Secure Access Delegation of Encrypted Medical
Information

Arnab Deb Gupta, Yuriy Polyakov, and Kurt Rohloff
College of Computing Sciences
New Jersey Institute of Technology
Newark, NJ 07102
Email: {ad479, polyakov, rohloff} @njit.edu

Abstract—The design of modern medical data information
systems is driven by the need to collect and present data to
authorized users. For collected medical data to be effective and
improve patient treatment it must be transported from a device,
aggregated, and analyzed to produce results that can be shared
with care providers. Medical data may be analyzed and used
years after collection at different locations because data sources
and care providers often operate on different time scales and are
geographically distributed. The need for distributed and long-
term medical data storage thus requires an effective security
model to delegate data access. Current data access delegation
models do not provide end-to-end protection. An effective dele-
gation model must keep data encrypted at all times and avoid the
need to share decryption keys to avoid security vulnerabilities.
We present a secure information architecture and prototype to
implement such a model with end-to-end data encryption while
restricting data access to designated recipients. QOur architecture
integrates recent Proxy Re-Encryption (PRE) advances into
a client-server based security model that can be applied to
open Internet communications. We discuss design tradeoffs and
show experimental results. Qur architecture lowers health care
data management costs by enabling the secure outsourcing of
data hosting to low-cost cloud computing environments. The
architecture will also reduce the vulnerability of health care
data systems to security challenges such as attacks compromising
confidentiality and malicious insiders.

I. INTRODUCTION

The secure collection, storage, and use of medical data
is a relevant requirement and challenge to the health care
system. Health care involves a diverse set of data collection
systems such as medical records, health surveys, administra-
tive records, and even wearable devices that reflect a patient’s
current location and level of health. This data is collected and
used by various entities such as hospitals, health care centers,
physicians, and health plans and the data is often collected in
different locations from where it’s used. These complexities
and variations in data collection and processing are amplified
by occurring over different time scales. For example, data may
be collected every few seconds in the case of life-threatening
emergency alerts or used years after collection in the case of
pediatric data. Regardless of location or time, medical data
is highly regulated and medical data security is a pressing
concern [1].

In order to fully realize the benefits of medical data, a
medical data security model must simultaneously be accessed
efficiently, encourage rapid learning, and protect patient pri-

vacy. However, the geographically and temporally distributed
lifecycles and security concerns attached to medical data make
it challenging to create low-cost information architectures that
allow secure data sharing. It is difficult to balance security,
effectiveness, and cost concerns because they are often co-
dependent and tradeoffs between them may not be desired.
Current security models protect medical data with encryption
technology when data is in motion (i.e. when transmitted
between storage points) or at rest (i.e. when stored). However,
the sharing of medical data requires either decrypting the data
or the sender and recipient sharing decryption keys. These
limitations compel medical data processing to occur in trusted
computing environments. These environments can be expen-
sive to set up and maintain because they require specialized
management and housing in dedicated facilities. An additional
issue with current security models is that data is only encrypted
when it is sent to a pre-approved recipient. This point-to-point
transmission time encryption requires prior coordination of de-
cryption keys. That coordination requirement creates a security
vulnerability data thieves can exploit to steal the keys. Security
and effectiveness trade-offs have prevented the widespread use
of low-cost cloud computing environments [2] and significant
engineering efforts have been needed to securely integrate
health care systems with larger information ecosystems [3].
The preceding concerns and deficiencies raise the cost of
patient treatment and reduce the flexibility and effectiveness of
collected medical data. Additionally, it has been difficult, if not
impossible, to use scalable information architectures in low-
cost cloud computing environments because of the difficulty
of sharing encrypted data.

We have created a secure information architecture for medi-
cal data that eliminates current security model deficiencies by
using end-to-end lattice encryption to 1) transmit encrypted
data to a cloud computing environment and 2) share data
with recipients without having to decrypt the data or share
decryption keys. Lattice encryption is a relatively new family
of encryption technologies [4] based on the hardness of
variants of the “Shortest Vector Problem” [5]. Lattice en-
cryption schemes are considered post-quantum and are secure
against attacks from adversaries with both practical quantum
and classical computing devices [6]. This means that lattice
encryption schemes such as the one our architecture is based
on [7] are more future-proof than legacy public key encryption



schemes such as RSA which can be defeated by quantum
computing devices.

The contribution of this paper is an end-to-end secure
information architecture for the collection, processing, and
distribution of encrypted medical data using a lattice-based
variant of Proxy Re-Encryption (PRE). We describe our ar-
chitecture’s prototype implementation which is a web-based
solution allowing patients to publish encrypted data to a
PRE-enabled server and doctors to securely access, share,
and use data through that server. We discuss the engineering
and design considerations accounted for in developing the
prototype. We also evaluate the prototype under the CIA triad
(Confidentiality, Integrity, and Availability) and suggest future
steps to better support those evaluation factors.

This paper is organized as follows. In Section II we exam-
ine the security model and identify functional, security, and
cost features that should be considered when evaluating our
architecture. We discuss how we can use PRE to securely
delegate access to encrypted data in Section III. We present our
architecture’s prototype implementation in Section IV. Section
V discusses our architecture’s initial experimental results.
Section VI discusses related encrypted computing activities
and applications. The paper concludes with a discussion of our
insights and cost reduction benefits enabled by our architecture
in Section VIIL.

II. SECURITY MODEL USE CASE

Figure 1 provides a use case for applying a PRE security
model to a medical scenario. The use case’s starting point
is the ciphertext produced by encrypting a patient’s data and
storing it on their doctor’s cloud-based data store (i.e., 1%
Doctor Store). A patient may change doctors thereby requiring
the new doctor to have access to the patient’s data. Instead of
the first doctor downloading and decrypting the patient’s data
and then encrypting the data again for the second doctor’s
data store, a PRE model allows the first doctor to delegate
access to the patient’s encrypted data in re-encrypted form
on the originating data store. In order for this to occur, the
second doctor generates their own public/private key pair and
then the first doctor uses their private key and the second
doctor’s public key to generate a “re-encryption” key. This re-
encryption key is sent to the first doctor’s cloud provider (i.e.,
I%* Doctor Store). The cloud provider uses the re-encryption
key for a PRE operation to convert the patient’s encrypted
data into a new ciphertext that can only be decrypted with
the second doctor’s private key. No cloud provider can use
a re-encryption key to decrypt any data it stores. The PRE
model described in this Section thus allows the first doctor
to securely delegate decryption access to the second doctor
for the patient’s data without decrypting (or taxing bandwidth
by downloading) that data. This model can be extended to a
multi-hop PRE scheme for delegating access to any number of
doctors by generating a re-encryption key for each recipient
and then re-encrypting the patient’s data so it can only be
decrypted by each recipient’s private key. We envision this
model being implemented as a middleware with adaptability

Monitored

Patient
. 15t Doctor Store

T
mon o

Fig. 1. Information Architecture Use Case

34 Doctor Store

2" Doctor Store

to underlying communication protocols and upper-layer data
manipulation applications.

Standard information security frameworks evaluate systems
under the Confidentiality, Integrity, and Availability (CIA)
triad. We particularly seek to address Confidentiality by en-
abling a cloud-based data store to 1) delegate data access
without exposing unencrypted data or decryption keys and 2)
grant access to the encrypted data without being able to grant
access to themselves.

III. SECURE ACCESS DELEGATION

Lattice-based Proxy Re-Encryption (PRE) provides an ef-
fective approach to delegate decryption ability. There are
existing PRE designs based on lattice encryption [9]. As
explained in [9], that recent lattice-based PRE scheme uses
nearly identical algorithms for key generation, encryption, and
decryption as the Homomorphic Encryption (HE) scheme in
[7] thereby allowing use of similar proofs of security.

The primary implementation difference between HE and
PRE is one of parameterization. Analysis from [9] indicates
that the PRE scheme we present can be parameterized to use
ring dimensions of n = 1024 and ciphertext moduli of less
than 32 bits to encrypt 1024 plaintext bits. Experimentally,
these parameterizations result in 1) the isolated re-encryption
process running in under 40 ms per kb of data and 2) the
encryption and decryption processes running in 6.1 and 7.9
ms per kb of data. These results demonstrate the feasibility of
using the PRE model for practical medical data applications
and even for time-critical medical performance requirements.

IV. SECURE INFORMATION ARCHITECTURE

Our architecture’s prototype implementation is a Java-based
web solution allowing 1) a patient to publish encrypted data
to a PRE-enabled server and 2) a doctor to securely access,
use, and delegate data through that server. We implemented the
prototype’s lattice-based PRE cryptosystem in C++ and its web
solution using Java Server Pages and Java Servlets running
in Apache Tomcat 8.0. Additionally, we created a Java-based
Policy Server to distribute public keys to users. The prototype
uses a MySQL Server 5.6 instance to store encrypted and re-
encrypted patient data on the PRE Server.

We selected C++ for the prototype’s PRE cryptosystem
because of its cross-platform support, performance benefits



for systems requiring high volume complex computations,
and allowance for template-based object oriented design.
Additionally, the cryptosystem is designed to benefit from
C++11°s low-level system optimization capabilities such as
pointer operations, move semantics, memory pools, and bit
shift operations. We selected Java for the prototype’s web
solution because of its cross-platform support, performance
benefits for database access and handling of web requests
and responses, and available and reliable libraries for C++
integration, database access, data transmission, web-based
client/server functions, and multithreading.

The prototype’s use case is based on Figure 1 and simulates
a Patient submitting data to be securely stored on the PRE
Server, Doctor 1 retrieving and decrypting encrypted data from
the PRE Server, and Doctor 2 retrieving and decrypting re-
encrypted data from the PRE Server. Figure 2 illustrates these
runtime workflows. The encryption and decryption operations
are performed by autonomous cryptosystems deployed in
each client’s web solution and the re-encryption operation is
performed by the cryptosystem deployed in the PRE Server.
For patient and doctor use cases, a Java servlet deployed in
their respective clients encrypts or decrypts data by using
a middleware implementing the Java Native Interface (JNI)
framework to interface with cryptosystem APIs for encryption
and decryption. The PRE Server’s re-encryption use case is
triggered by a request from Doctor 1 to a Java Servlet on the
PRE Server that uses the JNI middleware to interface with
the cryptosystem’s re-encryption API. The JNI middleware
referenced is discussed later in this Section.

The prototype’s cryptosystem operations in Figure 2 are
performed using public/private key pairs generated by each
client’s cryptosystem. Each client stores its key pair and
transmits their public key to the Policy Server. Figure 3 shows
this key management scheme. The Policy Server stores each
client’s public key and on request provides Doctor 2’s public
key to Doctor 1 for re-encryption key generation. The Patient’s
public key is used to encrypt plaintext data. Doctor 1’s private
key is used to decrypt encrypted data and is used with Doctor
2’s public key to generate a re-encryption key for re-encrypting
encrypted data. Doctor 1 provides the re-encryption key to the
PRE Server which performs the re-encryption operation and
stores the re-encrypted data as well as the encrypted data.
Doctor 2’s private key is used to decrypt re-encrypted data.

The prototype’s Java-based components interface with its
C++-based cryptosystem by way of middleware implementing
the Java Native Interface (JNI) framework. For example, when
a Patient enters data that needs to be encrypted and saved to
the PRE Server, a Java Servlet in the Patient’s web solution
requests and receives the encrypted data from a C++ object in
the cryptosystem. The Java Servlet then sends the encrypted
data to the PRE server to store. The JNI middleware facilitates
this workflow by making the cryptosystem request through a
Java class that only defines signatures for native methods to
interface with the cryptosystem (e.g. requestEncrypt). These
native methods are implemented in an extra-cryptosystem C++
class that calls cryptosystem APIs (e.g. Encrypt”) to perform

the computations for encrypting plaintext data and decrypting
encrypted data. Figure 4 illustrates the JNI implementations
allowing use of the cryptosystem’s APIs for re-encryption (by
Doctor 1 using "ReEncrypt”) and decryption of the ciphertext
produced by that operation (by Doctor 2 using "PREDecrypt”).
The C++ middleware class is compiled together with the
cryptosystem into a Dynamic Link Library file (for Windows)
or a Shared Object file (for Linux). The file output by compi-
lation is specified in CLASSPATH for the prototype’s Policy
Server and deployed in Apache Tomcat for the prototype’s
PRE Server and client web solutions.

Evaluating our architecture’s prototype under the CIA triad
described in Section II, the Confidentiality requirement is sat-
isfied. As illustrated in Figure 2, this is because only encrypted
data is transmitted between all client components and the PRE
Server. The prototype’s Confidentiality factor is enhanced by
its implementation of quantum computing resistant lattice en-
cryption techniques to compute the encrypted data transmitted
between the PRE Server and its clients [6]. This benefit is not
available in on-market public key security models such as RSA
which have been defeated by quantum computing techniques.
Additionally, as illustrated in Figure 3, the prototype does
not require private keys to be shared for a data recipient to
decrypt data. This benefit is not available in on-market medical
data information architectures which require the sharing of
decryption keys in order to share data. Thus, the prototype
demonstrates that our architecture provides greater protection
than current on-market security models against confidentiality-
compromising attacks.

The prototype can be augmented to satisfy the CIA triad’s
Integrity requirement by implementing a cryptographic sig-
nature scheme within the framework illustrated in Figure 2.
The prototype provides the framework for this feature because
each PRE Server client generates a public/private key pair.
Implementing this feature requires adding cryptographic sig-
nature computation and verification APIs to the cryptosystem.
Cryptographic hashing or cryptographic checksum APIs could
provide the basis for the necessary signature function APIs.
The implemented cryptographic signature protocol will allow
PRE Server clients to compute and send a signature element
over data they transmit thereby providing the data recipient a
means to verify data integrity.

The CIA triad’s Availability requirement will be verified
through future development and testing activities involving
prototype components. The results presented in Section V
were produced in the context of single users playing the
prototype’s use-case roles with no concurrent requests or
responses for the data points in Figure 2. Scalability testing
will require identifying potential bottleneck points due to the
accommodation of multiple users and concurrent requests. At
minimum, this will involve optimizing bandwidth use and
runtime processing for (1) requests made by client components
to perform the cryptographic operations in Figure 2, (2) the
key distribution scheme in Figure 3, (3) the PRE Server’s
responses to those requests, (4) requests to and responses by
the C++ and Java middleware classes in Figure 4, and (5)



—~Patient Client—

—PRE Server
[

Send
Encrypted
Data

Cland C2inDB

~Doctor 1 Client—,

Re-Encrypt
Encrypted rPRE

Decrypt
Encrypted

]

rDec(C1

g

Pt = Plaintext Data
C1 = Encrypted Data

~Doctor 2 Client—,

C2 = Re-Encrypted Data
rEnc(Pt) = Request Pt Encryption Decrypt
rDec(C1) = Request C1 Decryption Re-Encrypted
rPRE = Request Re-Encryption Data
rPREEnc(C1) = Request C1 Re-Encryption
rPRED ec{C2) = Request C2 Decryption
rPREDec(C2) Pt
D = Java Servlet
@ = PRE Cryptosystem
— =

Fig. 2. Prototype PRE Server Information Architecture

PubK; : Public Key for Encrypting Data

PrivKp, : Private Key for Decrypting Encrypted Data
PrivKp; : Private Key for Decrypting Re-Encrypted Data
PREK : Key for Re-Encrypting Encrypted Data

*PREK is generated by Doctor 1 from PrivKp; and PubKp,

Doctor 2
PRE Server

Fig. 3. Prototype Key Management Scheme

requests to and responses by the PRE Server’s database storing
the system’s data. The resolution of these concerns is feasible
through application of Client-Server system best practices (e.g.
multithreading and multiprocessing) in the development and
deployment of the components relevant to each concern. Addi-
tionally, concerns (2), (3), and (5) will require guarding against
server-related hardware issues and denial-of-service attacks
through some selection of service replication strategies. Fi-
nally, Availability satisfaction will require safeguarding against
data transmission losses or interruptions for the workflows in
Figures 2, 3, and 4 by implementing an effectively robust data
backup and verification model. For example, a digital signature
scheme could be implemented to require acknowledgements
for all data transmissions and compel re-transmission of an
unreceived message upon an acknowledgement failure.

V. INITIAL EXPERIMENTATION

We performed initial experimentation for a C++ imple-
mentation of our lattice-based PRE cryptosystem using a
hierarchical software architecture to enable rapid prototyping
and simplify integration with embedded hardware. The design
is modular and is comprised of four primary layers: (1)

encoding, (2) crypto, (3) lattice, and (4) arithmetic (primi-
tive math). Encapsulation, low inter-module coupling, high
intra-module cohesion, and maximum code reuse software
engineering guidelines were followed when making changes
to the cryptosystem. Lattice operations were decomposed
into primitive arithmetic operations on integers, vectors, and
matrices that are implemented in the primitive math layer.
Along with basic modular operations, this layer includes effi-
cient low level modular mathematic algorithms. The primitive
math layer provides a high level of modularity allowing the
cryptosystem’s user to integrate with an existing low-level
library or a custom hardware-specific implementation such as
a Field Programmable Gate Array.

We ran experiments on a commodity laptop and obtained
runtime results of encrypting 1kb of data in 6.1ms, decrypting
1kb of data in 7.9ms, and performing access delegation oper-
ations for 1kb of data in 40ms. These results were obtained at
a level of security with a work factor analogous to AES-128.

VI. RELATED WORK

There have been previous efforts to design network security
architectures for the health care system that reduce the risk of
data leakage. Prime examples of these are in [10], [11]. Similar
to those efforts, endpoint protection and endpoint key manage-
ment are important aspects of our proposed architecture be-
cause the endpoints are the only locations where unencrypted
data is accessible. Unlike those efforts, a key feature of our
architecture is the use of end-to-end encryption. This feature
substantially simplifies interactions between intermediate data
hosts and significantly reduces the risks of data leakage due
to insider attacks and compromised devices. Our architecture
thus provides a more secure framework than [10], [11] because
data is protected by encryption at all locations and points in
time.

Prior efforts such as [12] have also addressed the secure
aggregation and distribution of collected data but do so from



Re-Encryption APl Scheme

C1 =Encrypted Data
C2 =Re-Encrypted Data

\.__PRE Server DB

;r% P;lEK » Java Middleware Class %ﬁ- C++ Middleware Class
c1 =) requestReEncrypt(Cl, PREK) T requestReEncrypt(C1, PREK)
c2

D = Java Servlet

PREK = Re-Encryption Key @ = PRE Cryptosystem

ReEncrypt{C1,PREK) TCZ

Re-Encryption Decryption APl Scheme

—b‘ Pt Java Middleware Class P C++ Middleware Class
Decrypt
c2 c2 requestPREDecrypt(C2, Privis;) e, requestPREDecrypt(C2, Priviy;)
PrivK;, ! PrivKp, -
c2 PREDecrypt(C2, PrivKy,) TH
Pt = Plaintext Data D =Java Servlet
C2 =Re-Encrypted Data
PrivKy; = Doctor 2's Private Key @ = PRE Cryptosystem
PRE Server DB TYPesY

Fig. 4. Prototype JNI-Middleware Re-Encryption API Scheme

an enterprise perspective where large entities such as hospitals
perform shared computations on sensitive data. Our secure
information architecture focuses on patient-level data security
that could support embedded mobile devices when bandwidth
is an issue. However, our PRE model can also be generalized to
support the secure intra-enterprise aggregation of patient level
data while supporting the secure inter-enterprise aggregation
of that data. For example, see [7] which provides a more
general (but not experimentally evaluated) approach for data
aggregation where participants perform a joint computation
with results only accessible by common agreement.

VII. CONCLUSION

We presented a secure information architecture for dele-
gating medical data access that protects data at all times by
applying a lattice-based variant of Proxy Re-Encryption (PRE)
to 1) provide end-to-end encryption and 2) prevent the need to
share decryption keys. Experimental results demonstrate that
our architecture addresses the deficiencies in current security
models noted in Section I and the evaluation measures noted in
Section II. While we focus on privacy and confidentiality con-
cerns, our architecture can be augmented to provide Integrity
and Availability protections thereby satisfying the CIA triad.
For example, cryptographic signing methods could satsify
Integrity and service replication could satisfy Availability
against hardware issues and denial-of-service attacks.

An important benefit of our architecture’s end-to-end lattice-
based encryption scheme is that it enables health care entities
to securely use low-cost cloud computing environments to
share data while also significantly reducing vulnerability to
insider attacks. For example, our architecture limits data access
only to the system administrators who have decryption keys
even when encrypted computing is hosted on proprietary
servers. Additionally, our architecture prevents access to de-
crypted data until it reaches its intended recipient. The benefits
of our architecture will thus reduce the operational costs of

highly regulated industries such as healthcare where regulatory
compliance restricts the ability to outsource data security
computations to low-cost cloud computing environments.

REFERENCES
[1]

G. J. Annas, “HIPAA regulations-a new era of medical-record privacy?”
New England Journal of Medicine, vol. 348, no. 15, pp. 1486-1490,
2003.

R. Rauscher, “Cloud computing considerations for biomedical appli-
cations,” Healthcare Informatics, Imaging and Systems Biology, IEEE
International Conference on, vol. 0, p. 142, 2012.

W. H. Maisel and T. Kohno, “Improving the security and privacy of
implantable medical devices,” New England journal of medicine, vol.
362, no. 13, p. 1164, 2010.

O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key cryptosys-
tems from lattice reduction problems,” in Advances in Cryptology-
CRYPTO’97. Springer, 1997, pp. 112-131.

C. Peikert, “Public-key cryptosystems from the worst-case shortest vec-
tor problem,” in Proceedings of the forty-first annual ACM symposium
on Theory of computing. ACM, 2009, pp. 333-342.

D. Micciancio, “Lattice-based cryptography,” in Encyclopedia of Cryp-
tography and Security. Springer, 2011, pp. 713-715.

A. Lépez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in Proceedings of the forty-fourth annual ACM symposium on Theory
of computing. ACM, 2012, pp. 1219-1234.

J. Partala, N. Keridnen, M. Sirestoniemi, M. Himildinen, J. Iinatti,
T. Jamsd, J. Reponen, and T. Seppidnen, “Security threats against the
transmission chain of a medical health monitoring system,” in e-Health
Networking, Applications & Services (Healthcom), 2013 IEEE 15th
International Conference on, 2013, pp. 243-248.

Y. Polyakov, K. Rohloff, G. Sahu, and V. Vaikuntanathan, “Proxy re-
encryption, lattice encryption, software engineering, delegating access
control,” Submitted.

V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
and S. C. Shantz, “Sizzle: A standards-based end-to-end security archi-
tecture for the embedded internet,” Pervasive and Mobile Computing,
vol. 1, no. 4, pp. 425445, 2005.

R. Rauscher and R. Acharya, “A network security architecture to reduce
the risk of data leakage for health care organizations,” in e-Health
Networking, Applications and Services (Healthcom), 2014 IEEE 16th
International Conference on. 1EEE, 2014, pp. 231-236.

A. Andersen, K. Y. Yigzaw, and R. Karlsen, “Privacy preserving health
data processing,” in e-Health Networking, Applications and Services
(Healthcom), 2014 IEEE 16th International Conference on. IEEE,
2014, pp. 225-230.

[2]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(1]

[12]



