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Abstract

The card game Uno is a complex environment to explore with reinforcement learn-
ing, with several sources of uncertainty, including uncertainty over the next card
drawn, uncertainty over others’ hands, etc. Here, we introduce two approaches to
train an agent that optimally plays Uno. Because of the extensive complexity of the
state space, we pursue model-free approaches that estimate an action-value function
@, rather than storing a () value for all state-action pairs (s, a). Specifically, we
train agents with @-learning (DQN) and SARSA (DeepSARSA), using a feedfor-
ward neural network to approximate (), using e-greedy exploration in tournaments
with games of two random agent competitors. Though DeepSARSA converges
faster and more stably than DQN, DQN consistently outperforms DeepSARSA in
both direct competition and tournaments with random agents. Both approaches also
significantly outperform random agents in individual tournaments against two and
three other random agent competitors, demonstrating that our approach effectively
optimizes our agent’s policy.

1 Introduction

Uno is popular card game played with its own unique deck. There are two main versions of the game:
official and common. The official game rules prescribe a point value to each action and a player
wins by being the first to reach a threshold. The common game is the popularized version where the
first player to have no cards remaining is the winner; this paper uses only the common version of
the game. Therefore, players strategize to shed the most cards and to prevent the other players from
shedding theirs (primarily by using action cards). Here, we aim to train an agent that optimally plays
the common version of Uno.

2 Game Description

2.1 SetUp
Uno is a card game with the following set-up:

* 2 — 10 players

» Each player is dealt seven cards from a deck. You can only see your own cards.
* The remaining cards, which are also not visible, are placed in a draw pile.

* The top card from the draw pile becomes the first card in the discard pile.

To reduce the complexity of our project, we consider games with 3-5 players.

2.2 Deck

The Uno deck contains numbered cards, action cards, and wild cards. The numbered cards are each
one of four different colors (blue, green, red, and yellow) and have a number between 0 — 9. The



action cards each have one of the four colors and one of three actions (skip, reverse, and draw 2
cards). The wild cards allow you to change the current color of gameplay and some also include an
action to draw 4 cards.

Value Count
Number 0 1 of each color
Numbers 1 — 9 2 of each color
Reverse 2 of each color
Skip 2 of each color
Draw 2 2 of each color
Wild 8

Table 1: Cards of Uno.

Notice that a player can have at most 2 of any card, with the exception of the wild cards. [6]]

2.3 Game Play

The game begins with the player immediately left of the dealer, and proceeds in a clockwise direction
among the players.

During a player’s turn, their goal is to place one of their cards in the discard pile. To do so, the player
must place a card from their hand that matches the card on top of the discard pile by number, color,
and/or action. If they do not have a card that matches the top of the discard pile, they must draw a
card from the draw pile. If they still do not have a card that matches the top of the discard pile, the
game moves on to the next player. Alternatively, a player can play a “wild card” which allows them
to reset the color on top of the draw pile.

Certain cards can alter the game play. If a player plays a reverse card, the direction of gameplay is
reversed. If a player plays a skip card, the next player is skipped. If a player plays a draw card, the
next player must draw a card from the draw pile.

The objective of the game is to be the first player to play all of your cards. The game ends once any
player has played all their cards and thus has no cards remaining in their hand. [6]

3 Environment

For the environment, we utilized RLCard, an open source library. [[15] To represent the state of the
game, we need to define what a player knows.

3.1 State

At each player’s turn (and therefore decision point), the current player can see the current state, which
contains the following elements:

Name Representation

Own Hand list of card identifiers that current player has
Played Cards list of card identifiers that all players have played
Others’ Hands  list of card identifiers in all other players’ hands
Target the visible card on top of the discard file

Table 2: State representation of Uno.



The state is encoded as 7 planes, where each plane is 4 x 15 matrix. The 4 rows correspond to each
of the 4 colors available, while the 15 columns correspond to the different values a card can have.
Column 0-9 represent their respective number value, and then each of the follow columns correspond
to each of the action cards (Wild, Wild Draw 4, Skip, Draw Two, and Reverse). Each of the entries is
either 1 or 0.

Each card except for the wild cards has a maximum count of two. For encoding purposes, the wild
cards are arbitrarily assigned a color for identification purposes, though they can be played on top of
any color. With this encoding, a player can have at most two of any card. Thus, to capture the count
of the cards, there are three different planes that represent the count: there is one plane that represents
having zero of that card, one plane that represents having one of that card, and one that represents
having two of that card. To represent the entire state, there are three planes (for the different counts)
for a player’s own hand and for the others’ hand, and there is one plane that represents the target,
resulting in a total of 7 planes.

We represent this as a 7 x 4 x 15 NumPy matrix. Since each of the (7)(4)(15) = 420 parameters
can be either 0 or 1, our state space S has size |S| = 2420, which is on the order of 10*2°.

3.2 Action

Each possible action is given an identifier. In total, there are 61 different actions a player can take,
which are playing each of the 60 different cards and drawing a card from the deck. Our action space
A thus has size |A| = 61.

Since our state stores our agent’s hand, we can enumerate our legal possible actions with this
representation.

3.3 Reward

The reward is defined as +1 for winning, —1 for losing, and O for all intermediate states.

4 Related Work

Reinforcement learning has often been applied to games, especially card games [5]. Previous
work has identified card games’ ideal structure for Reinforcement Learning application, including
large state spaces, competitive agents with partial information sets, large action sets, and small or
delayed returns [15]. As a result, many approaches have been applied to card games. Approaches
include Deep Q Networks (DQN), Monte Carlo Tree Search, Advantage-Actor Critic methods, and
Counterfactual Regret Minimization (CFR). Jiang et al. 2019 show that computationally expensive
methods such as CFR that require tree traversals are unable to efficiently deal with large state space
games, such as Uno [7].

Card games can become particularly complex when agents are dynamic and can learn over time [3]],
but since we train against static agents, we did not investigate the literature further. Zha et al., 2020
create a virtual environment for several card games, including Uno. Their work applying popular
Reinforcement Learning algorithms on the game demonstrated the feasibility of RL approaches for
Uno [[15].

Deep learning approaches to ()-Learning and SARSA allow algorithms to approximate the action
value function ) with neural networks, rather than storing and update a () value for all state-action
pairs (s,a) [L1]]. This improvement allows for mitigation of catastrophic forgetting and smoother
updates in several multi-agent card games [4]. Additionally, model-free approaches like ()-learning
or SARSA, implemented with a neural network, can train offline given sampled data from the
environment. As a result, a deep-learning approach requires less interaction with the environment to
converge, and as previously mentioned, will result in lower variance in learning updates [2].



5 Approach

Given the extensive complexity and size of the state space for Uno, we find it unwise to model or
estimate a transition function T'(s, a) or a reward function R(s,a) for all state action pairs (s, a)
explicitly. Thus, in our approach, we pursue two model-free approaches: ()-learning and SARSA.

5.1 (@ Estimator

Our agent must determine its policy from an action value function ) defined over all state-action
pairs (s, a). In traditional -learning, the algorithm updates its estimate of () by sampling a trajectory
(s,a,r,s’) from the environment and following the rule:

Q(s,a) «+ Q(s,a) + « (r + ’yn}la}xQ(s',a') - Q(s, a))

Here, ~y represents our discount factor and « represents our learning rate, which is a hyperparame-
ter [8]].

Intuitively, this algorithm accepts a trajectory (s, a,r, s’) and increments our estimate of Q(s,a)
with the reward r, summed with the maximum discounted (Q across all actions a’ available at state
s’ subtracted from the current estimate of (Q)(s, a), all scaled by our learning rate «. The algorithm
updates () towards the objective that Q(s,a) ~ Q*(s, a), where Q* is the true action value function.

Though traditional @Q-learning allows us to train an agent without explicitly modeling a transition
function 7, it still requires that we represent () for all state-action pairs (s, a). This is difficult for the
game of Uno given the vast complexity and size of our state and action space. Thus, we instead use
deep learning to train a function approximator ().

Here, our approximator is called a @-network and is parameterized by 6. The network is trained to
fulfill the objective that Q(s, a; 0) ~ Q*(s, a).

In each step ¢ of our algorithm, we wish to minimize the loss term L:

‘C(ez) - E&a,'r,S’NP[(yi - Q(87 a; 01))2]

where y; is called the temporal difference target, defined as y; = r + max, Q(s’,a’;0;_1). Here, v
again represents our discount factor and p represents a behavior distribution over all trajectories [11].

To minimize this loss, we leverage the gradient:
Vo, £(0) = Evarirmp | (7 +7max Qs '3 0im1) = Q(s,0:6,) ) Vo,Q(s, 03 6.)
a/

Instead of computing this expectation directly over p, we perform stochastic gradient descent (SGD)
with a sampled trajectory (s, a, r, s") and use the argument of the expectation to calculate our gradient
Vo, L£(0;) [11].

To approximate our () function, we use a feedforward neural network with two dense hidden layers a
and b, each with size 512. For input state s in its 7 x 15 x 4 matrix representation, we flatten the
matrix into an array « of length (7)(15)(4) = 420. This input z is fed into a fully-connected hidden
layer of size 420 x 512, the output of which is fed into another fully-connected hidden layer of size
512 x 512. The output of the second layer is fed into an output layer of size 512 x 61, which outputs
a vector y that gives us the estimates for () for each of the 61 actions. Our )-learning algorithm
optimizes the 420 x 512 + 512 x 512 4+ 512 x 61 ~ 500K parameters (denoted as 6) of our network.
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Figure 1: Network architecture to approximate our action value function Q.

We used NumPy for matrix representations and TensorFlow to train our neural network [L1]].

5.2 Epsilon-Greedy Exploration

To generate trajectories from which we can update our estimate of (), we use e-greedy exploration.
Given a current state s, e-greedy exploration chooses a random legal action with probability € and
a greedy legal action with probability 1 — e [8]. We then take that action a, and receive a reward
r and next state s’. Our exploration function returns the tuple (s, a,r, s’) to our algorithm to be
incorporated into the estimate of Q.

e-greedy exploration allows us to dually train our estimate of () on sequences of states and actions
that are presumptively optimal as well as a diverse selection of random states and actions, enabling
us to cover the entire state space. This is especially crucial in the first few iterations of our algorithm,
since our estimate of () is based on very sparse data, so it is critical that we randomly sample more
state-action pairs to obtain a more generalizable estimate of ().

With e-greedy exploration, as our algorithm completes more iterations, it will have seen more of
the entire state-action space. Thus, as our algorithm continues to run, it becomes relatively less
important to sample and train off of random actions as compared to presumptively optimal ones. In
each iteration, we thus decay our probability € by some factor x. Concretely, we have € < ke [9].
This enables us to sample fewer random actions as our algorithm converges, allowing us to finetune
the most important parameters relevant for an optimal policy or estimate of ().

5.3 Deep @Q-Network (DQN)

In a given iteration ¢ of our )-learning algorithm, we simulate our agent in a tournament 7; where
they play n = 100 games of Uno with two other agents, who play with random policies. Our agent
uses e-greedy exploration in gameplay, and returns a set of trajectories (s, a, r, s’). Our algorithm
incorporates those trajectories into our estimate of () with the SGD update rule:

07;_;'_1 <— 91 — (’I“ —+ ’}/HlE}XQ(S’7a/; 92) — Q(S7a; 91)> VQiQ(S, a; 91)

Here, o represents our learning rate, a hyperparameter that we experimentally finetune [[11]].

5.4 DeepSARSA

Like Q-learning, SARSA incrementally updates our estimate of () with trajectories sampled from
our environment. However, -learning is considered an off-policy algorithm because it updates )
based on the next state s’ and the greedy action from that state max,/(s’, a’). SARSA, in contrast, is
an on-policy algorithm that updates @) based on the next state s” and the actual action taken from the
next state a’ [8]]. Thus, our algorithm instead uses the SGD update rule:

Oiv1 < 0; —a(r+~Q(s',a’;0;) — Q(s,a;6;)) Vo, Q(s,a;6;)

where a’ represents the actual action taken from next state s’, which may or may not be greedy, since
our exploration policy is not strictly optimal [13].



Like with )-learning, in an iteration ¢ of our algorithm, we simulate our agent in a tournament 7; of
100 games against random agents, where they use e-greedy exploration. Our exploration function
returns extended trajectories (s, a,r, s’, a’) to be incorporated into our SARSA update.

6 Results & Discussion

All training was done on a VM instance hosted on Google Cloud Platform. To speed up the
computation of the backward pass of our network, we used an NVIDIA Tesla K80 GPU.

6.1 Hyperparameter Validation

We optimized three hyperparameters: the discount factor +, the learning rate «, the our e-decay
factor k. We trained our DQN and DeepSARSA agents for n = 40000 iterations on all possible
combinations of hyperparameters from the sets v € {0.75,0.825,0.95}, « € {0.0001, 0.001,0.01},
e € {0.8,0.95}. On the basis of highest average win rate in a tournament of n = 100 games with 2
random agents, we found that the hyperparameters o = 0.0001, v = 0.95, ¢ = 0.95 worked best.

6.2 Training Comparisons

We trained our DQN agent for n = 350000 iterations, until we felt that it had converged via visual
observation of the reward trend. Our final agent had an average reward of 0.244 and an average
winning rate of 0.622 in a tournament of n = 100 games with two random agent competitors. Our
estimate of () improves most within the first 50,000 iterations of the algorithm, but still steadily
improves until around 240,000 iterations.
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Figure 2: Average reward of DQN agent over iterations of training.

We trained our DeepSARSA agent for n = 125000 iterations, until we felt that it had converged via
visual observation of reward trend. Our final agent had an average reward of 0.210 and an average
winning rate of 0.605 in a tournament of n = 100 games with two random agent competitors. Like
the DQN agent, most of the improvements in our () estimator take place within the first 50,000
iterations. Still, steady improvements are made until roughly 100,000 iterations.
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Figure 3: Average reward of DeepSARSA agent over iterations of training.

In comparing the training curves, we see that DeepSARSA took significantly fewer iterations to
converge than DQN, despite having the same final performance on the final training tournament. This
suggests that an update rule that incorporates the actual action a’ taken from the next state s’ in a
trajectory converges quicker than incorporating a greedy action. Additionally, since we decay our
probability € of choosing a random action from a given state, as our agents complete more iterations,
they more likely to choose a greedy action as the next action a’, which makes the SARSA update
equivalent to the ()-learning update. This may partially explain why DQN and DeepSARSA have
strikingly similar training curves, particularly in later iterations.

Moreover, from the trends in average reward (Figs. 2 and 3), we also see that the average reward for
DQN is much more noisy than the average reward for DeepSARSA. This indicates that though both
algorithms converge, DQN tends to make more extreme updates in parameters in later iterations. This
can be attributed to its greedy update rule, which does not always update model parameters based on
the actual next action taken during exploration. Our results suggest that incorporating updates from
actual actions taken may result in a more stable path towards convergence.

6.3 Performance Comparisons

Our primary performance metrics are average win rate (proportion of games won in a tournament)
and average reward (average of all rewards earned in a tournament).

We begin by individually simulating our agents in three tournaments of n = 1000 rounds: a 3 Agent
Game with two random agent competitors, a 4 Agent Game with three random agent competitors, and
a 5 Agent Game with four random agent competitors. Though we trained our model on tournaments
with exclusively games of size 3, we wanted to test how well our approaches could generalize to
accommodate more agents. As a baseline, we also simulate a random agent player for the three
tournaments.

Average Win Rate
Agent 3 Agent Game 4 Agent Game 5 Agent Game
DQN 0.635 0.455 0.231
DeepSARSA 0.591 0.401 0.249
Random Agent 0.335 0.248 0.206

Table 3: Average win rates in tournament of varying game sizes with random agent competitors.



DQN and DeepSARSA outperform our random agent across all three tournaments, which indicates
that our algorithm is able to accurately optimize our policy, even in larger games. We also observe that
DOQN consistently outperforms DeepSARSA in the 3 and 4 Agent Games by a margin of at least 0.4,
which corroborates with its slightly better final average reward during training. The margin between
DQN and DeepSARSA is larger in the 4 Agent Game than the 3 Agent Game, which indicates that
DQN may generalize better than DeepSARSA. However, DeepSARSA’s margin on the 5 Agent
Game is slightly larger. Still, neither agent significantly outperforms the Random Agent in the 5
Agent Game, which indicates that the policy is not as optimized for larger game sizes.

To get a better sense for comparison, we also simulated our agents in gameplay against one another.
We ran a tournament of n = 1000 games of three agents: a DQN agent parameterized by our model,
a DeepSARSA agent parameterized by our model, and a random agent.

Agent Average Reward Average Winning Rate
Random —0.506 0.247
DQN —0.220 0.390
DeepSARSA —0.274 0.363

Table 4: Average winning rate and reward in tournament of DQN, DeepSARSA, and Random Agent.

Consistent with our earlier results, DQN wins more games than DeepSARSA, by a margin of 0.027
in this tournament. Both agents significantly outperform the random agent, by a margin of at least
0.1. Both agents also outperform the expected performance of a random agent in a tournament of
exclusively random agents (% = 0.333), but not by much; this is likely because this tournament
design requires that two-thirds of the agents are optimized, which makes the distribution of outcomes
roughly uniform.

7 Conclusion

We sought to apply reinforcement learning techniques to train an agent to optimally play Uno, a
popular multi-player card game that utilizes a unique deck. Card games are a powerful framework for
decision-making algorithms, since they involve considerable uncertainty (e.g. uncertainty over what
card might be drawn, uncertainty over others’ hands, etc.) and have clear rules around legal actions
and defining rewards.

Given the vast state complexity (|S| = 2420y and delayed rewards (r = +1 only at an end state),
we primarily pursue model-free approaches that learn an estimate of our action value function @),
rather than explicitly storing a @) value for all state-action pairs. Specifically, we employed Deep
@-Network (DQN) and DeepSARSA algorithms to train on trajectories generated using the RLCard
environment [15]. In each iteration of training, we simulate our agent in a tournament of 100 games
with two other random agent competitors, where our agent follows e-greedy exploration. We train a
feedforward neural network with two dense hidden layers to estimate ().

We found that both our DQN agent and DeepSARSA agent outperform a random agent in tournaments
of 1000 games with three, four, and five players by an average win rate margin of at least 0.1 in the
three and four player tournaments. This suggests that our approach tangibly optimizes the policy for
an agent playing Uno. Additionally, we see that DQN outperforms DeepSARSA in the tournaments
with three and four players, and also beats DeepSARSA more often in direct competition by roughly
2.7 percentage points. This suggests that updating our estimate of () based on a greedy action
taken from next state s’, and not the actual action a’, optimizes our policy better overall. Neither
model significantly outperformed the random agent in the tournament with five players. Each agent’s
performance also significantly dropped as more competitors were introduced, indicating that training
our agent on exclusively tournaments with three players does not generalize well to more agents.

Though DQN consistently outperforms DeepSARSA, DeepSARSA converges in nearly 10° fewer
iterations and has much more stable path towards convergence. Since SARSA only updates its



parameters of () based on actual actions taken, it may make less extreme updates in future iterations,
leading to faster convergence.

Ultimately, we demonstrate that both DQN and DeepSARSA are promising approaches for training
an agent to optimally play the card game Uno. For future work, we plan to test other neural network
architectures for our estimate of (). Since our state representation is split into 7 planes, we could
try 7 independent input layers of size 4 x 15 each that learn a separate set of parameters for each
plane, which are concatenated together downstream in the network. We could also try convolutional,
residual, and recurrent neural network architectures [14]. We also plan to improve our training
procedure by simulating tournaments, where each game has a randomly-assigned number of players,
to improve the generalization of our agent. Lastly, we might also try other learning approaches like
Monte Carlo Tree Search [[10] or exploration strategies like curiosity-based exploration [12].

8 Contributions

Olivia worked on explicitly outlining the game rules and defining our state, action, and reward
representations. Diego analyzed related literature, including approaches on other card games, to
identify strategies for training. Ankush integrated our training and testing code with the RLCard
environment, and focused on hyperparameter optimization. We collectively contributed to the
development of our training algorithms (DQN and DeepSARSA), testing of our agents, analysis, and
writing of the report.
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