code to use compensations as well as annotating the interfaces for some
standard library methods (e.g., sockets and databases). The resulting program
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was 225 lines shorter (about 1%) because redundant run-time error-handling
code and control-flow were removed. The program contains non-trivial error
handling, including one five-step saga of actions and compensations and one
three-step saga. Single compensating actions ranged from simple close calls
to 34-line code blocks with internal exception handling and synchronization.
The annotated program’s performance was almost identical to the original on
fifty micro-benchmarks and one example workload (all provided by the original
author). Performance was measured to be within one standard deviation of the
original; the overhead associated with keeping track of obligations at run-time
was dwarfed by I/O and other processing times. For example, the annotated
program took 289.1 seconds to complete the example workload compared to
286.9 seconds for the original average over five trials with a standard deviation
of 12.4 seconds.

Compensations were used to handle every request answered by the program.
By changing a method invocation in some insufficiently-guarded cleanup code
to always raise one of its declared exceptions in both versions of the program,
we were able to cause the unmodified version of the program to drop all SMTP
requests. The version using compensations handled that cleanup correctly (.e.,
without leading to a failure) and proceeded normally. While this sort of targeted
fault injection is hardly representative, it does show that the defects we are
addressing with compensations can have an impact on reliability.

The subject for the second case study, Sun’s Pet Store 1.3.2[Sun Microsys-
tems 2001], is a web-based, database-backed retailing program. The original
version was 34,608 lines of Java code. Annotations to 123 sites took about two
hours. The resulting program was 168 lines smaller (about 0.5%). Most error-
handling annotations centered around database Connections. Using an inde-
pendent workload [Chen et al. 2002; Candea et al. 2003], the original version
raises 150 exceptions from the PurchaseOrderHelper’s processInvoice method
over the course of 3,900 requests. The exceptions signal run-time errors related
toRelationSets being held too long (e.g., because they are not cleared along with
their connections on some paths) and are caught by a middleware layer which
restarts the application.? The annotated version of the program raises no such
exceptions: compensation stacks ensure that the database objects are handled
correctly. The average response times for the original program (over multiple
runs) is 52.06 milliseconds (ms), with a standard deviation of 100 ms. The av-
erage response time for the annotated program is 43.44 ms with a standard
deviation of 77 ms. The annotated program is more consistent, and, because
less middleware intervention was necessary, the program-and-middleware sys-
tem was 17% faster.

In these case studies we were able to rapidly annotate existing programs
to use compensation stacks. The resulting programs did not suffer an undue
performance overhead. Finally, the checks ensure that cleanup code is invoked
correctly along all paths through the program.

9While updating a purchase order to reflect items shipped, the processInvoice method creates an
Iterator from a RelationSet Collection that deals with persistent data in a database. Unfortu-
nately, the transaction associated with the RelationSet has already been completed.
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11. RELATED WORK

Related work falls into five broad categories: analyses in the presence of excep-
tion, approaches to cleaning up resources, type systems, reliability and excep-
tion handling, and transactional models.

11.1 Analyses in The Presence of Exceptions

Sinha and Harrold [1999] present multiple testing criteria for programs that
use exception-handling constructs, as well as describing how to compute testing
requirements using those constructs. Defects in exception-handling code can be
hard for programmers to detect: testing metrics that make it clear that certain
exceptional control-flow paths are not being examined would make it easier to
find and fix such defects. In later work [Sinha and Harrold 2000], they describe
the effects of language-level exception handling on techniques such as con-
trol dependence, data-flow and control flow analysis. Their observations, such
as noting that data-flow facts must be propagated along exceptional control-
flow paths, apply to our data-flow analysis. More recently [Sinha et al. 2004],
they use such static and dynamic analyses to guide software development and
maintenance tasks in the presence of implicit control flow from polymorphism
or exceptions.

Malayeri and Aldrich [2006] have proposed a lightweight system for specify-
ing exceptions. They infer information and take advantage of user annotations,
but they assume that whole-program analyses are undesirable. Since we are
not concerned with evolving a program over time and verifying its compliance,
we place less emphasis on annotation and more on defect reports without false
positives.

Gupta et al. [2000] support optimization in the presence of exceptions via
static and dynamic analyses that allow some exception-causing instructions
to be ignored while applying certain optimizations. Their analysis determines
the portion of the program state that can be discarded if an exception occurs
and has been used successfully in the Jalapeno Java compiler [Burke et al.
1999]. Our fault model is concerned only with method dispatches that raise
exceptions: they consider a much broader class of potential exception-throwing
instructions. The Jex tool [Robillard and Murphy 2003] and others (e.g., Chang
et al. [2001]) have investigated the flow and reach of exceptions: exceptions
can often end up escaping module boundaries with unintended consequences.
Determining which exceptions can reach which program points is essential for
ensuring reliability in systems with language-level exception handling. In our
analysis we do not examine what happens to an exception after it causes the
program to violate a specification.

The factored control-flow graph (FCFG) model of Choi et al. [1999] efficiently
represents programs with exceptional control flow without losing precision. In
an FCFG, exception-throwing instructions do not force the end of a basic block.
This changes the dominance relation: an instruction does not necessarily dom-
inate all subsequent instructions in its basic block. Program analyses on an
FCFG must be extended to recognize this change. They explicitly support the
sort of global data-flow analysis we present in Section 5. Since we do not consider
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as many potentially exception-throwing instructions (e.g., we do not consider
unchecked exceptions), and do not need large basic blocks for program opti-
mization, we construct a more direct CFG with a standard dominance relation.
Their FCFG model is strictly more general than ours, and our analysis could
be performed in their framework.

The SABER project [Reimer et al. 2004] uses a small set of pattern-like
rules to detect defects in Java programs. It is similar to the Metacompilation
[Engler et al. 2000] and ESP [Das et al. 2002] projects. The scope of SABER
is quite broad, and includes defects related to, for example, incorrectly storing
objects and incorrectly implementing special paired methods. SABER has spe-
cific handling for “must call X after Y” rules, and our “must call close() after
new” analysis in Section 5 is a particular instance of that. One of the SABER
case studies analyzes closing database connections instead of using finalizers.
One primary difference is that SABER’s filtering rules are less aggressive than
ours: 15 of the 94 defect reports from their four case studies were false positives.
Beyond that, SABER is more general than the analysis we present in Section
5. Our additional checks for ResultSets and Statements could be codified as
SABER rules.

Bruntink et al. [2006] analyze the exception handling of an industrial soft-
ware system, paying special attention exception raising and logging. In their
system exceptions are propagated by return codes, and they present a formal
fault model for such an environment.

Fink et al. [2006] present a flow-sensitive, context-sensitive typestate verifier
for Java programs. Their analysis handles the same sorts of specifications that
we do but is much more precise and integrates aliasing information. However,
their work does not address the issue of exceptional control-flow directly.

11.2 Cleaning Up Resources

Beyond destructors and finalizers there are a number of existing approaches
that are similar in spirit to our compensation stacks.

Common Lisp’s “unwind-protect body cleanup” syntax behaves like try-
finally and ensures that cleanup will be executed no matter how control
leaves body. To handle a common case, the macro “with-open-file stream
body” opens and closes stream automatically as appropriate. Since Lisp comes
with first-class functions and macros, unwind-protect can be used more con-
veniently than Java’s try-finally with respect to duplicate and unique run-
time error handling. However, it still suffers from many of the same limita-
tions (e.g., no easy way to discharge obligations early, one nesting level per
resource, one global stack). In Scheme “dynamic-wind before work after” and
call-with-open-file serve similar purposes, although dynamic-wind is com-
plicated by the presence of continuations (e.g., the dynamic extent of work may
not be a single time period).

The POSIX thread library (IEEE 1003.1¢-1995) provides a per-thread can-
cellation cleanup stack (pthread cleanup push and pop). The cleanup routines
are executed when the thread exits or is canceled. However, the cleanup stack
is not a first-class object, so cleanup code must be associated with the thread
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and not with an object. In addition, only the most recently-added cleanup code
can be executed early or removed from the stack. Also, those two actions may
only be taken inside the same lexical scope as their corresponding push. The
stack uses C-style function pointers, so general run-time error-handling (like
that of undo in Section 10) requires the creation of separate functions. Finally,
the mechanism can only be used safely in “deferred cancellation mode” because
performing the action and pushing the cleanup code are not done atomically
with respect to thread cancellation. Our compensate-with expression handles
this issue in Java, where thread cancellation is signaled via exceptions.

The Cleanup Stack programming convention is used by C++ programs that
run on the Symbian embedded OS. The Symbian OS is typically used for cell
phones and other environments where memory is a particularly scarce resource
and every effort is made to keep track of and release it. A Symbian Cleanup
Stack keeps track of local pointers to memory and frees them automatically
if some intermediate computation terminates with an exception [van der Wal
2002]. There is a single global Cleanup Stack and only one type of resource (i.e.,
explicitly managed memory) is supported. In addition there is no support for
freeing memory early along some paths.

The GNU Debugger gdb uses cleanups as “a structured way to deal with
things that need to be done later” [Stallman et al. 2002], Cleanups are executed
when gdb commands are finished, when an exceptional situation occurs, or
on explicit request. A cleanup is a chain of function pointers and arguments.
Cleanup chains do not support arbitrary closures and can be awkward when
more than one local variable must be referenced by the postponed action. In
addition, their default execution behavior is somewhat tied to gdb’s top-level
command loop.

11.3 Type Systems

Flow-sensitive type systems check many of the same safety properties that our
system enforces. The key difference is that a strong type system will reject a
program that cannot be statically shown to adhere to the safety policy, whereas
our system will use run-time instrumentation to ensure compliance.

DeLine and Fahndrich [2001] propose the Vault language and static linear
type system for enforcing high-level software protocols. Vault represents a dif-
ferent point in the design space, with more powerful properties but a more
difficult programming model. It can verify that operations are performed on
resources in a certain order (e.g., that open is called before read), while we can-
not. It can also ensure that an operation is in a thread’s computational future
(e.g., that an opened resource is closed by the end of the method). Vault’s keys
represent the right to perform certain operations on objects. Keys can be in
various states (e.g., open or closed). Vault’s variant keys (e.g., special objects
that are either empty or contain a key) can be used to free an object early on
one path and free it later on another. These variants require the programmer
to make an explicit run-time check to determine if the key has already been
freed. Our system handles this aspect slightly more naturally by performing
that check automatically. On the other hand, our system lacks stateful keys.
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Vault does not support arbitrary polymorphic lists of keys. In Vault, placing a
resource in a list makes it anonymous. We can place arbitrary compensations
relating to different resources in the same compensation stack.

Perhaps the greatest drawback of Vault is that it requires much of the pro-
gram to adhere to a linear type system. Linear type systems are generally
considered to be difficult to work with, and structuring a program to fit a linear
type system is often a herculean task. Later work [Fahndrich and DeLine 2002]
extends the Vault type system with additional features that ease the burden of
programming with linear types, but aliasing can still be difficult. However, our
basic approach cannot be modeled in a standard linear type system. In our ap-
proach, the compensation stack holds a reference to the tracked resource while
the program continues to manipulate that same resource. In a standard linear
type system, such aliasing cannot be allowed.

11.4 Reliability and Run-Time Error Handling

Quite a bit of attention from a number of research communities has been de-
voted to issues of run-time error handling in long-running processes and gen-
eral software systems. Broadly speaking, expressive systems for signaling and
handling run-time errors are considered integral to the reliability of large-scale
software systems.

Alonso et al. [2000] believe that poor support for exception handling is a
major obstacle for large-scale and mission-critical systems.

Hagen and Alonso [2000] claim that exception handling must be separated
from normal code if processes are to be reused like libraries. This separation is
similar to our goal of annotating interfaces with compensation information.

Dony [2001] describes an object-oriented exception handling system where
all exception handlers have a dynamic call-stack scope. Dony’s form of unwind-
protect is similar to our approach, although it offers no support for discharging
obligations early or for a first-class handling of the current set of pending obli-
gations.

Miller and Tripathi [1997] note that requirements of object-oriented design,
such as specialization and evolution, can conflict with language-level exception
handling mechanisms. Similarly, Cargill [1994] argues that without extraordi-
nary care exceptions actually diminish the overall reliability of software. The
hard part of exception handling is not raising exceptions but writing the sup-
port code so that exceptional situations are handled correctly. Our technique is
particularly well-suited to handling the matched acquire-free behavior in his
presentation.

Valetto and Kaiser [2002] note that adaptation to run-time errors usually
involves several conditional or dependent activities that may fail; the linear
saga model we support is rich enough to capture many dependent activities.

Cardelli and Davies [1999] present a language for writing programs with an
explicit notion of failure. We have a less holistic notion of run-time errors but
have an easier time integrating with existing code.

Demsky and Rinard [2003] allow defects in key data structures to be repaired
at run-time based on specifications. Their technique works at the level of data
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structures and not at the level of program actions, and it may be viewed as
addressing an orthogonal problem. For example, their approach does not lend
itself naturally to I/O-based repairs and ours does not handle logical defects in
compensation code.

The VINO operating system [Seltzer et al. 1996] uses software fault isolation
and lightweight transactions to address problems like resource hoarding in
user-defined kernel extensions. This form is similar to our approach in that
an interface has been annotated with compensations that are called if a fatal
exceptional situation occurs. However, in VINO there is only one compensation
stack per extension, and it is not a first-class object. In addition, there is no
support for nested transactions without defining additional extensions.

11.5 Transactions

Database transactions provide a strong and well-founded approach to run-time
error handling [Gray 1981]. However, many find the consistency and durabil-
ity of transactions to be too heavyweight for most programming purposes (e.g.,
Alonso et al. [2000], Liskov and Scheifler [1983], and Dayal et al. [1990]). For
example, Java programs that want transactional support for certain pieces of
data (e.g., e-commerce applications updating inventory tables) often make ex-
plicit calls to an external database (as in the “Database” policy of Section 3.1).
For variables internal to the program, however, other measures are more ap-
propriate.

Restructuring a program to make use of transactions can be a large, inva-
sive change. Borg et al. [1989] describe a checkpointing system that allows
unmodified programs to survive hardware failures. Essentially, every system
call is intercepted and logged. Others [Schmuck and Wyllie 1991; Lowell and
Chen 1998; Shapiro et al. 1999] provide similar services. Our compensation
annotations are a much less drastic change to the program semantics than the
incorporation of transactions.

In addition, these transaction techniques address an orthogonal run-time er-
ror handling issue. In Borg et al.’s system, a process with a defect that acquires
a lock twice and deadlocks on initialization will continue to deadlock no matter
how many times it is recovered. Lowell et al. [2000] formalize this point by not-
ing that the desire to log all events actually conflicts with the ability to recover
from all run-time errors. Such systems are very good at masking hardware
failures and quite poor at masking software failures; Lowell et al. suggest that
85-95% of application defects cause crashes that would not be prevented by
a failure-transparent operating system. Our technique hopes to address such
defects, but it is less automatic.

Many researchers have found that advanced transactional concepts fit closely
with language-level run-time error handling [Dan et al. 1998; Liu et al. 2001].
One such concept, the compensating transaction, semantically undoes the ef-
fects of another transaction after that transaction has been committed [Korth
et al. 1990]. Designing a full compensating transaction that completely undoes
the effects of a previous action is often difficult. Our system relaxes this require-
ment by limiting compensations to certain actions (e.g., resource allocation)
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and by associating compensations with interfaces so they need only be defined
once. Alonso et al. [1994] consider the notion of linear sagas [Garcia-Molina and
Salem 1987] in a similar context. Our system is slightly more general than a
pure linear saga [Korth et al. 1990] and more closely resembles a form of nested
or interleaved linear sagas.

12. CONCLUSION

Software reliability remains an important and expensive issue. This work
presents an approach for addressing a certain class of software reliability prob-
lems associated with exceptional situations and language-level error handling.

First, we presented a static data-flow analysis for finding defects in how pro-
grams deal with important resources in the presence of exceptional situations.
To find defects in programs we formalized some initial specifications of how a
program should acquire and release resources. To find defects in exceptional
situations we defined a particular fault model to describe what exceptional sit-
uations could crop up. The analysis itself was designed to scale well to large
programs. We introduced three simple filtering rules to make the analysis eas-
ier to use by eliminating false positives. The analysis found over 1,300 methods
with defects in almost five million lines of Java code.

Second, given those resource-handling defects in exceptional situation we
designed a language feature to make it easier for programmers to avoid mak-
ing such mistakes. We proposed that programmers keep track of important
obligations at run-time in special compensation stacks. We provide a static se-
mantics for compensation stacks to highlight their differences from previous
approaches like pure linear type systems. In two case studies we showed that
compensation stacks can be rapidly applied to existing Java programs and that
they introduce minimal overhead.

Using specifications and our fault model we can analyze programs to find
defects. Once defects have been located we can provide programmers with an
easy-to-use tool for addressing them. All of this can be done rapidly, before the
program is deployed. We believe this work can help to make software more
reliable in the presence of exceptional situations.
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