
Statistical Mechanics and Algorithms on

Sparse and Random Graphs

Andrea Montanari1

October 8, 2014

1A. Montanari is with the Departments of Electrical Engineering and Statistics, Stanford Uni-
versity



ii



Contents

1 Main definitions and examples 1
1.1 Factor models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Large graph properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Examples and open problems . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Ising models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Independent sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 Proper colorings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Some generalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Weighted directed graphs . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Hypergraphs and factor graphs . . . . . . . . . . . . . . . . . . . . . 10
1.4.3 Connections with optimization . . . . . . . . . . . . . . . . . . . . . 11

1.5 About terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 More on graph convergence 15
2.1 Preliminary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Random graph models and local convergence . . . . . . . . . . . . . . . . . 20

2.3.1 Erdös-Renyi random graphs . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Graphs with given degree distribution . . . . . . . . . . . . . . . . . 22

2.4 Unimodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Factor models on trees 29
3.1 Finite graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Local marginals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.2 Belief-Propagation equations . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 Bethe-Peierls free energy . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Infinite trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.2 Belief propagation equations . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Bethe-Peierls free energy . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Beyond Bethe approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 The second moment method 47
4.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 The case of random regular graphs . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 First moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Second moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

iii



4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3.1 The ferromagnetic Ising model . . . . . . . . . . . . . . . . . . . . . 56
4.3.2 The anti-ferromagnetic Ising model . . . . . . . . . . . . . . . . . . . 59

4.4 Refining the second moment method . . . . . . . . . . . . . . . . . . . . . . 59
4.4.1 Truncation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4.2 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 The weak convergence method 61
5.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 The case of independent sets . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 The case of the Ising model . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Algorithmic aspects 67

A Proofs omitted from the main text 69
A.1 Proofs omitted from Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.1.1 Proof of Proposition 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.2 Finishing the proof of Proposition 2.4.2 . . . . . . . . . . . . . . . . 70

B Summary of notations 71
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

iv



Chapter 1

Main definitions and examples

The main object of these lectures is the study of specific classes of high-dimensional proba-
bility distributions. To be concrete, consider a random binary vector σ = (σ1,σ2, . . . ,σn)
taking values in {0, 1}n. Throughout these lectures, we use boldface fonts to indicate
random variables, and ordinary font for the deterministic values they can take.

Specifying the probability distribution of σ requires 2n−1 real numbers, corresponding
to the probabilities P(σ = σ) for each σ ∈ {0, 1}n. In these lectures, we will be interested in
the subset of probability distributions that can be written as products of pairwise factors,
i.e. such that

P(σ = σ) =
n∏
i=1

n∏
j=i+1

fij(σi, σj) , (1.0.1)

for some functions fij : {0, 1} × {0, 1} → R≥0, and all σ ∈ {0, 1}n Note that a probability
distribution in this class is entirely specified by O(n2) numbers.

Indeed, we shall largely focus on an even more specific class of models. In particular,
for most of these lectures we will assume that the factorization (1.0.1) with most of the
functions fij( · , · ) being identically equal to one. It is convenient to associate a graph G
to the factorization (1.0.1). The graph has vertex set V = [n] ≡ {1, 2, . . . , n}, and edge
set E consisting of all the pairs (i, j) such that fij( · , · ) 6= 1 (i.e. the function fij( · , · )
is not identically equal to one). We will be interested in probability distributions whose
associated graph is sparse, and more precisely has only O(n) edges. (But see Chapter 6
for examples beyond this setting.)

There are several reasons to study this specific class of high-dimensional probability
distributions:

(a) They are natural. For the sake of comparison, consider proability distributions that
can be written as products of singleton terms

P(σ = σ) =
n∏
i=1

fi(σi) . (1.0.2)

Under such a probability distribution, the random variables σ1, . . . ,σn are mutually
independent. A factorized distribution as in (1.0.1) can be regarded as a natural gen-
eralization beyond complete independence. Indeed, classical theory [Lau96] elegantly
connects the structure of the graph G to the conditional independence properties of
σ1, . . . ,σn.
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(b) They form a low-dimensional family of probability distributions. As mentioned
above, only O(n2) parameters are required to specify a probability distribution of
the form (1.0.1). This simplifies modeling, and facilitates estimating the model pa-
rameters from data. As a consequence ‘graphical models’ of this type have been
intensely used and studied in machine learning and statistics [KF09, HTF09]. They
are both rich enough to cover a wide array of applications, and structured enough to
simplify statistical inference.

(c) Probability distributions of the form (1.0.1) naturally arise in many applications.
Historically, an important source of applications is provided by statistical physics.
In many circumstances, physical systems can be modeled through discrete degrees
of freedom (for instance atoms’ magnetic moments) interacting locally. Physical
laws often lead to pairwise interactions, and Boltzmann distribution leads to a joint
distribution of the form (1.0.1).

Statistical physics is also at the origin of many important concepts, and examples in
this field. More recently, theoretical computer science and information theory have
provided a large number of interesting applications [MM09].

The rest of the chapter is organized as follows. In Section 1.1 we introduce a class
of models that admit a pairwise factorization of the form (1.0.1). From a mathematical
point of view, this class of models is rich enough to include many fascinating phenomena,
and a host of challenging open problems. From the point of view of applications, the class
of models defined is somewhat restrictive. We will overcome this problem by mentioning
several generalizations in Section 1.4, and developing some of them in Chapter 6.

Section 1.2 introduces two basic questions that we will investigate in the following
chapters. These questions are wide open, except for specific cases. A few concrete example
are introduced 1.3. and generalizations are discussed in Section 1.4. Finally, as men-
tioned above, models of the type (1.0.1) have been studied across multiple research areas.
In Section 1.5 we briefly discuss the relation between definitions developed by different
communities.

1.1 Factor models

A simple undirected graph is a pair G = (V,E) with V a set that is finite or countable (the
vertex set) and E a set of unordered pairs in V (the edge set). Edges will be denoted by
e ≡ (i, j), with i, j ∈ V . All graphs will be assumed to be locally finite, i.e. each vertex
will have finite degree (number of neighbors).

In some circumstances, it is technically convenient to consider multigraphs i.e. graphs
that are also allowed to contain self-loops (i.e. edges of the form (i, i)) and multiple edges.
As we will see (cf. for instance Section 2.1) differences are minimal, and we will only
mention them when necessary.

Given a finite set X , we let X V be the set of vectors with entries in X , indexed by V or
equivalently the set of functions from V to X . One such vector is denoted as σ = (σi)i∈V .
Thoughout these notes, a specification1 is a pair of functions ψ = (ψe, ψv):

ψe : X × X → R≥0 , ψv : X → R>0 , (1.1.1)

1The term ‘specification’ is borrowed from the general theory of Gibbs measures [Geo11]. Here we use
it in a more restrictive setting.
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with ψe symmetric (i.e. ψe(σ, τ) = ψe(τ, σ) for all σ, τ ∈ X ). Given a pair (G,ψ) with
V finite, we are interested in the probability measure µG,ψ on X V defined by letting, for
σ ∈ X V ,

µG,ψ(σ) =
1

Z(G,ψ)

∏
(i,j)∈E

ψe(σi, σj)
∏
i∈V

ψv(σi) , (1.1.2)

where the partition function is defined by the normalizing condition

Z(G,ψ) =
∑
σ∈XV

∏
(i,j)∈E

ψe(σi, σj)
∏
i∈V

ψv(σi) . (1.1.3)

Notice that there is no loss of generality in assuming ψv(τ) > 0 for all τ ∈ X , because
otherwise we can replace X by X ′ ≡ {τ ∈ X : ψv(τ) > 0 }. On the other hand, the
probability distribution (1.1.2) is not as general as the factorized form (1.0.1).

We will refer to a probability distribution of the form (1.1.2) as to a factor model.
Several alternative names can be found in different research domains, including: Markov
random field, graphical model, Gibbs measure. Following the statistical mechanics ter-
minilogy, we will sometimes call the variables σi spins, or spin values. We will discuss in
Section 1.5 the difference in emphasis across different fields.

1.2 Large graph properties

In these lectures we are mainly interested in the properties of the probability measure µG,ψ
when G is a large sparse graph. Roughly speaking, this means that the number of vertices
|V | is large and the number of edges |E| is of the same order as |V |. (For a finite set S, we
let |S| denote its cardinality.) Classical statistical mechanics focuses on the case in which
G is a d-dimensional grid, or a portion of the grid itself. Such graphs are sparse since they
have bounded degree. By contrast, we shall focus on graphs G that are ‘locally tree-like.’

Specifically, we consider sequences of graphs {Gn = (Vn, En)}n∈N indexed by the num-
ber of vertices n = |Vn|. Informally, a graph sequence {Gn}n≥0 is ‘locally tree-like’ if the
neighborhoods of most vertices is a tree, and the empirical distribution of these neighbor-
hoods has a well defined limit as n→∞.

In order to formalize these notions, given a graph G, we let dG : V × V → N denote
the graph distance in G, i.e. dG(i, j) is the length of the shortest path connecting i and j
in G (with dG(i, j) = ∞ if no such path exists). We denote by Bt(i;G) the ball of radius
t centered at i, i.e. the graph induced2 by the subset of vertices j so that dG(i, j) ≤ t. We
always regard Bt(i;G) as a rooted graph, i.e. a graph with a distinguished vertices that is
the center i. In the following we will often drop the argument G, whenever clear from the
context.

The intuition of ‘locally-tree like’ graph sequence is made precise by the definition
of local weak convergence, first introduced by Benjamini and Schramm in [BS01]. (As
mentioned above, we will use boldface to denote random variables, whenever possible.)

Definition 1.2.1. Let {Gn = (Vn, En)}n∈N be a sequence of graphs with |Vn| = n and, for
each n, let In a uniformly random vertex in Vn. Let T be a random rooted tree and, for
each t ∈ N denote by T t the subtree formed by its first t generations.

2Given a graph G = (V,E), the graph induced by the subset of vertices U ⊆ V is the graph formed by
the vertices in U and the edges in E whose endpoints are both in U .
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root

Figure 1.1: The regular rooted tree T reg,k of degree k = 3. Due to space limitations, only
the first three generations are shown by solid lines.

We say that the sequence {Gn} converges locally (weakly) to T (and write Gn
loc−→ T )

if, for every rooted tree T ,

lim
n→∞

P
{
Bt(In;Gn) ' T

}
= P

{
T t ' T

}
, (1.2.1)

where ' denotes equivalence under root-preserving graph isomorphism.

For completeness, we recall that, given two graphs G1 = (V1, E1) and G1 = (V2, E2), an
isomorphism is a bijection f : V1 → V2 such that (i, j) ∈ E1 if and only if (f(i), f(j)) ∈ E2.
The isomorphism is root preserving’ if it maps the root of G1 to the root of G2. It is clear
that root-preserving isomorphisms define an equivalence relation. We refer to Chapter 2
for further background on graph convergence, random trees, and various examples of local
weak convergence.

Let us emphasize that –in the definition 1.2.1– the graph sequence {Gn}n∈N in non-
random, and the only randomness is given by the root In.

We limit ourselves to two simple examples.

Example 1.2.1. For k ≥ 2, let {Gn} be a sequence of simple graphs with uniform degree
k, and diverging girth3 limn→∞ girth(Gn) = ∞. It is a priori not obvious that such a
sequence exists. A non-constructive argument follows –for instance– from Theorem 2.12 in
[Wor99]. Explicit constructions are discussed, among others, in [Big98].

For any vertex i ∈ Vn, and any t < bgirth(Gn)/2c, Bt(i;Gn) is a regular rooted tree
and therefore {Gn} converges locally in the sense of our definition. Namely, let T reg,k be
the infinite deterministic rooted tree with uniform degree k, see Fig. 1.1, and T be the

random tree such that T = T reg,k with probabilty one. Then Gn
loc−→ T .

Hereafter, we will write Gn
loc−→ T when the limit is a deterministic tree T (e.g. in the

present example Gn
loc−→ T reg,k).

Example 1.2.2. An important motivation for studying locally tree-like graph is that the
vast majority of sparse graphs are locally tree-like. Here is a simple example of this general
remark (we refer to Chapter 2 for other examples with the same flavor).

Let Gn be a uniformly random regular graph with degree k. By this, we mean the
following: there is a finite number of regular graphs of degree k (i.e. graphs with all

3The girth of a graph G is the length of the shortest loop in G.
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vertices of the same degree) over n vertices. For each n, let Gn be independent random
graph drawn uniformly at random in this set. (We refer to [Wor99] for a survey on random
regular graphs.)

It is not hard to check that Gn contains a few short loop. For instance, Gn contains a
triangle with probability bounded away from zero as n→∞ [Bol80, Wor81]. Nevertheless,
with high probability, the neighborhoods of most vertices are trees. We indeed have that

Gn
loc−→ T reg,k

∗ , almost surely with respect to the law of {Gn}. (See [DM10, Section 2.1]
for a detailed proof in a more general context.)

Given locally-tree like graph sequence {Gn} and a specification ψ, we can consider
the sequence of probability measures µGn,ψ on X Vn through the general equation (1.1.2).
We are interested in the limit properties of these measures. There are various possible
interpretations of this general research question, but here are two that we will consider
extensively in the following chapters.

Convergence of the free energy. The free energy density for the pair (Gn, ψ) is defined as

φ(Gn, ψ) ≡ 1

n
logZ(Gn, ψ) . (1.2.2)

We will often write φn for φ(Gn, ψ) when the arguments are clear from the context. The
general problem is therefore:

Let Gn be a sequence of graphs that converge locally and ψ a specification. Does
the free energy density have a limit?

lim
n→∞

φ(Gn, ψ)
?
= φ . (1.2.3)

Can we characterize or compute this limit?

Local weak convergence. The next question is, roughly speaking, ‘how does µGn,ψ look
locally?’ This can be formalized –once again– through the notion of local weak convergence.

A X -marked graph (or for simplicity, a marked graph) is a pair (H,σ) whose first element
is a graph H with vertex set U , and whose second element is a vector σ ∈ XU indexed
by the vertices in U . Equivalently, σ is a function σ : U → X . We will sometimes write
(H,σU ) to emphasize the domain of σ. These definitions extend strightforwardly when H
is a rooted graph. A random marked graph is a random variable (H,σ) taking values in
the space of marked graphs. (We defer measure-theoretic technicalities to Chapter 2.)

Finally, if σ ∈ X V and U ⊆ V , we let σU = (σi)i∈U be the subvector indexed by the
vertices in U . With an abuse of notation, we write σGU for the same vector, whereby GU
is the subgraph induced by U in G.

Definition 1.2.2. Let (T ,σ) be a random marked graph, with T a random rooted tree.
Let {Gn} be a sequence of graphs that converges locally to T . Let ψ be a specification and
for any n ∈ N, let σn ∼ µGn,ψ. Finally, for each n, let In be uniformly random in Vn.

We say that (Gn, µGn,ψ) converges locally to (T ,σ) if, for each (T, σT ) with T a rooted
tree

lim
n→∞

P
{

(Bt(In;Gn),σnBt(In;Gn)) ' (T, σT )
}

= P
{

(T t,σT t) ' (T, σT )
}
. (1.2.4)
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Remark 1.2.3. Since we assume that Gn converges locally to T , the definition above is
a statement about the conditional distribution of σnBt(i;Gn)) given Bt(i;Gn).

Also, the limit (T ,σ) allows to define the conditonal law of σ given T (as a regular
conditional probability distribution). Denoting this conditional distribution by νT = νσ|T ,

we will sometimes say that µGn,ψ converges locally to νT (and write µGn,ψ
loc−→ νT ) to

express the fact that (Gn, µGn,ψ) converges locally to (T ,σ)

With this definition, we can formulate the second main problem that we will consider.

Let Gn be a sequence of graphs that converge locally and ψ a specification.
Do the measures µGn,ψ converge locally? Can we characterize or compute this
limit?

Remark 1.2.4. Both definitions 1.2.1 and 1.2.2 are special cases of the more general
formulation of local weak convergence developed in [BS01, AL07]. In Chapter 2 revisit
these notions from a more abstract point of view.

Remark 1.2.5. In plain english, Definition 1.2.2 corresponds to the following phenomenon.
Draw a random configuration σn ∼ µGn,ψ and a random vertex In. The distribution of the
resulting marked graph (Bt(In;Gn),σnBt(In;Gn)) is then well approximated by the limiting
formula.

This definition does not distinguish between the randomness produced by the random
choice of In, and the one due to the random choice of σn. Refined definitions that capure
this difference have been used in [MMS12, BD12]. Definition 1.2.2 corresponds to the
notion of local convergence ‘on average’ in the terminology of [MMS12, BD12].

1.3 Examples and open problems

It is useful to keep in mind a few concrete examples of the general framework introduced
in the previous sections. As mentioned above, randomized constructions provide simple
way to define sequences of graphs that converge locally to trees.

Two special random graph models occur quite frequently because of their simplicity.
The first one is the random k-regular graph, introduced in Example 1.2.2. In this case Gn

is uniformly random among all graphs with n vertices and regular degree k. The second is
the Erdös-Renyi random graph model, with average degree d. In this case every edge (i, j)
is present independently with probability d/n. As we will see in Chapter 2, Erdös-Renyi
random graphs converge locally to a rather simple tree model.

1.3.1 Ising models

In this case X = {+1,−1} and the specification is given by

ψe(σ1, σ2) = eβσ1σ2 , ψv(σ) = eBσ , (1.3.1)

with β,B ∈ R two parameters. The probability measure µGn,ψ ≡ µGn,β,B can be written
in exponential form as

µGn,β,B(σ) =
1

Z(Gn, β, B)
exp

{
β
∑

(i,j)∈En

σiσj +B
∑
i∈Vn

σi

}
. (1.3.2)
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Ising models were introduced at the beginning of the twentieth century [Isi25] as models
for magnetic materials. Following the statistical physics terminology, the parameter B is
called ‘magnetic field’ and the parameter β ‘inverse temperature.’

By symmetry, we can always restrict ourself to the case B ≥ 0. The sign of β does
instead play a crucial role. For β > 0, the measure µGn,β,B promotes configurations σ such
that σi = σj for (i, j) ∈ E. This is known as the ferromagnetic Ising model. The opposite
happens for β < 0, which promotes σi = −σj . This is known as the antiferromagnetic
Ising model.

The difference between ferromagnetic and antiferromagnetic models has far-reaching
consequences. For instance, it was proved in [DMS11] that, for essentially any sequence of
graphs {Gn} that converge locally to trees, the free energy density of ferromagnetic Ising
models does converge. An expression for the asymptotic free energy density can be given
in terms of the so-called ‘Bethe free energy.’

The situation is dramatically different for antiferromagnetic models β < 0. First of all,
the asymptotic behavior of the free energy density does not depend uniquely on the local
weak convergence of the graph sequence {Gn}.

Proposition 1.3.1. Consider the antiferromagnetic Ising model (1.3.2) with β < 0, and
let φ(Gn, β, B) = (1/n) logZ(Gn, β, B) be the corresponding free energy density.

Then there exists k0 ∈ N and, for each k ≥ k0 β∗(k) <∞ such that the following hap-

pens. There exists a sequence of graphs {Gn} such that Gn
loc−→ T reg,k

∗ but limn→∞ φ(Gn, β, 0)
does not exist for any k ≥ k0, β > β∗(k).

The proof of this statement uses the connection with optimization and can be found in
Section 1.4.3.

This motivates the following general question.

Open Problem 1.3.1. Assume that the sequence {Gn} converges locally to a random
rooted tree T . What are necessary and sufficient conditions on {Gn} under which limn→∞ φ(Gn, β, B)
exists for β < 0?

It is natural to expect that the limit exists if the graphs Gn are sufficiently ‘homoge-
neous.’ Indeed, it was proven in [BGT10] that, if Gn is a random regular graph of degree
k, or an Erdös-Renyi random graph of average degree d, independent of n, then, for β ≤ 0,
φ(Gn, β, B) has almost surely a deterministic limit as n → ∞. Unfortunately, the proof
does not provide the value of this limit.

Open Problem 1.3.2. Let {Gn} be a sequence of uniformly random k-regular graphs,
or random Erdös-Renyi graphs with average degree d. Provide a characterization of
limn→∞ φ(Gn, β, B) for β < 0.

The question might appear a bit vague at this point, but there exists an exact conjecture
for the limit value, based on the notion of ‘replica symmetry breaking’ (see Section 3.3).

The existence of a local limit for µGn,β,B is an open problem as well for β < 0.

1.3.2 Independent sets

Given a graph G = (V,E), an independent set of G is a subset of the vertices S ⊆ V such
that there is no edge (i, j) ∈ E for which both i ∈ S, and j ∈ S.

Apart from being useful graph-theoretic objects, independent sets play an important
role in theoretical computer science. The problem of computing the size of the largest
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indepedent set S in a graph G is a prototypical NP-complete problem and has attracted
considerable amount of work [Kar72, GJ79]. It is beyond the scope of these lectures
to provide a background in complexity theory. In a nutshell, the fact that maximum
independent set is NP-complete means the following. It is widely conjectured (the P 6= NP
conjecture) that no algorithm can do this computation in a time that is bounded by a
polynomial in |V |. Indeed no polynomial algorithm is expected to exists to compute even
a rough approximation of this quantity [Has96, DS05].

A number of problems related to independent sets inherit the same property, i.e. cannot
be solved in polynomial time unless P = NP. In particular the problem of counting the
number of independent sets of a graph. This is naturally generalized to the problem of
computing the partition function

ZIS(G;λ) ≡
∑

S∈IS(G)

λ|S| , (1.3.3)

where λ > 0 is a parameter and IS(G) is the collection of independent sets of G. For
λ = 1, the quantity ZIS(G;λ = 1) is the number of independent sets, while, as λ gets large,
large independent dominate the sum.

It is easy to recognize that ZIS(G;λ) is the partition function of a factor model. Indeed
consider X = {0, 1} and

ψ(σ1, σ2) = I
(
(σ1, σ2) 6= (1, 1)

)
, ψ(σ) = λσ . (1.3.4)

Then Z(G,ψ) = ZIS(G,λ) (we will drop the subscript IS in the following). The resulting
probability measure reads

µG,λ(σ) =
1

Z(G,λ)

∏
(i,j)

I
(
(σi, σj) 6= (1, 1)

)
λ
∑
i∈V σi . (1.3.5)

This can be interpreted as a probability distribution over independent sets S = {i ∈ V :
σi = 1}, assigning probability proportional to λ|S| to independent set S.

In statistical physics, this is also known as the hard core model. It can be thought of as
a model for a gas of particles whereby σi = 1 means that the site i is occupied by a particle.
The term I

(
(σi, σj) 6= (1, 1)

)
conveys the fact that particles repel at short distance. The

parameter λ is known as the gas ‘fugacity’ and gauges the particle density. As λ gets larger,
a typical configuration σ ∼ µG,λ becomes denser (i.e.

∑
i∈V σi gets larger).

The hard core (or independent set) model shares many features of the antiferromagnetic
Ising model, and indeed can be thought as a special limit of the latter. Considering for
instance a graph with regular degree k, we set β = −(2B + log λ)/(2k) and let B → ∞
in Eq. (1.3.2). Under the identification 0 ↔ (+1) and 1 ↔ (−1), the resulting model
coincides indeed with the hard core model. This correspondence can be generalized to
arbitrary graphs by allowng the magnetic field Bi of the Ising model to depend on the
vertex degree.

In particular, the vaue of the limit free energy density is an open problem or the hard
core model as well.

Open Problem 1.3.3. Let {Gn} be a sequence of uniformly random k-regular graphs,
or random Erdös-Renyi graphs with average degree d. Let φ(Gn, λ) be the free energy
density of the hard-core (independent sets) model on Gn.

Prove a characterization (an explicit formula) for limn→∞ φ(Gn, λ).
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Figure 1.2: A finite graph G and a proper 3-coloring G.

1.3.3 Proper colorings

Given a graph G = (V,E), and an integer q ≥ 2, a proper q-coloring of G is an assigment q
of colors to the vertices of G so that no edge has both endpoints of the same color, see Figure
1.2. Formally, a proper color assigment is given by σ ∈ X V , with X = [q] ≡ {1, 2, . . . , q},
such that σi 6= σj for all (i, j) ∈ E.

Given a graph G and q ≥ 3, the problem of deciding whether G is q-colorable is
NP-complete [Kar72, GJ79]. The case q = 2 is instead special: checking whether G is two-
colorable amounts to checking whether G is bipartite, which can be done in time linear in
the number of vertices (fix arbitrarily the color of one vertex, and propagate it).

The smallest integer q such that G is q colorable is known as the chromatic number of
G, denoted by χ(G), and is a quantity of fundamental interest in graph theory. Another
quantity of interest is the number of proper q-colorings of G, Z(G; q) (which is of course
non-zero only if q ≥ χ(G)). Viewed as a function of q, this is a polynomial of degree |V |,
known as the chromatic polynomial of G. Chromatic polynomials have been studied for
over a century [Big93].

Once again, Z(G; q) can be viewed as the partition function of a factor model on the
graph G with X = [q] ≡ {1, 2, . . . , q}. Namely, the model is defined by letting

ψe(σ1, σ2) = I
(
σ1 6= σ2

)
, ψv(σ) = 1 . (1.3.6)

The free energy density limn→∞ φ(Gn, q) is, in this case, the exponential growth rate of
the number of q-colorings of the sequence of graphs {Gn}. Except in special random graph
models [BGT10], it is unknown whether this growth rate has a limit. Its value is known
only for random regular graphs under special conditions on the degree k and the number
of colors q [AN04]

1.4 Some generalizations

The class of models defined by Eq. (1.1.2) leaves out, by choice, many generalizations that
are important, in particular for applications. We discuss some of these generalizations in
this section and will revisit them in Chapter 6.

There are well-understood relations between the various classes of models that we will
introduce. In particular, any model discussed in this section can be expressed as using a
model on a labeled graph, introduced in Section 1.4.1. Such reductions are straightforward
and are discussed, for instance, in [KF09].

Further, any progress on the more restricted class defined by Eq. (1.1.2) is likely to
have an impact beyond it, to a much broader area.
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1.4.1 Weighted directed graphs

A weighted directed graph is a triple G = (V,E, `) with V a vertex set, D a set of directed
edges (i.e. a set of ordered pairs D ⊆ V × V ) and ` a map ` : D → L that associates to
each edge (i, j) ∈ D a ‘weighth’ `i,j ∈ L. While in many examples we have L ⊆ R, more
general choices are possible. (For the sake of simplicity, we avoid formal definitions here.)

A factor model can be be defined, by letting the edge interaction ψe depend on the
edge weight as well

ψe : X × X × L → R≥0 , (1.4.1)

where ψe is no longer required to be symmetric. For the sake of simplicity (and without
loss of generality), we let ψv( · ) = 1, and hence have

µG,ψ(σ) =
1

Z(G;ψ)

∏
(i,j)∈D

ψe(σi, σj ; `ij) . (1.4.2)

Let us emphasize that –as in the previous section– this is a probability distribution on
σ ∈ X V given G and –in particular– given the edge labels. In the language of physics, the
labels `ij are ‘quenched.’

As an example, the Ising spin glass (in zero magnetic field) is defined by X = {+1,−1},
`ij ∈ L = R and letting

ψe(σ1, σ2; `) = eβ`σ1σ2 . (1.4.3)

For ` > 0, this factor promotes configurations with σ1 = σ2 and, for ` < 0 configurations
with σ1 = σ2. The resulting probability distribution takes the exponential form

µG,ψ(σ) =
1

Z(G,ψ)
exp

{
β
∑

(i,j)∈D

`ijσiσj

}
. (1.4.4)

Notice that, by allowing the cardinality of L to be larger than the number of edges, we
can assign a different weigth for each (i, j) ∈ D, and ence a different function ψij(σi, σj) =
ψe(σi, σj ; `ij) for each edge. Graph convergence can be easily generalized to weighted
graphs, as it should become apparent from Chapter 2.

1.4.2 Hypergraphs and factor graphs

A second generalization of the factor model introduced above is obtained by replacing the
pairwise terms in Eq. (1.1.2) by terms involving arbitrary subsets of the variables. The
structure of such a factorization can be captured by an hypergraph, whereby edges are
replaced by ‘hyperedges’ i.e. subsets including an arbitrary number of vertices.

Factor graphs can also be used to describe such generalized models. A factor graph is
a triple G = (V, F,E) whereby V is a set of variable nodes, F is a set of factor nodes and
E ⊆ V ×F is a set of edges connecting variable nodes to factor nodes. To each factor node
a ∈ F , we associate its neighborhood ∂a ≡ {i ∈ V : (i, a) ∈ E} and a factor

ψa :X ∂a → R≥0 (1.4.5)

σ∂a 7→ ψa(σ∂a) . (1.4.6)
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Figure 1.3: A factor graph G = (V, F,E). Factor nodes are represented as filled squares
and variable nodes as empty circles.

The probability distribution µG,ψ on X V is defined by taking the product of these factors

µG,ψ(σ) =
1

Z(G;ψ)

∏
a∈F

ψa(σ∂a) . (1.4.7)

Note that we allowed ψa to depend on the specific factor node. Alternatively, we can
introduced weigths `a in analogy to what done in the previous section.

The general pairwise model (1.4.2) is recovered by using factor nodes of degree 2, namely
associating one factor node a with ∂a = (i, j) for each (i, j) ∈ D. The inverse reduction
(from factor graph to ordinary weightd graph) is also possible by properly enlarging the
domain X .

As an example, consider the k-satisfiability problem. An instance of this problem is a
Boolean formula over n variables σ1, σ2, . . .σn ∈ X ≡ {True,False}. The formula takes the
form of the conjunction (logical AND) of m clauses. Each clause is the disjunction (logical
OR) of k of the variables or their negation. For instance, the following is a conjunction of
m = 4 clauses, each being the disjunction of k = 3 clauses:

(σ1 ∨ σ2 ∨ σ5) ∧ (σ3 ∨ σ4 ∨ σ5) ∧ (σ2 ∨ σ5 ∨ σ7) ∧ (σ5 ∨ σ6 ∨ σ7) ∧ (σ4 ∨ σ5 ∨ σ6) . (1.4.8)

(Here σi is the negation of σi.) The problem is to find an assignment of the variables
σ ∈ {True,False}n for which the formula evaluates to True, i.e. for which each clause
evaluates to True. Once more, this is a famously NP-hard problem [Coo71, GJ79].

To any k-satisfiability formula we can naturally associate a factor graph by having one
variable node per each variable, and one factor node per each clause. Factor node a is
connected by edges to the subset of variables that appear in clause a.

Equally of interest is the problem of counting the number of satisfying assignments.
This can be regarded as the problem of computing the partition function of a factor graph
model as per Eq. (1.4.7):

Z(G;ψ) =
∑
σ∈XV

∏
a∈F

ψa(σ∂a) . (1.4.9)

Here ψa(σ∂a) is a function that is equal to 1 if clause a is satisfied, and to 0 otherwise.

1.4.3 Connections with optimization

In the previous sections we defined several classes of ‘graph-structured’ probability distri-
butions. In analogy, we can define classes of graph-structured combinatorial optimization
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problems, that are directly connected to these probability distributions.
To be definite, given a finite domain X , we introduce a pair of functions ξ = (ξe, ξv):

ξe : X × X → [−∞,∞) , ξv : X → (−∞,∞) . (1.4.10)

We assume –for the sake of simplicity– ξe to be symmetric (i.e. ξe(σ1, σ2) = ξe(σ2, σ1)).
Given a graph G = (V,E), we can then define the optimization problem

u(G; ξ) =
1

|V |
max
σ∈XV

UG,ξ(σ) , (1.4.11)

UG,ξ(σ) ≡
∑

(i,j)∈E

ξe(σi, σj) +
∑
i∈V

ξv(σi) . (1.4.12)

We will drop the subscript G, ξ whenever clear from the context.
A first connection with the probability distribution (1.1.2) is immediate. The problem of

finding a mode4 of the factor model (1.1.2) is equivalent to the prolem of finding a solution of
the maximization problem (1.4.11), with the definitions ξe(σ1, σ2) = logψe(σ1, σ2), ξv(σ) =
logψv(σ).

As an example, consider again the independent sets model introduced in Section 1.3.2,
which has X = {0, 1}. The corresponding optimization problem has objective function of
the form (1.4.12) with

ξe(σ1, σ2) =

{
−∞ if σ1 = σ2 = 1,

0 otherwise,
(1.4.13)

ξv(σ) = σ log λ . (1.4.14)

For log λ > 0, the optimixation problem reduces therefore to finding a maximum size
independent set:

maximize
∑
i∈V

σi , (1.4.15)

subject to σ ∈ IS(G) , (1.4.16)

where we remember that IS(G) is the collection of independent sets of G. (For log λ ≤ 0
the optimization problem becomes trivial and is solved by setting σi = 0 for all i ∈ V .)

It is not hard to find relations between the optimal value u(G; ξ) and the free energy
density. Define, for β ∈ R

ψβe (σ1, σ2) = eβξe(σ1,σ2) , ψβv (σ) = eβξe(σ) . (1.4.17)

Lemma 1.4.1. Let ψβ = (ψβe , ψ
β
v ) be defined as per Eq. (1.4.17). For β ≥ 0, we have

β u(Gn; ξ) ≤ φ(Gn;ψβ) ≤ β u(Gn; ξ) + log |X | . (1.4.18)

Proof. Recalling the definition of partition function, we have

exp
{
β max
σ∈XV

U(σ)
}
≤ Z(Gn;ψβ) =

∑
σ∈XV

exp
{
βU(σ)

}
≤ |X |n exp

{
β max
σ∈XV

U(σ)
}
.

(1.4.19)

The claim follows by taking logarithms of this inequalities.

4A mode is a configuration σ ∈ X V that maximizes the probability µG,ψ(σ).
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Proof of Proposition 1.3.1

First note that the specification of the antiferromagnetic Ising model is of the form (1.4.17)
with ξe(σ1, σ2) = −σ1σ2 and ξv(σ) = 0. The corresponding objective function reads

UG,ξ(σ) = −
∑

(i,j)∈E

σiσj = −|E|+ 2
∑

(i,j)∈E

I
(
σi 6= σj

)
, (1.4.20)

This objective is maximized by partitioning the vertex set in two subsets V+ = {i ∈ V :
σi = +1} and V− = {i ∈ V : σi = −1} as to maximize the number of edges across the
partition.

We will construct two sequences of random graphs {G(1)
n }n≥1 and {G(2)

n }n≥1 such that,

almost surely, G
(1)
n

loc−→ T reg,k, G
(2)
n

loc−→ T reg,k, and

lim inf
n→∞

u(G(1)
n , ξ) > lim sup

n→∞
u(G(2)

n , ξ) , (1.4.21)

strictly. Assuming that this claim holds, it follows from Lemma 1.4.1 that there exists
β0 > 0 such that, for all β ≥ β0,

lim inf
n→∞

φ(G(1)
n , ψ) > lim sup

n→∞
φ(G(2)

n , ψ) . (1.4.22)

The claim then follows by constructing aa sequence {Gn}n≥1 that alternates between the

two above, e.g. by letting Gn = G
(1)
n for n even and Gn = G

(2)
n for n odd.

We are therefore left with the task of constructing the two {G(1)
n }n≥1 and {G(2)

n }n≥1

that satisfy the claim (1.4.21). We let G
(1)
n be a uniformly random regular bipartite graph

of degree k (hence with n/2 vertices in each set of the partition). Notice that such a graph
exists only for n even, but this is sufficient for our construction. As for the other sequence,

we let G
(2)
n be a uniformly random regular graph of degree k (not necessarily bipartite).

Again, for k odd such a graph exists only if n is even. If both k and n are odd, we can
easily overcome this difficulty by constructing a uniformly random k-regular graph over
vertices {1, . . . , n− 1} and leaving vertex n isolated.

It is an easy exercise to show thatG
(1)
n

loc−→ T reg,k andG
(2)
n

loc−→ T reg,k (see Chapter 2 for

the case of G
(2)
n ). Next consider the computation of u(G

( · )
n , ξ). It is clear fom Eq. (1.4.20)

that UG,ξ(σ) ≤ |E|. In the case of bipartite graph, this upper bound is achieved by setting
σi = +1 for all vertices i in one set of the partition, and σi = −1 for all vertices i in the
other set. We therefore have

lim
n→∞

u(G(1)
n , ξ) =

k

2
. (1.4.23)

Consider next the case of a random regular graph G
(2)
n and denote by An the corre-

sponging adjacency matrix (i.e. the n × n symmetric matrix whose entry (i, j) is one if
(i, j) ∈ E(Gn) and 0 otherwise). Denoting by 〈 · , · 〉 the standard scalar product on Rn,
and by λmin(An) the minumum eigenvalue of An, we then have

u(G(1)
n , ξ) = − 1

2n
min

{
〈σ,Anσ〉 : σ ∈ {+1,−1}n

}
≤ − 1

2n
min

{
〈σ,Anσ〉 : σ ∈ Rn , ‖σ‖22 = n

}
= −1

2
λmin(An) . (1.4.24)
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It follows from [FKS89] that there exists c > 0 such that λmin(An) > −c
√
k with probability

at least exp(−n/c). We then have, almost surely,

lim sup
n→∞

u(G(1)
n , ξ) ≤ c

√
k , (1.4.25)

which completes the proof once we take k0 so that k0/2 > c
√
k0.

1.5 About terminology

The study of ‘graph-structured’ probability distributions such as the one in Eq. (1.1.2)
has a long history originating with statistical physics. Over the last forty years, the same
research domain has become increasingly popular, first within probability theory and subse-
quently within computer science (artificial intelligence, computer vision, machine learning,
communications and information theory, and so on). Many names have been introduced
in different communities for closely related objects of interest, and it is useful to briefly
discuss the differences.

A popular term in statistical physics and probability theory is Gibbs measure [Geo11].
This is often written in exponential form (Boltzmann formula), and interactions are not
limited to be pairwise, e.g.

µ(σ) =
1

Z
exp

{ ∑
U∈R

ξU (σU )
}
, (1.5.1)

where R is a collection of subsets of V . For finite graphs, this form is completely general.
The emphasis of the classical theory of Gibbs measures is on the case of infinite graphs
were the expression (1.5.1) does not make sense. The theory of Gibbs measures gives a
way to generalize this to infinite graphs (see Chapter 3).

Within machine learning, artificial intelligence, computer vision, the name graphical
models is used broadly to refer to graph-structured probability distributions [KF09]. These
include the factor graph models of Section 1.4.2 as well as –for instance– Bayes networks.
The names undirected (pairwise) graphical models and Markov random field comprise pair-
wise models of the form (1.4.2) or, equivalently,

µG,ψ(σ) =
1

Z(G;ψ)

∏
(i,j)∈E

ψij(σi, σj) . (1.5.2)

The definition of undirected graphical models or Markov random field is slightly more
general and include any probability distribution that is globally Markov with respoect to
the graph G. If G has no triangle, and µ(σ) > 0 strictly for each σ ∈ X V , the celebrated
Hammersley-Clifford theorem implies that µ takes the form (1.5.2) for some choice of the
ψij .
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Chapter 2

More on graph convergence

The objective of this chapter is threefold. First, we want to introduce some random graph
and tree models that have been studied in detail, and provide basic examples of the local
weak convergence phenomenon described in Definition 1.2.1. Second, we will reconsider
the definition of local weak convergence from a more general point of view, thus filling in
some missing mathematical concepts. For instance, in the previous chapter we omitted
any discussion of what a ‘random tree’ is. While this point is trivial for trees over a given
finite set of vertices, the question is more subtle for infinite trees. Third, we provide a short
introduction to the notion of ‘unimodularity’. This answers the natural question: which
trees can be obtained as local weak limit of sequances of finite graphs, rooted uniformly at
random? It is intuitively clear that the uniform rooting should lead to certain invariance
properties: the limit tree should ‘look the same’ from all its vertices. Unimodularity
formalizes this notion.

We regall that all graphs G = (V,E) in these lectures are locally finite, which means
that each vertex has a finite number of neighbors. For i ∈ V , we let ∂i denote the set of
neighbors of i (i.e. ∂i = {j ∈ V : (i, j) ∈ E}), and deg(i) = |∂i| its degree. Whenever
useful to make the dependence on the underlying graph G explicit, we will write ∂Gi or
degG(i).

The chapter is organized as follows. We begin in Section 2.1 with some preliminary
remarks that are useful in clarifying which properties of the graph G are relevant for
our purposes. Section 2.2 formally defines the space of (infinite) trees as a measurable
space, and introduces a few classical probability distributions over this space. Section 2.3
defines several random graph models, and discusses their local weak convergence properties.
Finally, Section 2.4 provides a short introduction to unimodularity focusing on the case of
trees.

There is a substantial literature on local weak convergence and unimodularity, and even
more substantial on random graphs. Most of the material summarized here can be found in
the review/expository papers [AS04, AL07]. Classical references on random graph theory
are [Bol01, JLK00].

2.1 Preliminary remarks

It is a simple but important observation that many of the questions investigated in these
lectures are insensitive to changes of a small number of edges of the graphG. This statement
is somewhat vague but can be made formal in a number of cases.
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To be definite consider the problem of computing the free energy density defined by
Eq. (1.2.2). It turns out that the free energy density changes at most by an amount O(1/n)
if G changes by a bounded number of edges. This conclusion holds under suitable regularity
conditions on the specification.

Definition 2.1.1. A specification ψ is strictly positive if ψe(σ1, σ2) > 0 for all σ1, σ2 ∈ X .
It is permissive if there exist a permitted symbol σ0 ∈ X such that ψ(σ, σ0) > 0 for all

σ ∈ X .

We then have the announced continuity property.

Lemma 2.1.2. Let G = (V,E) with |V | = n and G′ = (V,E′) with E′ = E ∪ {(u, v)},
for some u, v ∈ V , (u, v) 6∈ E. If ψ is strictly positive with ψmax ≡ maxσ1,σ2 ψe(σ1, σ2),
ψmin ≡ minσ1,σ2 ψe(σ1, σ2), then

1

n
logψmin ≤ φ(G′, ψ)− φ(G,ψ) ≤ 1

n
logψmax . (2.1.1)

If ψ is permissive with ψ(σ0) ≥ ψmin, and minσ ψ(σ, σ0) ≥ ψmin, then

1

n
log
{ψmin

|X |

(ψmin

ψmax

)degG(u)+1}
≤ φ(G′, ψ)− φ(G,ψ) ≤ 1

n
logψmax . (2.1.2)

Proof. By definition

Z(G′, ψ) =
∑
σ∈XV

∏
(i,j)∈E

{
ψe(σi, σj)

∏
i∈V

ψv(σi)
}
ψe(σuσv) = Z(G,ψ) µG,ψ

(
ψe(σu,σv)

)
,

(2.1.3)

where µG,ψ
(
f(σ)

)
=
∑

σ∈XV f(σ)µG,ψ(σ) denotes the expectation of f(σ) with respect to
the probability distribution µG,ψ. Taking logarithms, we get

φ(G′, ψ) = φ(G,ψ) +
1

n
logµG,ψ

(
ψe(σu,σv)

)
, (2.1.4)

which immediately implies the bounds (2.1.1) as well as the upper bound in (2.1.2).
For the lower bound in the permissive case, see Eq. (2.1.2), we note that

µG,ψ

(
ψe(σu,σv)

)
≥ ψmin µG,ψ({σu = σ0}) . (2.1.5)

Let G\u be the graph G, with vertex u ‘taken out,’ i.e. Gu = (Vu, Eu) with Vu ≡ V \ {u}
and Eu ≡ E \ {(u,w) : w ∈ ∂u}. We then have the following identity, for any function
f : X → R

µG,ψ
(
f(σu)

)
=
W (f ;u)

W (1;u)
, (2.1.6)

W (f ;u) ≡
∑
σu∈X

f(σu)ψv(σu)µGu,ψ

( ∏
w∈∂u

ψe(σu,σw)
)
. (2.1.7)

We have W (1;u) ≤ |X |ψdegG(u)+1
max and, for ψ permissive and f(σ) = I(σ = σ0), W (f ;u) ≥

ψ
degG(u)+1
min . Therefore

µG,ψ({σu = σ0}) ≥
1

|X |

(
ψmin

ψmax

)degG(u)+1

. (2.1.8)

whence the claim follows by substituting in Eq. (2.1.4) and (2.1.5).
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root root

Figure 2.1: Two unlabeled rooted graphs G1 = (G1, o1), G2 = (G2, o2) with distance
d(G1, G2) = 1/8. (Indeed B3(o1;G1) 6' B3(o2;G2), but B2(o1;G1) ' B2(o2;G2).)

2.2 Trees

A tree is a graph that does not have loops. Throught this chapter, trees will be rooted, i.e.
they have distinguished vertex called the root. We will denote the root by o. Formally, a
rooted graph is a pair (G, o) with G = (V,E) a graph and o ∈ V the root. A rooted tree is
such a pair when G is a tree. When clear from the context, we will omit explicit mention
of the root and use the same symbol G for the rooted graph.

We are typically interested in properties of the rooted graph (G, o) that do not depend
on the labeling of its vertices. We write (G1, o1) ' (G2, o2) if the graphs G1 and G2 can be
mapped to each other by a root preserving homomorphism (recall that this is a bijection
between the vertices of G1 and G2 that maps edges onto edtjes bijectively, and o1 to o2).
The set of equivalence classes of rooted graphs under the equivalne relation ' will be
denoted by G∗. Its subset corresponding to trees will be denoted by T∗. We refer to G∗ and
T∗ as to the spaces of unlabeled rooted graphs or trees. We will denote elements in G∗, T∗
through their representative elements (G, o) or (T, o). Most of the times we will use the
same notation G = (G, o) for a graph and its equivalence class, and it should be clear from
the context whether we are referring to one or the other. Whenever useful to be explicit,
we will use [G, o] for the equivalence class.

Recall that Bt(o;G) is the ball of radius t around o in G. If T = (T, o) is a rooted tree,
we will use the shorthand Tt = Bt(o;T ) for the subtree formed by the first t-generations
of T . (In particular, T0 is the tree formed by a unique vertex, the root.) Note that, if
(G1, o1) ' (G2, o2), then Bt(o1;G1) ' Bt(o2;G2). In other words, the map from a rooted
graph to the ball of tadius t around its root, induces a well defined map on unlabeled trees.
For G1, G2 ∈ G∗, let

R(G1, G2) = inf
{
t ∈ N : Bt(o1;G1) 6' Bt(o2;G2)

}
. (2.2.1)

(We adopt the usual convention that the infimum of an empty set is equal to +∞.) In words
R(G1, G2) is the distance from the root of the first vertex where G1 and G2 differ. Again,
R(G1, G2) depends only on the equivalence classes of G1 and G2. Further R(G1, G2) ≥ 0
and R(G1, G2) =∞ if and only if G1 ' G2 We also define, for G1, G2 ∈ G∗,

d(G1, G2) =
1

2R(G1,G2)
. (2.2.2)
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Proposition 2.2.1. The function d is a distance on G∗, and (G∗, d) is a complete metric
space. The same is true if G∗ is replaced by T∗ ⊆ G∗.

Proof. It is obvious that d is symmetric and non-negative, with d(G1, G2) = 0 if and only
if G1 = [G1, o1], G2 = [G2, o2] ∈ G∗ coincide, i.e. G1 ' G2. Further, for G1, G2, G3 ∈
UGraph∗, we have R(G1, G3) = min(R(G1, G2), R(G2, G3)), which implies the triangular
inequality.

For proving completeness, let {G(n)}n∈N be a Cauchy sequence of unlabeled rootd
graphs. For each t ∈ N, let nt be such that d(G(n), G(n′)) ≤ 2−t−1 for all n, n′ ≥ nt. In
other words, all the trees G(n) in the sequence share the same first t generations for n ≥ nt.
Note that this implies that Bs(o;G

(nt)) ' Bs(o;G
(ns)) for all t ≥ s. As a consequence,

there exist a graph G(∞) such that Bt(o;G
(∞)) ' Bt(o;G(nt)) for all t. It then follows that

limn→∞G
(n) = G(∞) in (G∗, d), since for all t and all n > nt, d(G(n), G(∞)) ≤ 2−t.

The space (G∗, d) is not compact but –as shown in the next exercise– compact subsets
are obtained by bounding the degrees.

Exercise 2.2.1. Let ∆ = (∆i)i∈N be a sequence of integers. Denote by BG∗(∆) ⊆ G∗ the
set of unlabeled rooted trees such that, for each t, the vertices at distance t from the root
have degree at most ∆.

Prove that BG∗(∆) is is sequentially compact and hence compact.

The set G∗ is made into a measurable space by equipping it with the Borel σ-algebra
B(G∗). A random unlabeled rooted graph (or tree) is simply a random variables with values
in (G∗,B(G∗)) (respectively, in (T∗,B(T∗))). A probability distribution over rooted graphs
(rooted trees) is a probability measure over the measurable space (G∗,B(G∗)) (respectively,
over (T∗,B(T∗))).

The following definition is equivalent to the more explicit Definition 1.2.1.

Definition 2.2.2. Let {Gn}n≥1 be a sequence of graphs and, for each n, let In a uniformly
random vertex in Vn. Let T = (T , o) be a random rooted tree, and let (Gn, In) be the
unlabeled random rooted graph obtained by rooting Gn at In.

We say that the sequence {Gn}n≥0 converges locally (weakly) to T (and write Gn
loc−→

T ) if (Gn, In) converges in distribution to T .

All of the above theory generalizes when the vertices of G carry spin values. Namely,
we consider triplets (G, σ, o) with G = (V,E) a graph, o ∈ V and σ : V → X , i 7→ σi an
assignment of spin values to the vertices of G. Two such marked graphs are isomorphic
(and we write (G1, σ1, o1) ' (G2, σ2, o2)) if there exists a bijection ϕ : V1 → V2 such that:
(i) ϕ(o1) = o2; (ii) (i, j) ∈ E1 if and only if (ϕ(i), ϕ(j)) ∈ E2; (iii) σi = σϕ(i) for all

i ∈ V1. The space of marked rooted graphs up to isomorphism will be denoted by GX∗
and we typically refer to one of its elements by a representative (G, σ, o). When we want
ot highlight that we are interested in the equivalence class, we wil write [G, σ, o] instead.
Then Definition 1.2.2 is equivalent to the following.

Definition 2.2.3. Let (T ,σ,o) be an unlabeled marked random rooted tree. Let {Gn}n≥1

be a sequence of graphs that converges locally to (T ,o). Let ψ be a specification and for
any n ∈ N, let σn ∼ µGn,ψ. Finally, for each n, let In be uniformly random in Vn.

We say that (Gn, µGn,ψ) converges locally to (T ,σ,o) if (Gn, In,σ
n) converges in dis-

tribution to (T ,σ,o).
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Two remarks are useful for working with unlabeled rooted trees.
First, for each [G, σ, o] ∈ GX∗ we can pick a unique canonical representative (i.e. a

labeled rooted graph (G, σ, o) in the equivalence class [G, σ, o]) with vertex set in N and
root at 0. In other words, there is a canonical way to put labels on the vertices of an
unlabeled graph.

Further, the function f that maps an unlabeled rooted graph to its representative is
continuous, with respect to the following topologies. On the domain (the space of unlabeled
graphs), we use the topology induced by the distance d( · , · ), cf. Eqs. (2.2.1) and (2.2.2).
On the target space (the space of labeled graphs, we use the obvious generalization of the
same distance, nemely the one obtained by replacing R(G1, G2) by

R′(G1, G2) = inf
{
t ∈ N : Bt(o1;G1) 6= Bt(o2;G2)

}
. (2.2.3)

(Here Bt(o·;G·) is understood to be a labeled graph and equality includes the labels.)
Details of the construcyion of this mapping f can be found in [AL07].

Second, If wet let σcan : N → X be the resulting canonical spin configuration, there
exists a regular conditional probability Pσcan|[G,o]. (Note that σcan ∈ XN, that is a complete
separable metric space, and hence Borel-isomorphic to ([0, 1],B([0, 1]).)

We conclude this section by defining a simple and useful random tree model. When
considering a rooted tree T , the descendants or offsprings of a vertex i ∈ VT are all the
neighbors of i that are farther from the root than i. The ancestor of i is instead the only
neighbor of i that s closer to the root (the root has no ancestor).

We already introduced the regular tree T reg,k. An important generalization is the
unimodular Galton-Watson tree GW(P ) that is parametrized by a probability distribution
P over N, with finite expectation. Let ρ be the size-biased version of P that is, for each
k ∈ N

ρk =
k Pk∑∞
`=0 `P`

. (2.2.4)

A random tree T ∼ GW(P ) is then generated by letting the number of descendant of the
root be Ko ∼ P , and the number of descendant of any other vertex v be an independent
random variable (Kv − 1), with Kv ∼ ρ. Formally this is described by the following
algorithm. (Here [a, b] denotes the concatenation of a and b.)

Algorithm 1 Generate T = (V,E) ∼ GW(P )

1: Initialize V = {o}, E = ∅
2: Draw Ko ∼ P and set V1 = {1, 2, . . . ,K0}
3: Set V = V ∪ V1 , E = E ∪ {(o, v) : v ∈ V1} (connect the new vertices to the root);
4: for t ∈ {1, 2, . . . } do
5: for v ∈ Vt do
6: Draw Kv ∼ ρ independent of the past
7: Set Vt+1 = Vt+1∪{[v, 1], . . . , [v,Kv−1]}, E = E∪{(v, [v, 1]), . . . , (v, [v,Kv−1])}
8: end for
9: Set V = V ∪ Vt+1

10: end for

Notice that –strictly speaking– the above describes a probability distribution over la-
beled trees. The random unlabeled tree T ∼ GW(P ) is simply the equivalence class of the
resulting labeled tree.
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2.3 Random graph models and local convergence

In this section we introduce two standard random graph models and their local weak limits.
We will indeed consider graph sequences {Gn = (Vn, En)}n≥1 indexed by the number of
vertices and will typically take the vertex set to be Vn = [n] (the set of first n integers).

2.3.1 Erdös-Renyi random graphs

The simplest random graph model is arguably the Erdös-Renyi random graph with average
degree d. This is often referred to as the random graph without further specifications. There
is more than one definition for this model that are equivalent for our purposes1

1. Gn = (V (Gn) = [n], E(Gn)) is a simple graph on n vertices, and the events {(i, j) ∈
E(Gn)} are mutually independent for all pairs (i, j), with P{(i, j) ∈ E(Gn)} = d/n.

2. Gn = (V (Gn) = [n], E(Gn)) is a simple graph choosen uniformly at random among
all graphs with n vertices and |E(Gn)| = dn/2 edges.

3. Gn = (V (Gn) = [n], E(Gn)) is a multi-graph, i.e. a graph with –potentially– multiple
edges and self-loops. The graph has a deterministic number of edges |E(Gn)| = dn/2,
generated as follows. Start with n vertices and an empty edge set. For each ` ∈
{1, . . . , |E(Gn)|} choose an edge (i`, j`) uniformly at random among the

(
n
2

)
possible

choices, and add the new edge to the graph: E := E ∪ {(i`, j`)}.

4. The same as the previous model, except that edges are chosen by drawing i`, j`
indipendent and uniformly random in {1, . . . , n}.

Within the first model, it is immediate to see that the degree of a fixed vertex, say of
vertex v is a binomial random variable deg(v) ∼ Binom(d/n, n − 1). As n gets large for
d = o(n), it is therefore approximately Poisson with mean d. The next result refines this
observation.

Proposition 2.3.1. For any n ∈ N, let Gn be a random graphs from any of the models
1 to 4 above, with average degree dn. Further, let T ∼ GW(Poisson(d)) be a unimodular
Galton-Watson tree with degree distribution P = Poisson(d).

If limn→∞ dn = d, then Gn
loc−→ T , almost surely with respect to the distribution of

{Gn}n.

Proof. This proof is somewhat tedious, and a standard result in the literature. We will
present most of its details for the reader who might want develop some familiarity with
the various concepts introduced in this chapter.

By the definition, the claim can be restated as follows. For any t-generations unlabeled
rooted tree Tt, {Gn} almost surely

lim
n→∞

P
(
Bt(In;Gn) ' Tt

∣∣∣ Gn

)
= P

(
T t ' Tt

)
. (2.3.1)

We will limit ourself to proving this convergence in expectation, namely

lim
n→∞

P
(
Bt(In;Gn) ' Tt

)
= P

(
T t ' Tt

)
. (2.3.2)

1We adopt here the somewhat unusual practice of parameterizing the model by the average degree,
instead of the total number of edges, or the edge probability. The three quantities are easily related to each
other.
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The step from convergence in expectation to convergence almost sure follows, for instance,
from [DM10, Lemma 2.3, 2.4].

Let us begin by computing the right-hand side of Eq. (2.3.2). Note that, in for the
Poisson(d) distribution, we have

Pk = ρk+1 =
dk

k!
e−d , (2.3.3)

i.e. the number of offsprings of the root is distributed as the number of offsprings of any
other vertex.

Let us identify Tt with a specific labeled representative. We will do this by labeling
a vertex at distance s from the root with a vector v ∈ Ns, with the convention that the
descendants of v take labels v′ = [v, i] with i ∈ {1, 2, . . . } following the canonical labeling.
We will let V=s (respectively V<s, V>s) denote the subset of vertices of Tt at distance equal
to s from the root (smaller than s, larger than s). We also denote by `(v) the number
of offsprings of vertex v (i.e. `(v) = degTt(v) if v is the root, and `(v) = degG(v) − 1
otherwise).

It is also useful to choose a labeled representative of the random tree T . A specific
labeling of the vertices (taking values in ∪k≥1Nk) is the one given by the algorithm in the
previous section. With these definitions, we have

P
(
T t = Tt

)
=
∏
i∈V<t

(d`(i)
`(i)!

e−d
)
, (2.3.4)

In order to compute P
(
T t ' Tt

)
, we have to multiply the last probability by the number

of distinct labeled trees T ′t that can be obtained by permuting the labels of siblings in Tt.
This factor is given by

1

|Aut(Tt)|
∏
i∈V<t

`(i)! (2.3.5)

with Aut(Tt) the groop of (rooted) automorphisms of Tt. Multiplying these factors and
grouping the terms, we thus obtain

P
(
T t ' Tt

)
=

1

|Aut(Tt)|
d|V≤t|−1 e−d|V<t| . (2.3.6)

Next consider the left hand side of Eq. (2.3.2). For the sake of simplicity, we will use
model 1 above, but the calculation is similar in the other cases. Notice that, since the
law of Gn is invariant under permutation of the vertices, we can replace Bt(In;Gn) by

Bt(i;Gn) for any fixed i ∈ N, say i = 1. Fix a representative T
(n)
t of Tt with vertex labels

in [n] and root label 1. Then we have

P
(
Bt(1;Gn) = T

(n)
t

)
=
(d
n

)|V≤t|−1(
1− d

n

)(|V≤t|−1)(|V≤t|−2)/2[(
1− d

n

)n−|V≤t|+1]|V<t|
.

(2.3.7)

This formula is somewhat lengthy but easy to understand. The first factor correspond the

probability of all the edges in T
(n)
t being present in Gn. The second is the probability that

all the edges among vertices u, v ∈ V (T
(n)
t ) but such that (u, v) 6∈ E(T

(n)
t ) are absent. The
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third factor is the probability that each vertex in T (n) that has distance smaller than t from

the root, has no neighbors in V \ V (T
(n)
t ). The intersection of these three (independent)

events is the event Bt(1;Gn) = T
(n)
t .

Using the fact that |V≤t|, |V<t are kept fixed as n→∞, a simple calculation yields the
asymptotic formula

P
(
Bt(1;Gn) = T

(n)
t

)
=
(d
n

)|V≤t|−1
e−d|V<t| . (2.3.8)

In order to compute P(Bt(1;Gn) ' Tt) we have to multiply the probability in Eq. (2.3.7)
by the number of disctinct ways of labeling vertices of Tt by labels in [n], keeping the root
labeled by 1. This factor is

1

|Aut(Tt)|
(n− 1)(n− 2) · · · (n− |V≤t|+ 1) =

n|V≤t|−1

|Aut(Tt)|
(
1 +O(n−1)

)
. (2.3.9)

Multiplying this factor by the expresson in Eq. (2.3.8), we get

lim
n→∞

P
(
Bt(1;Gn) ' T (n)

t

)
=

1

|Aut(Tt)|
d|V≤t|−1 e−d|V<t| , (2.3.10)

which proves our claim.

Indeed the graph models 1 to 4 are similar in a stronger sense than t implied by local
weak convergence, as you are asked to prove below.

Exercise 2.3.1. Prove that the random graphs G(1), . . .G(4) defined in points 1 to 4

above can be coupled so that so that E{|E(G
(a)
n )4E(G

(b)
n )|} = O(d2/n).

2.3.2 Graphs with given degree distribution

Given a graph G = (V = [n], E) on n vertices, its degree sequence is the vector d =
(d1, . . . , dn) ∈ Nn where, for each i ∈ [n], di = degG(i). A random graph with given degree
sequence d ∈ Nn is a graph Gn that is uniformly random among all simple graphs with
degree sequence d.

Note that, for a general d ∈ Nn, there does not always exists a simple graph with degree
sequence d. (Thing for instance of d = (4, 0, 0, 0).) If there exists at least one graph with
degree sequence d, then d is called graphical. The characterization of graphical sequences
is a classical result whose proof can be found, for instance, in [Bol78].

Theorem 1 (Erdös-Gallai). The degree sequence d ∈ Nn is graphical if and only if, as-
suming without loss of generality d1 ≥ d2 ≥ · · · ≥ dn, the following conditions hold:

(a) The sum of degrees
∑n

i=1 di is even.

(b) For each k ∈ {1, . . . , n} we have
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 min(k, di).

Note that the situation is much simpler if G is allowed to be a multigraph, i.e. a
graph with multiple edges and self loops. In that case, the first condition is necessary and
sufficient (the degree is defined in this case as the number of edges incident on a vertex,
with self loops counting two) . Namely, if

∑
i=1 di is even, then there exists a multigraph

with degree sequence d = (d1, . . . , dn).

22



Since we are interested in sequences of sparse graphs, it is more convenient to consider
random graphs with given degree distribution, that can be defined as follows. Given a

probability distribution P on N, and n ≥ 1, we define integers m(n) = (m
(n)
` )`≥1, so that

for each `, m
(n)
` ≈ nP` will be the number of vertices of degree `.

An explicit construction is as follows. For ` ≥ 1, we let m̃
(n)
` = bnP`c, If

∑∞
`=0 `m̃

(n)
`

is even, then m(n) ≡ m̃(n). Otherwise, letting `∗ ∈ arg max`≥1,` odd m̃
(n)
` , we set m

(n)
`∗

=

m̃
(n)
`∗
− 1 and m

(n)
` = m̃

(n)
` for ` 6= `∗. Finally, for ` = 0, we let m

(n)
0 = n−

∑∞
`=1m

(n)
` .

We then define a random graph with n vertices and degree distribution P as a graph Gn

that is uniformly random among all simple graphs that have, for each ` ≥ 0, m
(n)
` vertices

of degree `. This definition is well-posed as proved by the following proposition. Its proof
can be found in appendix A.

Proposition 2.3.2. For P a probabilty distribution over N, let m(n) be defined as above.

Define the degree sequence d ∈ Nn by letting di = ` for all i and ` such that 1+
∑`

k=1m
(n)
k ≤

i ≤
∑`

k=1m
(n)
k .

If P has finite expectation, then d is graphical for all n large enough.

While the random graph with given degree distribution is simple to define, this defi-
nition is rather implicit, and inconvenient for actual calculations. It is much more conve-
nient to work with the so-called configuration model [Bol80, Wor81, Wor99]. This defines
a probability distribution over multigraphs with n vertices and a given degree sequence
d = (d1, . . . , dn) such that

∑n
i=1 di = 2|E| is even. A configuration model graph is gen-

erated as follows. To each vertex i ∈ V = [n], associate di ‘half-edges’. The resulting
2|E| half-edges are regarded as distinguishable. Then draw a uniformly random pairing π
among 2|E| objects, and pair the half-edges using π, to form |E| edges.

This construction defines a random graph with given degree sequence. Using the ap-
proach described above for uniform random graphs, we can define a configuration model
random graph with given degree distribution P .

Note that, in general, a configuration-model random graph may contain multiple edges
and self loops, i.e. it is in fact a multi-graph. The next result provides a simple connection
between the two.

Proposition 2.3.3. Let Gn be a configuration-model random graph with given degree se-
quence d = (d1, . . . , dn), and denote by Sn the set of simple graph over n vertices. Then,
conditional on Gn ∈ Sn, Gn is a uniformly random simple graph with degree sequence d.

Further, consider a sequence of models over n vertices, with degree sequences d(n) =

(d
(n)
1 , d

(n)
2 , . . . , d

(n)
n ) such that 2|E(Gn)| =

∑n
i=1 d

(n)
i →∞. If

∑n
i=1(d

(n)
i )2 = O(

∑n
i=1 d

(n)
i ),

then

lim inf
n→∞

P(Gn ∈ Sn) > 0 . (2.3.11)

Proof. The first part is straightforward, and analogous to what is done in [Bol80, Wor81,
Wor99] for random regular graphs. The second is adapted from [Jan09].

In particular, for a sequence of configuration model graphs with given degree distribu-
tion P , P(Gn ∈ Sn) remains bounded away from zero as long as P has bounded second
moment.

Proposition 2.3.3 is particularly useful for estabilishing typical properties of the uniform
random graph. Namely, under the stated assumptions, it implies that, if a certain property
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root

Figure 2.2: The determistic rooted tree T reg,2,3, i.e.the infinite tree with degree 2 at the root
and degree 3. This tree cannot be obtained as local weak limit of a sequence of randomly
rooted graphs.

holds with high probability with respect to the configuration model, it must hold with high
probability with respect to the uniform model as well.

Proposition 2.3.4. Let P be a probability distribution over N with bounded first moment.
For any n ∈ N, let Gn be a random graphs with degree distribution P , either uniformly
random or from the configuration model. Further, let T ∼ GW(P ) be a unimodular Galton-
Watson tree with degree distribution P .

Then Gn
loc−→ T , almost surely with respect to the distribution of {Gn}.

Proof. The proof can be found in [DM10]

2.4 Unimodularity

As we saw, random rooted trees emerge quite naturally as local limits of sequences of
graphs rooted at a random vertex. Is is intuitively clear that not any rooted tree can be
obtained as such limits.

This point can be illustrated through a simple example. Consider the deterministic
rooted tree T reg,k,m that has degree k at the root, and m 6= k at all vertices except the
root, cf. Fig. 2.2. It seems unlikely that such tree can be obtained as local limit of a
randomly rooted graph sequence. One would expect that such a limit tree should ‘look
the same’ when regarded from any of its vertices. On the contrary, the root of T reg,k,m is
‘special.’

This concept is made precise by the the notion of unimodular random rooted graph. In
order to define unimodularity, we must first define the space G∗∗ of doubly rooted graphs.
A doubly rooted graph is a triple (G, u, v) where G = (V,E) is a graph, and u, v ∈ V .
Two such graphs (G1, u1, v1) and (G2, u2, v2) are isomorphic if there exists an isomorphism
ϕ between G1 and G2 (i.e. a bijection of the vertices that preserves edges), such that
ϕ(u1) = u2 and ϕ(v1) = v2. We let G∗∗ be the space of equivalence classes of doubly rooted
graphs, and will refer to it as to the space of unlabeled doubly rooted graphs.

The space G∗∗ can be given a metric by analogously to what we did for G∗. Given t ∈ N,
G = (V,E) and u, v ∈ G, we let Bt(u, v;G) be the subgraph induced by all the vertices
j ∈ V such that min(d(u, j), d(v, j)) ≤ t, rooted at the pair u, v. Given two doubly rooted
graphs G1 = (G1, u1, v1), G2 = (G2, u2, v2), we let d(G1, G2) = 2−R(G1,G2) with R(G1, G2)
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equal to the smallest t such that Bt(u1, v1;G1) 6' Bt(u2, v2;G2). As for the simply rooted
case, (G∗∗, d) is a complete metric space, we regard it as a measurable space endowed with
the Borel σ-algebra.

Exercise 2.4.1. Let π : G∗∗ → G∗ be the mapping that consists in removing the mark
from the second root in a doubly rooted graph, i.e. π : (G, u, v) 7→ (G, u). Show that π is
continuous.

In the following, we need to consider functions f : G∗∗ → R defined on unlabeled doubly
rooted graphs. Note that such a function can be identified with a function on labeled rooted
graphs such that f(G1, u1, v1) = f(G2, u2, v2) every time (G1, u1, v1) ' (G2, u2, v2). This
identification will be understood throughout.

Definition 2.4.1. Let (G,o) be an unlabeled random rooted graph. We say that (G,o) is
unimodular if, for any measurable function f : G∗∗ → R≥0, we have

E
[ ∑
v∈V (G)

f(G,o, v)
]

= E
[ ∑
v∈V (G)

f(G, v,o)
]
. (2.4.1)

Equation (2.4.1) is known as the mass-transportation principle. It is a good exercise to
parse –say– its right hand side. We sample an unlabeled rooted graph [G,o] according to
the estabilished probability distribution. Construct a representative labeled rooted graph
(G, o) (for instance the canonical one, with V (G) = N). Evaluate f(G,o, v) for each
v ∈ V (G). Notice that for two representatives (G1,o1) and (G2,o2), the result of this step
will be different, but still f(G1,o1, v1) = f(G2,o2, ϕ(v1)) if ϕ is the isomorphism between
G1 and G2. We sum this quantity over v: by what we just said, the result depends only
on the equivalence class [G,o] and not on the vertex labeling.

The importance of unimodular graphs is clarified by the following result due to Ben-
jamini and Schramm [BS01].

Proposition 2.4.2. Let {Gn} be a sequence of graphs that converges locally to the random
rooted graph (G,o). Then G is unimodular.

Proof. The proof proceeds in two steps: (i) Show that, for Gn a finite graph and In a
uniformly random vertex, the random rooted graph (Gn, In) is unimodular; (ii) Prove
that the local weak limit of unimodular graphs is also unimodular.

In order to accomplish step (i), we evaluate the left hand side of Eq. (2.4.1):

E{
∑
v∈Vn

f(Gn, In, v)
}

=
1

n

∑
i∈Vn

∑
v∈Vn

f(Gn, i, v) (2.4.2)

=
1

n

∑
i∈Vn

∑
v∈Vn

f(Gn, v, i) = E{
∑
v∈Vn

f(Gn, v, In)
}
.

Step (ii) is a measure-theory exercise and its details can be found in Appendix A.1.2.

In fact it turns out that a sligntly simpler condition (introduced by Aldous and Steele
[AS04]) is sufficient for unimodularity.
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Definition 2.4.3. Let (G,o) be an unlabeled random rooted graph. We say that (G,o) is
involution invariant if, for any measurable function f : G∗∗ → R≥0, we have

E
[ ∑
v∈∂o

f(G,o, v)
]

= E
[ ∑
v∈∂o

f(G, v,o)
]
. (2.4.3)

In other words, G is involution-invariant if it satisfies the mass-transportation principle
for f : G∗∗ → R≥0 such that f(G, u, v) = 0 unless (u, v) ∈ E(G).

Proposition 2.4.4. A random rooted graph (G,o) is unimodular if and only if it is
involution-invariant.

Proof. The proof can be found in [AL07, Proposition 2.2].

In the following, given a doubly rooted graph (G, u, v), we will rather write (G, u→ v)
if (u, v) ∈ E(G).

Determining whether unimodularity characterizes completely the set of weak limits is
an open problem.

Open Problem 2.4.1. Prove that for any (G,o) unimodular, there exists a sequence of
graphs {Gn} that converges locally to G.

On the other hand, the problem is settled for the case of unimodular trees, as shown
in [EL10, BLS12].

Theorem 2. Let (T ,o) be a unimodular random rooted tree. Then there exists a siquence
of finite graphs {Gn = (Vn, En)}n≥1 that converge locally to (T ,o).

Exercise 2.4.2. Prove that the deterministic regular tree T reg,k is unimodular.

Exercise 2.4.3. Let (G, o) be a deterministic rooted unlabeled graph (i.e. a random
rooted unlabeled graph that is equal to (G, o) with probability one). Prove that G must
be a regular graph.

Prove that the same conclusion holds for a random graph (G,o) if deg(o) is determin-
istic.

The following result provides an equivalent definition of unimodularity.

Proposition 2.4.5. The unlabeled random rooted graph (G,o) is unimodular if and ony
if, for any measurable function f : G∗∗ → R≥0, we have

E
{

deg(o)f(G,o→ J)
}

= E
{

deg(o)f(G,J → o)
}
, (2.4.4)

where J is a uniformly random neighbor of the root.

Proof. This is just a restatement of the condition for involution invariance, cf. Eq. (2.4.3).
For instance, the left hand side of that equation reads

E
[ ∑
v∈∂o

f(G,o, v)
]

= E
[
deg(o)

( 1

deg(o)

∑
v∈∂o

f(G,o, v)
)]

= E
[
deg(o) f(G,o,J)

]
,

(2.4.5)

with J as in the statement. The right hand side can be written in a similar form.

26



There is another definition that will be useful in the following. We let Ge ⊆ G∗∗ be the
subset of doubly rooted graphs (G, u, v) such that (u, v) ∈ E. We write (G, u→ v) for an
element of Ge, and will denote by Te ⊆ Ge the subset for which G = T is a tree.

If (G,o) is a unimodular random rooted graph, with law ν, we let ν̃↑ denote the law of
(G,J → o) for J a uniformly random neighbor of o, and ν̃↓ denote the law of (G,o→ J).
Notice that both ν̃↑ and ν̃↓ are supported on Ge. We further define2 ν↑ and ν↓ by the
Radon-Nykodim derivatives

dν↓

dν̃↓
(G, o→ j) =

deg(o)

Edeg(o)
,

dν↑

dν̃↑
(G, j → o) =

deg(o)

Edeg(o)
. (2.4.6)

Here expectation is with respect to ν, or ν̃↓, or ν̃↑: the three quantities are equal. Also,
we assume without substantial loss of generality that deg(o) > 0 with strictly positive
probability (in the opposite case G is formed almost surely by a unique vertex.) We can
then restate the last Proposition 2.4.5 as follows.

Proposition 2.4.6. The random rooted graph (G,o) with law ν is unimodular if and only
if

ν↓ = ν↑ . (2.4.7)

Note that, for ν unimodular, the five measures ν, ν↑, ν↓, ν̃↑, ν̃↓ are mutually absolutely
continuous on {deg(o) > 0}.

Throughout this section we considered, for economy of notation, unmarked graphs.
However, both definitions and results hold verbatimly for marked rooted graps (T ,σ,o)
i.e. for probability measures over GX∗ .

The next result is an instructive application that was first estabilished formally in
[LPP95] (with a different terminology).

Exercise 2.4.4. Prove that the unimodular Galton-Watson tree GW(P ) defined in Section
2.2 is indeed unimodular.

Exercise 2.4.5. Modify the definition of Galton-Watson tree GW( · ) in Section 2.2 by
considering generic degree distributions P (at the root) and ρ elsewhere. Prove that the
resulting random tree is not unimodular unless P and ρ are related as per Eq. (2.2.4).

2The same definitions were made in in [DMS11], but notations here are slightly different.
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Chapter 3

Factor models on trees

In this chapter we study factor models, under the additonal condition that the underlying
graph is a tree. The motivation for devoting some energy to this special case is self-evident.
Our main objective is to understand factor models on large locally tree-like graphs. It is
unlikely that we will be able to achieve this objective unless we understand the case of
large trees as well.

We will begin in Section 3.1 by considering finite trees. This case is particularly simple.
The free energy can be show to be the equal to optimal value of a certain optimization
problem that admits a convex formulation. The objective function is known as the Bethe
free energy. The location of the optimum immediately yields a characterization of the local
marginals of the probability measure µG,ψ(σ) introduced in Chapter 1. This characteriza-
tion is computationally efficient (it allows to compute the free energy and local marginals
in polynomial time).

In Section 3.2 we consider the case of infinite trees. In this case, the situation is
significantly more subtle. First of all, the definition of the probability measure µG,ψ( · )
given in Chapter 1, Eq. (1.1.2) does not make sense any more. We have instead to define
µ as a (non-necessarily unique) Gibbs measure corresponding to the specification ψ.

For a subclass of these Gibbs measures and if the underlying tree is unimodular, we can
generalize the concepts developed in the case of finite trees. In particular, we can generalize
the variational principle based on Bethe free energy. It is natural to conjecture that, for
{Gn} a sequence of graphs converging locally to a unimodular tree, the free energy density
φ(Gn, ψ) converges to the solution of this variational problem. An analogous conjecture
can be formulated for the local limit of the measures µGn,ψ. This ansatz is known as
Bethe-Peierls approximation.

While this conjecture has been proved in some cases (proof techniques are discussed
in the next two chapters), it is also known not to hold in general. Section 3.3 discusses
generalizations based on the idea of ‘replica symmetry breaking.’

3.1 Finite graphs

We are interested in the proability distribution on X V defined by Eq. (1.1.2), that we copy
here for the reader’s convenience:

µG,ψ(σ) =
1

Z(G,ψ)

∏
(i,j)∈E

ψe(σi, σj)
∏
i∈V

ψv(σi) . (3.1.1)
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This section focuses on the case in which G = T = (V,E) is a finite tree. Some of the
results apply to general finite graphs: we will emphaseize when this is the case.

If G is not a tree, it is sometimes necessary to assume special conditions that ensure
that the various expressions make sense (e.g. that there is no division by 0, and so on). A
simple such condition is permissivity, cf. Definition 2.1.1. While weaker conditions can be
used with additional technical work, we will use permissivity for ease of exposition.

3.1.1 Local marginals

Recall that, for U ⊆ V , we let σU ≡ (σi)i∈U denote that restriction of σ to U . Given
σ ∼ µG,ψ, we are interested in the in the marginal distribution of σU , whereby U is
–typically– a small subset of vertices. Formally we let, for any σU ∈ XU , we let

µG,ψ;U (σU ) = µG,ψ
(
{σU = σU}

)
. (3.1.2)

In practice, we will typically drop the subscript U or G,ψ as it will be clear from the
context.

It turns out that, when G = T is a tree, all such local marginals can be succinctly
encoded in a set of ‘messages’ and that these quantities can be efficiently computed.

We denote by (u → v) a ordered pair of vertices u, v ∈ V such that (u, v) ∈ E (i.e.
(u→ v) is an edge with a choice of direction). For such each ordered pair, we let Tu→v =
(Vu→v, Eu→v) be the subtree induced by the vertices that can be reached from u without
passing through v (note that this excludes v). We let µu→v = µTu→v ,ψ be the probability
measure on X Vu→v associated to this subtree. Namely, writing σ = σVu→v , we define

µu→v(σ) =
1

Z(Tu→v, ψ)

∏
(i,j)∈Eu→v

ψe(σi, σj)
∏

i∈Vu→v

ψv(σi) . (3.1.3)

Let ∆X the (|X | − 1)-dimensional simplex of probability measures over X . We define the
equilibrium message h∗u→v ∈ ∆X as the marginal distribution of σu under µu→v. Namely
h∗u→v = (h∗u→v(s))s∈X where, for each s ∈ X ,

h∗u→v(s) ≡ µu→v({σu = s}) . (3.1.4)

The following proposition shows that the equilibrium messages do indeed provide a good
description of the local structure of µT,ψ.

For this statement, and in the following it is useful to introduce the following convention.
If p is a probability distribution over a finite set S, and f a non-negative function on the
same space, we write p(s)∼= f(s) to mean that p is equal to f ‘up to a normalization
constant’ (explicitly p(s) = f(s)/

∑
s′∈S f(s′)). Also, remeber that dG(i, j) is the graph

distance between vertices i and j ∈ V . If A,B ⊆ V are sets of vertices, dG(A,B) =
mini,j dG(i, j).

Proposition 3.1.1. Assume G to be a tree, and let U ⊆ V be a subset of vertices such
that the induced graph GU is connected. Let ∂U ≡ {(i → j) : i ∈ V \ U, j ∈ U, (i, j) ∈ E}
and U+ = {j ∈ V : dG(U, j) ≤ 1}. Then

µG,ψ(σU+)∼=
∏

(i,j)∈E(GU+
)

ψe(σi, σj)
∏
i∈U

ψv(σi)
∏

(i→j)∈∂U

h∗i→j(σi) . (3.1.5)
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Further, for (i, j) ∈ E, there exists a constant zij (independent of σi, σj) such that

µG,ψ(σi, σj) =
1

zij
ψe(σi, σj)h

∗
i→j(σi)h

∗
j→i(σj) . (3.1.6)

Proof. To simplify notation, we’ll assume ψv(σ) = 1 identically (the general case follows
from the same calculation). By definition

µG,ψ(σU+)∼=
∑
σV \U+

∏
(i,j)∈E

ψe(σi, σj) (3.1.7)

=
∏

(i,j)∈E(GU+
)

ψe(σi, σj)
∏

(i→j)∈∂U

Zi→j(σi)

Zi→j(σi) ≡
∑

σVi→j\{i}

∏
(l,k)∈Ei→j

ψe(σlσk) , (3.1.8)

where the second identity follows simply by reorganizing the terms thanks to the fact
that the trees Ti→j , (i → j) ∈ ∂U are disjoint. The claim follows by noting that
h∗i→j(σi)

∼=Zi→j(σi).

For a generalization of this characterization to locally tree-like graphs, under additional
correlation decay conditions, see [DM10, Theorem 3.14].

3.1.2 Belief-Propagation equations

Given a graph G we let D(G) = {(i → j) : i, j ∈ V, (i, j) ∈ E} be the set of edges of
G with all choices of direction (in particular |D(G)| = 2|E|). For a fixed finite graph
G, we define the space of messages as HG ≡ (∆X )D(G). Hence h ∈ HG is a vector
h = (hu→v : u, v ∈ V, (u, v) ∈ E). Whenever useful to indicate the underlying alphabet,
we will write HG(X ).

Definition 3.1.2. For a graph G and a specification ψ, the belief propagation (BP) iter-
ation is the mapping BPG,ψ : (∆X )D(G) → (∆X )D(G) defined by letting for all (i → j) ∈
D(G),

(BPG,ψh)i→j(σ) ≡ 1

zi→j
ψv(σ)

∏
k∈∂i\j

( ∑
σk∈X

ψe(σ, σk)hk→i(σk)
)
, (3.1.9)

with zi→j a normalization constant given by

zi→j ≡
∑
σ∈X

ψv(σ)
∏

k∈∂i\j

( ∑
σk∈X

ψe(σ, σk)hk→i(σk)
)
. (3.1.10)

(If the sum on the right-hand side vanishes, the mapping is defined arbitrarily for that
coordinate (i → j), e.g. setting (BPG,ψh)i→j(σ) = 1/|X | for all σ ∈ X .) Here we use the
convention that a product of zero terms is equal to one.

We note that the BP mapping does not have any arbitrary choice if –for instance– ψ is
permissive. Indeed, in this case we have

ψv(σ0)
∏

k∈∂i\j

( ∑
σk∈X

ψe(σ0, σk)hk→i(σk)
)
> 0 , (3.1.11)

for σ0 ∈ X the permitted state, and any h ∈ (∆X )D(G).
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Proposition 3.1.3. Let G = T be a tree and ψ a specification. Then the equilibrium
messages h∗ ∈ HT are the only solution of the fixed point equation

h = BPG,ψh . (3.1.12)

Further, the sequence {ht}t≥0 defined by ht+1 = BPG,ψh
t converges after t = diam(T ) + 1

iterations (i.e. ht = h∗ for every t ≥ diam(T ) + 1).

Proof. For (i→ j) ∈ D(G), define its depth depthG(i→ j) as the length (number of edges)
of the longest non-backtracking path from i to a leaf of T , that does not pass through j.
In a finite tree depthG(i → j) ≤ diam(G) < ∞. The proof is by induction over the depth
of (i → j). Namely, we claim that for any t ≥ depthG(i → j) + 1, hti→j = h∞i→j remains
unchanged and satisfies h∞i→j = (BPG,ψh

∞)i→j .

The base case of the induction is trivial since depthG(i → j) = 0 implies that i is a
leaf and hence the BP update reduces to hti→j(σ) = (BPG,ψh

t−1)i→j(σ) = ψv(sigma)/zi→j ,
that does satisfy the claim for all t ≥ 0.

The induction step is also immediate, by using hti→j = (BPG,ψh
t−1)i→j and noting that

(BPG,ψh
t−1)i→j only depends on the messages ht−1 through its values at edges (u → v)

with depthG(u→ v) ≤ depthG(i→ j)− 1.

We will denote by H∗G ⊆ HG the set of fixed points of the BP iteration, i.e. the set of
solutions of Eq. (3.1.12).

The last proposition suggests an algorithm to compute the messages h∗. Simply start
from an arbitrary initialization and iterate the BP mapping.The resulting algorithm is
known as belief propagation or the sum-product algorithm and has numerous applications
in artificial intelligence, machine learning, communications [RU08, WJ08, MM09, KF09].

3.1.3 Bethe-Peierls free energy

As stated by Proposition 3.1.1, equilibrium messages can be used to compute local marginals
of µG,ψ when G is a tree. Can they be used also to compute the free energy? The answer is
far from clear because the free energy is a ‘global’ quantity. The Bethe-Peierls free energy
provides an answer to this question.

Definition 3.1.4. Let G = (V,E) be a finite graph and ψ a specification. The Bethe-
Peierls free energy (or –for short– Bethe free energy) is a function ΦG,ψ : HG → R defined
by

ΦG,ψ(h) ≡
∑
i∈V

Φv
G,ψ(h; i)−

∑
(i,j)∈E

Φe
G,ψ(h; i, j) , (3.1.13)

where

Φv
G,ψ(h; i) ≡ log

{∑
σ∈X

ψv(σ)
∏
j∈∂i

( ∑
σj∈X

ψe(σ, σj)hj→i(σj)
)}

, (3.1.14)

Φe
G,ψ(h; i, j) ≡ log

{ ∑
σi,σj∈X

ψe(σi, σj)hi→j(σi)hj→i(σj)
)}

. (3.1.15)

If any of the arguments of the logarithms vanishes at h, then ΦG,ψ is defined arbitrarily.
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Note that, if the specification ψ is permissive, then the arguments of logarithms of
Φv
G,ψ(h; i), Φe

G,ψ(h; i, j) are always strictly positive, and hence there is no arbitrary choice
in the definition of ΦG,ψ. The next statement justifies the definition of Bethe free energy.

Proposition 3.1.5. Let T = (V,E) be a tree and assume ψ to be permissive. Then the
Bethe-Peierls free energy ΦT,ψ : HT → R has a unique stationary point at the equilibrium
messages h∗ ∈ HT . Further, ΦT,ψ(h∗) = logZ(T, ψ).

For proving this statement, it is actually convenient to introduce one more object, that is
of independent interest. Given a graph G = (V,E), a vector of locally consistent marginals
is a vector b = (bij)(i,j)∈E where bij ∈ ∆X×X , that satisfies the following constraints

1. b is really indexed by edges. i.e.

bij(σ, σ
′) = bji(σ

′, σ) (3.1.16)

for all (i, j) ∈ E and σ, σ′ ∈ X . Hence the vector b = (bij)(i,j)∈E is really a point

b ∈ (∆X×X )E .

2. For all i ∈ V , (i, j) ∈ E, σ ∈ X , the quantity

bi(σ) =
∑
σj∈X

bij(σ, σj) , (3.1.17)

only depends on i and not on the edge (i, j).

Note that we can associate bijectively the constraints at the second point with the directed
edges (i → j) ∈ D(G). The set of locally consistent marginals form a finite-dimensional
polytope denoted by Hloc

G and known as the local polytope of G. This can be viewed as a
polytope Hloc

G ⊆ (∆X×X )E . Whenever useful to indicate the underlying alphabet, we will
use the notation Hloc

G (X ).

It is easy to see that the vector of marginals of a probability distribution over X V ,
do indeed belong to Hloc

G . Explicitly, we define the marginal polytope Hmarg
G as the set of

vectors b = (bij)(i,j)∈E with bij ∈ ∆X×X , for wich there exists a random σ in X V , such
that

bij(σ1, σ2) = P(σi = σ1,σj = σ2) . (3.1.18)

Note that Hmarg
G is obviously a polytope since it is a projection of the polytope ∆XV of

probability distributions over X V .

Proposition 3.1.6. For a general graph G, Hmarg
G ⊆ Hloc

G . If G = T is a tree, thenHmarg
T =

Hloc
T . Finally, if µ = µT,ψ for a specification ψ, then µT,ψ is uniquely determined by

its vector of marginals µij(σ1, σ2) = µ({σi = σ1,σj = σ2}), µi(σ) = µ({σi = σ}) =∑
σ′∈X µij(σ, σ

′), namely

µT (σ) =
∏

(i,j)∈E(T )

µij(σi, σj)

µi(σi)µj(σj)

∏
i∈V (T )

µi(σi) . (3.1.19)
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Proof. The inclusion Hmarg
G ⊆ Hloc

G obvious. To prove the converse in the tree case, we have
to exhibit, for b ∈ Hloc

T a probability distribution over σ ∈ X V whose marginals coincide
with the bij ’s. Note that, since both Hmarg

G and Hloc
G are closed sets, it is sufficient to

choose b in the relative interior of Hloc
T . We can therefore assume that bij(σ1, σ2) > 0 for

all (i, j) ∈ E, and σ1, σ2 ∈ X . The probability distribution over X V is then given by

bT (σ) =
∏

(i,j)∈E(T )

bij(σi, σj)

bi(σi)bj(σj)

∏
i∈V (T )

bi(σi) . (3.1.20)

It is proved by induction over the number of vertices that the marginals are indeed as
desired. (Given a tree T over n vertices, let i be a leaf of T . The number of vertices can
be reduced by marginalizing –integrating over– the variable σi.)

The last claim (for the case µ = µT,ψ) follows also by induction over the number of
vertices.

Notice that Eq. (3.1.20) defines a mapping γT : Hloc
T = Hmarg

T → ∆XV . The image of
this mapping MT ≡ γT (Hmarg

T ) is the set of probability distributions on X V that can be
written as

µ(σ) =
1

Z

∏
(i,j)∈E

ψij(σi, σj) . (3.1.21)

Equivalently, this is the set of probability distribution tha satisfy the Markov property1

with respect to T . This set of probability distributions is a nonlinear algebraic variety.
Given a probability distribution p = {p(s)}s∈S on a finite set S, we denote by H(p) its

Shannon entropy

H(p) ≡ −
∑
s∈S

p(s) log p(s) . (3.1.22)

Given probability distribution two probability measures p, q on the space S, the relative
entropy of p with respect to q is

H(p‖q) ≡
∑
s∈S

p(s) log
p(s)

q(s)
. (3.1.23)

As a special case, if pR,S = {pR,S(r, s)}r∈R,s∈S is the joint distribution of random variables
R, S on finite sets R, S, with marginals pR and pE , the mutual information of R and S is

I(R;S) ≡ H(pR,S‖pR × pS) =
∑

s∈S,r∈R
pR,S(r, s) log

pR,S(r, s)

pR(r)pS(s)
(3.1.24)

Definition 3.1.7. Let G = (V,E) be a finite graph and ψ a specification. The dual Bethe
free energy is the function Φ∗G,ψ : Hloc

T → R defined by

Φ∗G,ψ(b) =
∑
i∈V

Ebi logψv(σi) +
∑

(i,j)∈E

Ebij logψe(σi,σj) +
∑
i∈V

H(bi) +
∑

(i,j)∈E

H(bij‖bi × bj) ,

(3.1.25)

1A probability distribution µ on X V satisfies the global Markov property with respect to the graph G
if, for any sets A,B,C ⊆ V such that C separates A from B, we have µ(σA, σB |σC) = µ(σA|σC)µ(σB |σC).
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with the convention Ebij logψe(σi,σj) = −∞ if supp(bij) 6⊆ supp(ψe). Here Ebi denotes
expectation with respect to bi and Ebij is expectation with respect to bij. (Here bi should be
interpreted as a shorthand for bi(σ) =

∑
σ′∈X bij(σ, σ

′).)

We will drop the ‘dual’ qualifier whenever clear from the context.

The following statement provides a natural embedding of the set of belief propagation
fixed points H∗G into the local polytope Hloc

G .

Proposition 3.1.8. Let G = (V,E) be a graph and ψ a permissive specification. Let
h ∈ H∗G and define, for each (i, j) ∈ E, and all σ, σ′ ∈ X ,

bij(σi, σj) =
1

zij
ψe(σi, σj)hi→j(σi)hj→i(σj) , (3.1.26)

where zij =
∑

σ,σ′∈X ψe(σ, σ
′)hi→j(σ)hj→i(σ

′) is a normalization constant, which we as-

sume strictly positive zij > 0 for all (i, j) ∈ E. Then b = (bi,j)(ij)∈E ∈ Hloc
G , with

Φ∗G,ψ(b) = ΦG,ψ(h).

If G = T is a tree, then the permissivity assumption is not necessary.

Proof. The definition (3.1.26) is well-posed with zij > 0 under permissivity, or if G is a
tree.

Let us first prove b ∈ Hloc
G . Note that bij(σ, σ

′) = bji(σ
′, σ) by construction. Next we

want to check that
∑

σj∈X bij(σi, σj) does not depend on j ∈ ∂i. Since bij is normalized by
construction, it is sufficient to check this up to normalization constants.

Recall that the fixed point condition for edge (i→ j) yields (with ∼= denoting equality
up to normalizations)

hi→j(σi) = (BPG,ψh)i→j(σi)∼=ψv(σi)
∏

k∈∂i\j

( ∑
σk∈X

ψe(σi, σk)hk→i(σk)
)
, (3.1.27)

and hence substitutiong in the definition of bij ,∑
σj∈X

bij(σi, σj)∼=ψv(σi)
∏
k∈∂i

( ∑
σk∈X

ψe(σi, σk)hk→i(σk)
)
. (3.1.28)

It is clear that the right-hand side does not depend on the choice of j ∈ ∂i.
The equality Φ∗G,ψ(b) = ΦG,ψ(h) follows by substituting the formula (3.1.26) in the

definition of Φ∗G,ψ(b).

Proposition 3.1.9. Let T be a finite tree and ψ a specification. Then

logZ(T, ψ) = max
b∈Hloc

T

Φ∗T,ψ(b) . (3.1.29)

Further the maximum is uniquely achieved at b∗ = (b∗ij), where b∗ij = µij are the marginals
of µT,ψ.

Proof. For the sake of simplicity, we will work under the assumption that the specification
is permissive, leaving generalizations to the reader.
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For this proof it is useful to introduce one more concept of independent interest: the
Gibbs free energy ΦGibbs

T,ψ . This is a function over the simplex of probability distributions

on X V : ΦGibbs
T,ψ : ∆XV → R. Let us introduce the notation

ψG(σ) ≡
∏
i∈V

ψv(σi)
∏

(i,j)∈E

ψe(σi, σj) . (3.1.30)

Then, for p ∈ ∆XV , the corresponding Gibbs free energy is given by

ΦGibbs
T,ψ (p) ≡ Ep logψG(σ) +H(p) (3.1.31)

=
∑
i∈V

Epi logψv(σi) +
∑

(i,j)∈E

Epij logψe(σi,σj) +H(p) , (3.1.32)

where Eq denotes expectation with respect to the probability measure p and pi, pij are the
marginals of p. Two differences can be noted with respect to the Bethe free energy (3.1.25):
(i) the domain is the set ∆XV of globally consistent probability distributions instead of the
local polytope Hloc

G ; (ii) the Shannon entropy H(p) replaces the combination of edge and
vertex entropies.

Assume, without loss of generality ψT (σ) > 0 for all σ ∈ X V (if this is not the case,
the domain of σ can be restricted to the support of ψT ). The following properties of the
Gibbs free energy are immediate to verify:

1. ΦGibbs
T,ψ is continuous bounded and strictly convex on ∆XV . Further, it is differentiable

in its interior.

2. Differentiating ΦGibbs
T,ψ with respect to p, we see that the maximum is uniquely achieved

at p(σ) = ψT (σ)/Z(T, ψ) = µT,ψ(σ).

3. The value of the maximum is ΦGibbs
T,ψ (µT,ψ) = logZ(T, ψ).

4. For b ∈ Hloc
T , we have Φ∗T,ψ(b) = ΦGibbs

T,ψ (γT (b)) (recall that γT denotes the embedding
defined in Eq. (3.1.20).

From the last two properties it follows that, for any b ∈ Hloc
T ,

Φ∗T,ψ(b) ≤ max
p∈∆XV

ΦGibbs
T,ψ (p) = logZ(T, ψ) . (3.1.33)

By taking b the sets of marginals of µT,ψ, the inequality is satisfied with equality. Finally
uniqueness follows from strict convexity of ΦGibbs

T,ψ with γT being one-to-one on its image.

Theorem 3. Let ψ be a permissive specification and G = (V,E) a finite graph.

1. Let b ∈ Hloc
G be a maximizer of Φ∗G,ψ over Hloc

G . Then, for all (i, j) ∈ E, supp(bij) =
supp(ψe).

2. Let b ∈ Hloc
G be any local maximizer of Φ∗G,ψ such that, for all (i, j) ∈ E, supp(bij) =

supp(ψe). Then b is the image of some h ∈ H∗G under Eq. (3.1.26).

3. As a consequence of the last two points

max
h∈H∗G

ΦG,ψ(h) = max
b∈Hloc

Φ∗G,ψ(b) . (3.1.34)
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Proof. Let us begin with point 1. First note that supp(bij) ⊆ supp(ψe) because otherwise
Φ∗G,ψ(b) = −∞. Assume that there exists (σ∗1, σ

∗
2) ∈ supp(ψe) with bij(σ

∗
1, σ
∗
2) = 0. Then

define, for ε ∈ (0, 1/2), and all (u, v) ∈ E,

bεuv(σ1, σ2) = εI
(
(σ1, σ2) = (σ∗1, σ

∗
2)
)
εI
(
(σ1, σ2) = (σ∗2, σ

∗
1)
)

+ (1− 2ε)bu,v(σ1, σ2) .
(3.1.35)

It is then easy to check that bε ∈ Hloc
G (by convexity of Hloc

G ) and that Φ∗G,ψ(bε) = Φ∗G,ψ(b)+
c ε log(1/ε) +O(ε) for some c > 0. It then follows that b cannot be a maximixer.

Consider now point 2, and let H̃loc
G ⊆ Hloc

G be the subset of the local polytope wich

satisfies bij(σ1, σ2) for all (i, j) ∈ E and all σ1, σ2 such that ψe(σ1, σ2) = 0. Let b ∈ H̃loc
G

be local maximizer of Φ∗G,ψ. By the previous point b is in the relative interior of H̃loc
G and

by permissivity this implies supp(bi) = X .

Note that Φ∗G,ψ is differentiable in the relative interior of H̃loc
G. Then there must

exist Lagrange multipliers λi→j(σ) indexed by (i → j) ∈ D(G) and σ ∈ X such that
(bij , bi)(i,j)∈E,i∈V is a stationary point of the Lagrangian

L(b, λ) ≡ Φ∗G,ψ(b) +
∑

(i→j)∈D(G)

∑
σi∈X

λi→j(σi)
( ∑
σj∈X

bij(σi, σj)− bi(σi)
)
, (3.1.36)

over the domain ∆E
X×X ×∆V

X . Let us now focus on the dependence of L on bij :

L(b, λ) = Ebij logψe(σi,σj) +H(bij) + Ebij
{
λi→j(σi) + λj→i(σj)

}
+ Lij(b, λ) , (3.1.37)

where Lij is independent of bij . From the last expression, stationarity with respect to bij
implies

bij(σi, σj) =
1

zij
ψe(σi, σj) e

λi→j(σi)+λj→i(σj) , (3.1.38)

which coincides with Eq. (3.1.26), for hi→j(σ) = eλi→j(σ). In particular hi→j(σ) > 0 for all
(i→ j) ∈ D(G) and all σ ∈ X .

Considering next the dependence of the Lagrangian on bi, we get

L(b, λ) = Ebi logψv(σi)− (degG(i)− 1)H(bi)− Ebi
{∑
j∈∂i

λi→j(σi)
}

+ Li(b, λ) , (3.1.39)

with Li independent of bi. Again, the stationarity condition with respect to bi implies
(using hi→j(σ) = eλi→j(σ))

bi(σi)∼=
{
ψv(σi)

−1
∏
j∈∂i

hi→j(σi)
}1/(degG(i)−1)

. (3.1.40)

Then from Eq. (3.1.26), we have∏
k∈∂i\j

{ ∑
σk∈X

bik(σi, σk)
}
∼=

∏
k∈∂i\j

hi→k(σi) ·
∏

k∈∂i\j

{ ∑
σk∈X

ψe(σi, σk)
}
. (3.1.41)

On the other hand, using Eq. (3.1.40) and the fact that
∑

σk∈X bik(σi, σk) = bi(σi) we have∏
k∈∂i\j

{ ∑
σk∈X

bik(σi, σk)
}

= bi(σi)
degG(i)−1 = ψv(σi)

−1
∏
j∈∂i

hi→j(σi) .. (3.1.42)
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Equating Eq. (3.1.41) and (3.1.42), and recalling that hi→k(σi) > 0 strictly, we get hi→j =
(BPG,ψh)i→j , i.e. h ∈ H∗G.

Finlly, point 3 follows from from the previous two points, together with Proposition
3.1.8.

3.2 Infinite trees

3.2.1 Definitions

We consider now a possibly infinite rooted tree (T, o), with T = (V,E). We will assume
that the tree contains more than one vertex (or does it with positive probability if the
tree is random). Most of the statements elow are trivial if T is finite, so the reader can
assume that T is indeed infinite. For t ∈ N, e denote by V=t, V≤t, V≥t the subset of vertices
at distance equal to t, at most t, or at least t from o. The subsets V<t, V>t are defined
analogously, and we use T··· for the subgraph induced by V···. Finally we will write σt for
σVt , σ≤t for σV≤t and so on.

Of course Eq. (1.1.2) cannot be longer used to define µψ,T . For any fixed T , the space
X V is made into a measure space using the Borel σ-algebra induced by the same distance
introduced in Chapter 2, namely d(σ, σ′) = 2−R(σ,σ′) where R(σ, σ′) is the distance from
the root of the first vertex i where σi 6= σ′i. This motivates the following definition.

Definition 3.2.1. Let (T, o) be a rooted tree, and ψ a specification. We say that a proba-
bility measure µT,ψ on (X V ,B(X V )) is a Gibbs measure on (T, ψ) if, for every t ∈ N, all
σ<t and µT,psi-almost all σ≥T

µT,ψ(σ<t|σ≥t) = µT≤t,ψ(σ<t|σ=t) .

Explicitly, the right hand side is given by

µT≤t,ψ(σ<t|σ=t) =
1

Z(T ;σ≥t)

∏
(i,j)∈E≤t

ψe(σi, σj)
∏
i∈V<t

ψv(σi) ,

with Z(T ;σ≥t) a normalization constant.

Notice that the set of Gibbs measures with respect to (T, ψ) contains –in general– more
than one element.

Proposition 3.2.2. The set of Gibbs measures on a given tree T is convex. Further, it is
closed and subsequentially compact with respect to weak topology.

Proof. Can be found in ???

A standard way to construct a Gibbs measure is through a limit procedure.

Definition 3.2.3. Let f : X V=t → R+ be a measure that is not identically zero on σ=t.
Then, the Gibbs measure on (T, ψ) with boundary condition f at level t is the probability
measure given by

µf,tT,ψ(σ≤t) =
1

Z(f, t)

∏
(i,j)∈E≤t

ψe(σi, σj)
∏
i∈V≤t

ψv(σi) f(σt) , (3.2.1)
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and defined arbitrarily for σ>t.
In particular, the Gibbs measure with free boundary conditions is the one obtained by

letting f(σt) = 1 be the constant function. Further, for σ0 ∈ X , the Gibbs measure with σ0

boundary conditions is the one corresponding to f(σt) = 1 if σt,i = σ0 for all i ∈ Vt and
f(σt) = 0 otherwise.

Now, choose f = {f t}t≥0 a sequence of boundary conditions at level t, and letting µtT,ψ
be the Gibbs measure with boundary condition f t at level t. It follows immediately from
Proposition 3.2.2 that the subsequential limits are Gibbs measures. If the subsequential
limits coincide (i.e. there exists a limit), then we will speak of the f -boundary Gibbs
measure (e.g. free-boundary Gibbs measure, σ0-boundary Gibbs measure). It is also easy
to prove that any Gibbs measure on T can be constructed in this way.

If the underlying rooted tree (T ,o) is random we can define a Gibbs measure µT ,ψ per
realization of the underlying tree. However, in general, the resulting probabilities are not
measurable with respect to T i.e. µT ,ψ({σ≤t = σ≤t}) is not a random variable for some
given σ≤t ∈ X V≤t .

Exercise 3.2.1. Construct an example of Gibbs measure that in non-measurable with
respect to the underlying tree. (You need to assume that there exists (T, ψ) for which at
least two distinct Gibbs measures exist.)

The following definition bypasses this problem.

Definition 3.2.4. Let (T ,σ,o) be a marked random rooted tree and denote by ν its law.
We say that ν is a Gibbs measure with respect to the specification ψ if, for any t ∈ N,
σ<t ∈ X V<t, we have. ν-almost surely,

ν({σ<t = σ<t}|σ≥t,T ) = µT≤tψ(σ<t}|σ=t) . (3.2.2)

If this is the case, we will also say that the marked tree (T ,σ,o) is

The relevance of Gibbs measures to these lectures is given by the following.

Proposition 3.2.5. Let {Gn}n≥1 be a sequence of finite graphs and ψ a specification. If
(Gn, µGn,ψ) converges locally to the marked random rooted tree (T ,σ,o) with law ν, then
ν is Gibbs with respect to ψ.

Proof. Note that, for ν to be Gibbs, i.e. for Definition 3.2.4 to hold, it is sufficient to check
that, for any fixed T ≥ t,

ν({σ<t = σ<t}|{σ`}t≤`≤T ,T ) = µT≤tψ(σ<t}|σ=t) . (3.2.3)

3.2.2 Belief propagation equations

Given an infinite rooted tree (T, o) a set of messages is a map h : D(T ) → ∆X . (This is
called a ‘boundary law’ in the theory of Gibbs measures, but we prefer to keep consistency
with the finite-graph terminology.) Note that the BP operator, as defined in Eq. (3.1.9) is
well defined even if T is infinite, as a mapping BPT,ψ : (∆X )D(T ) → (∆X )D(T ).

Consider first the case of ‘factorized’ boundary conditions, i.e. boundary conditions
that, at level t, read

f t(σt) =
∏
i∈Vt

f ti (σi) . (3.2.4)

39



Proposition 3.2.6. Let µψ,T be any subsequential limit that can be obtained by a ‘factor-
ized’ boundary condition. Then there exists a set of messages h such that h = BPψ,Th and,
for each t, denoting by p(i) the parent of vertex i,

µT,ψ(σ≤t) =
1

Z(f, t)

∏
(i,j)∈E≤t

ψe(σi, σj)
∏
i∈V<t

ψv(σi)
∏
i∈Vt

hi→p(i)(σi). (3.2.5)

Viceversa, for any set of messages h such that h = BPψ,Th, there exists a (unique) Gibbs
measure µT,ψ satisfying the last equation for all t. Finally, any Gibbs measure with respect
to (T, ψ) can be written as convex combination of Gibbs measures of this form.

Proof. Easy except the ‘finally’ part.

In the case of random unimodular trees, we look at the tree fro the perspective of the
root. Recall that Te ⊆ Ge ⊆ G∗∗ is the space of edge-rooted trees. Also recall the definitions
of ν↑ and ν↓ given in section

Definition 3.2.7. A message function is a measurable function

h : Te → ∆X , (T, u→ v) 7→ (hT,u→v(σ))σ∈X . (3.2.6)

We will often drop the argument T , when clear from the context. Fiven a measure ν on
random rooted tree, and ν↑ on Te, we consider two message functions equivalent if they
coincide ν↑-almost everywhere. We denote the space of message functions as H = Hν .

We can extend the above definition by letting h depend on additional randomness, e.g.
letting h : T ∗e → ∆X where T ∗e is a space of trees with random marks on the edges. We
will possibly discuss this in the last lecture.

Also, if the specificarion ψ = ψθ depends parametrcally on θ ∈ Q ⊆ Rk, it is sometimes
useful to generalize the definition by letting

h : Te ×Q→ ∆X , ((T, u→ v), θ) 7→ (hθT,u→v(σ))σ∈X . (3.2.7)

Definition 3.2.8. The BP mapping on the space H is the measurable mapping BPψ : H →
H defined by letting, for each (T, i→ j) ∈ Te and each σ ∈ X ,

(BPψh)T,i→j =
1

zi→j
ψv(σ)

∏
k∈∂i\j

( ∑
σk∈X

ψe(σ, σk)hT,k→i(σk) . (3.2.8)

If ν is a measure on random rooted trees, we write H∗ν for the set of message functions
such that

h = BPψh , ν↑ − almost surely. (3.2.9)

(In case h is random, as below Definition (3.2.7), this equation holds in distribution,
with the h’s on right-hand sides independent.)

The definition of message function can appear rather abstract, but can be explicitly
evaluated in concrete cases.
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The case of regular deterministic trees

Assume that the random rooted tree is indeed deterministic and hence equal to the k-
regular tree T reg,k. In this case (T, u→ v) is also constant (up to the labelings) and equal
to the k-regular rooted at an edge. Hence it is necessary to define h only for this case.
Equivalently, we can take the function h to be constant over Te. The set of BP fixed points
H∗ν is therefore identified with the set of solutions in ∆X of the equation

h(σ) =
1

z
ψv(σ)

(∑
σ′∈X

ψe(σ, σ
′)h(σ′)

)k−1

, (3.2.10)

with z a normalization constant. As demonstrated by the next exercise, even in this case
there can be multiple solutions.

Exercise 3.2.2. Consider the ferromagnetic Ising model in zero field, i.e. the model with
X = {+1,−1}, ψv(σ) = 1 and ψe(σ1, σ2) = eβσ1σ2 , with β ∈ R+.

Prove that, for (k − 1) tanhβ ≤ 1, Eq. (3.2.10) admits the unique solution h(+1) =
h(−1) = 1/2, while, for (k − 1) tanhβ > 1, it admits tree distinct solutions.

A general construction

A general construction of messages in H∗ν is as follows. As in the finite case, for T a tree,
and (u, v) ∈ E, we let Tu→v be the subtree induced by the vertices that can be erached
from u without passing through v. Let f1 : X → R≥0 be a function that is not identically
vanishing.

For a random tree (T , o → J) ∼ ν↓ we consider the Gibbs measure µf1,tT o→J ,ψ
on the

subtree T o→J with factorized boundary conditions f1 × · · · × f1 at level t. Assume that,
as t → ∞, µf1,tT o→J ,ψ

converges to a limit almost surely with respect to T . Set for each
(T, o→ J),

hT,o→j(σ) ≡ µf1To→J ,ψ({σo = σ}) . (3.2.11)

(Note that the definition is well posed only ν-almost surely.)

The following is easy to prove.

Proposition 3.2.9. Assume that, for some boundary condition f1, the function h : (T, o→
j) 7→ hT,o→j defined above is measurable. Then h ∈ H∗ν .

Notice that, if the function h defined here is measurable with respect to (T, o→ j), is
indeed measurable with respect to To→j . Physical intuition suggests that this should be
the case in general. We will call such message function causal, and denote their space by
Hcaus
ν , letting Hcaus,∗

ν ⊆ Hcaus
ν be the subset that solves Eq. (3.2.9).

Open Problem 3.2.1. Prove that, for studying local weak limits of Gibbs measures
(Gn, µψ,Gn)) on finite graphs, it is sufficient to consider elements ofH∗ that are measureable
on To→j .

(To be made more precise.)
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The case of Galton-Watson trees

Consider now a unimodular Galton-Watson tree (T ,o) ∼ GW(P ). Recall that, for (u, v) ∈
E(T ), Tu→v is the subtree of T rooted at u and induced by all the vertices of T that can
be reached from u wothout passing through v. For a Galton-Watson tree, it is easy to
check that, for J a uniformly random neighbor of the root (conditional on ∂o 6= ∅) and
J1, . . .JK the decendants of J , we gave the following equalities in distribution

T J→o
d
= T J1→J

d
= · · · d

= T Jk→J , (3.2.12)

and further T J1→J ,T J2→J , . . . are independent identically distributed copies, independent
of K ∼ ρ.

Exercise 3.2.3. Prove the last statements.

Let now h ∈ Hcaus,∗
ν be a causal solution of Eq. (3.2.9). Let h = h(T ,J→o) be a

random variable whose distribution is the same as the one of h when the underlying tree
is (T ,o) ∼ GW(P ). Then Eq. (3.2.9) together with the above distributional properties
imply

h
d
= BPψ,K(h1, . . . ,hK) , (3.2.13)

where h1,h2, . . . are i.i.d. copies of h, independent of K ∼ ρ. We further defined, with a
slight abuse of notation, the mapping BPψ,k : (∆X )k → ∆X by letting, for all σ ∈ X ,

BPψ,k(h1, . . . , hk)(σ) ≡ 1

z
ψv(σ)

k∏
l=1

( ∑
σl∈X

ψe(σ, σl)hl(σl)
)
. (3.2.14)

Equation (3.2.13) is known in statistical physics as the replica symmetric cavity equation.
It is related to the density evolution method from coding theory. Relations with the latter
will be further discussed in Chapter ???.

In general, a solution of the distributional equation (3.2.13) does not yield –by itself- a
measurable function h : Te → ∆X . Such a function can be constructed for instance, using
the general method in the previous section.

Note howver that a solution of Eq. (3.2.13) can be used to construct a joint distribution
of h and T J→o as follows. (Discussion of joint distribution to be added.)

Exercise 3.2.4. How does Eq. (3.2.13) generalize to the case of multi-type Galton-Watson
trees?

3.2.3 Bethe-Peierls free energy

Definitions

We want now to define the Bethe-Peierls free energy of a (possibly infinite) random rooted
tree (T ,o), with specification psi. We hope that this formula will serve as a possible limit
value for φ(Gn;ψ) when {Gn} is a graph sequence that converges locally to (T ,o).

Of course we cannot use Definition 3.1.4 because this will typically yield infinite values.
A natural idea would be the following. Truncate the tree (T ,o) after a finite number of
generations t, thus obtaining the finite graph Bt(o; )

¯
. Evaluate the corresponding Bethe free
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energy ΦBt(o;T ),ψ, and define the free enrgy density of T as the limit of ΦBt(o;T ),ψ/|Bt(o;T )|
as t→∞.

It is important to stress that this recipe is wrong except for special cases. The un-
derlying reason is the finite graph Bt(o;T ) is dominated by its boundary (again, except
‘special cases’). and therefore the free energy ΦBt(o;T ),ψ is dominated by the contributions
of vertices that are within O(1) distance from the boundary, i.e. with d(o, v) ≥ t−O(1).

Exercise 3.2.5. Try to apply the above recipe to some simple model (e.g. the feroomag-
netic Ising model) and convince yourself that it is incorrect.

Definition 3.2.10. Let (T ,o) be unimodular random rooted tree, with law ν and ψ a
specification. The Bethe-Peierls free energy of (T ,o), ψ a function Φν,ψ : Hν → R defined
by

Φν,ψ(h) ≡ EΦT ,ψ(h) , (3.2.15)

ΦT,ψ(h) ≡ Φv
T,ψ(h)−

∑
j∈∂o

Φe
T,ψ(h; j) , (3.2.16)

where

Φv
T,ψ(h) ≡ log

{∑
σ∈X

ψv(σ)
∏
j∈∂o

( ∑
σj∈X

ψe(σ, σj)hT,j→o(σj)
)}

, (3.2.17)

Φe
T,ψ(h; j) ≡ log

{ ∑
σ1,σ2∈X

ψe(σ1, σ2)hT,o→j(σ1)hT,j→o(σ2)
)}

. (3.2.18)

In order to justify this definition, consider again Definition 3.1.4. If hi→j is just a
function of Bt(i→ j;Gn) for some finite t, then

1

n
ΦGn,ψ =

1

n

∑
i∈Vn

ΦT=B(i;Gn),ψ(h)
n→∞→ Φν,ψ(h) . (3.2.19)

Definition 3.2.10 extends the latter to arbitrary measurable functions h.

The Bethe-Peierls free-energy prediction

The so called Bethe-Peierls prediction for the free energy consists in postulating that, for
a sequence of graphs {Gn} converging localy to a random rooted tree (T ,o), with law ν,

lim
n→∞

φn(Gn;ψ) = sup
h∈H∗ν

Φν,ψ(h) . (3.2.20)

This is also caled by physicists, the (cavity) replica symmetric prediction. In the next
chapters we will review some cases in which this prediction has been proved to hold. It
is important to keep in mind that this is not always the case. In particular, the Bethe-
Peierls prediction only depends on the limiting random tree. On the other hand, there are
simple examples of graph sequences that have the same local limit but different limiting
free-energy densities.

Open Problem 3.2.2. Characterize the graph sequences {Gn} and specifications ψ for
which the Bethe-Peierls prediction holds.
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Dual Bethe free energy

It is also possible to develop an limit version of the dual free energy. First of all, we
introduce a version of the local polytope.

Definition 3.2.11. Given a random rooted tree (T ,o) with law ν, the local polytope Hloc
ν

is the set of measurable functions

b :Te → ∆X×X (3.2.21)

(T, u→ v) 7→ b(T,u→v) = (b(T,u→v)(σu, σv))σu,σv∈X , (3.2.22)

that satisfy the following properties

1. b(T,u→v)(σu, σv) = b(T,v→u)(σ
′, σ) for all σu, σv ∈ X .

2. Define the marginal

b(T,u)(σ) ≡
∑
σv∈X

b(T,u→v)(σ, σv) . (3.2.23)

Then (T, u) 7→ b(T,u) is a well defined function on T∗, taking values in ∆X .

We will consider two such functions equivalent if they coincide ν↑-almost everywhere.

Explicitly, the second condition above means the following. If (T1, u1 → v1) and
(T2, u2 → v2) are equivalent up to a root preserving isomorphism (an isomorphism ϕ form
T1 to T2 such that ϕ(u1) = u2 but possibly ϕ(v1) 6= v2), then

∑
σ′∈X b(T1,u1→v1)(σ, σ

′) =∑
σ′∈X b(T2,u2→v2)(σ, σ

′).

In the following, for b ∈ Hloc
ν , we will use the shorthand bu,v(σ, σ

′) instead of b(T,u→v)(σ, σ
′)

and bu instead of b(T,u), where the latter is defined as per Eq. (3.2.23).

Definition 3.2.12. Let (T ,o) be a unimodular random rooted tree with law ν and ψ a
specification. The (dual) Bethe free energy is a function Φ∗ν,ψ : Hloc

ν → R defined by

Φ∗ν,ψ(b) = EΦ∗T ,ψ(b) , (3.2.24)

where, for (T, o) ∈ Te,

Φ∗T,ψ(b) = Ebo logψv(σo) +
1

2

∑
j∈∂o

Ebo,j logψe(σo,σj) +H(bo) +
1

2

∑
j∈∂o

H(bo,j‖bo × bj) .

(3.2.25)

As in the finite graph case, there exists a natural embedding of H∗ν into Hloc
ν .

Proposition 3.2.13. Let (T ,o) be a unimodular random rooted tree with law ν and h ∈
H∗ν . Define, for (T, u→ v) ∈ Te,

b(T,u→v)(σu, σv) ≡
1

z
h(T,u→v)(σu)ψe(σu, σv)h(T,v→u)(σv) . (3.2.26)

Then b ∈ Hloc
ν with Φ∗ν,ψ(b) = Φν,ψ(h)

Proof. To be written.
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Finally, we have the following limit version of Theorem ????.

Theorem 4. Let ψ be permissive specification and (T ,o) a random rooted tree with law ν
such that E[deg(o)] <∞. Then

1. Any local maximizer b of Φ∗ν,ψ is such that, for J a uniformly random neighbor of o,

Pν
(

supp(bo,J ) = supp(ψe)
)

= 1 . (3.2.27)

2. Any stationary point b of Φ∗ν,ψ that satisfies the latter condition (3.2.27) can be written
as the image of some h ∈ H∗ν threough the embedding (3.2.26).

3. As a consequence of the last two points, if the supremum on the right-hand side is
attained in Hloc

ν , we have

sup
h∈H∗ν

Φν,ψ(h) = sup
b∈Hloc

ν

Φ∗ν,ψ(b) . (3.2.28)

Proof. To be written.

Corollary 3.2.14. Assume that ψ = ψθ with θ 7→ ψθ continuously differentiable for θ ∈ Q
an open domain Rk. Further assume that supp(ψθe ) is independent of θ ∈ Q. Define

Φν(θ) ≡ sup
h∈H∗ν

Φν,ψθ(h). (3.2.29)

If, for ψ = ψθ supb∈Hloc
ν

Φ∗ν,ψ(b) is achieved for some b ∈ Hloc
ν , then Φν is continuous at θ.

Proof. To be written.

The case of regular trees

Assume that {Gn} is a graph sequence converging locally to the k-regular rooted T reg,k.
As we saw, we can take h ∈ Hν to be constant over Te, and hence Hν is equivalent to the
simplex ∆X . Hence Φν,ψ : HνR is equivalent to a function Φk,ψ : ∆X → R

Φk,ψ(h) ≡ log
{∑
σ∈X

ψv(σ)
( ∑
σ′∈X

ψe(σ, σ
′)h(σ′)

)k}
− k

2
log
{ ∑
σ1,σ2∈X

ψe(σ1, σ2)h(σ1)h(σ2)
)}

.

(3.2.30)

Analogously, the local polytope can be identified in this case with

Hloc
reg,k ≡

{
b ∈ ∆X×X : b(σ, σ′) = b(σ′, σ)∀σ, σ′ ∈ X

}
. (3.2.31)

Hence the dual free energy is identified with Φ∗k,ψ : Hloc
reg,k → R given by

Φ∗k,ψ(b) = Eb1 logψv(σ) + Eb logψe(σ1,σ2) +H(b1) +
k

2
H(b‖b1 × b1) . (3.2.32)

It is interesting to consider the connection with large-deviations theory. Assume ψv(σ) =
1 and ψe(σ1, σ2) = eξ(σ1,σ2). Let

Ln =
1

n

∑
(i,j)∈En

(δ(σi,σj) + δ(σj ,σi)) , (3.2.33)
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be the empitical distribution of the edge spins. Clearly, Ln takes values in ∆X×X . Then
it is easy to see that

φ(Gn, ψ) = log |X |+ logE
(
e〈ξ,Ln〉

)
, (3.2.34)

where E denotes expectation with respect to the uniform measure on X Vn . The dual Bethe
free energy corresponds to a specific form of the large deviaton functional of Ln.

The case of Galton-Watson trees

Assume that (T ,o) ∼ GW(P ). We saw that, in this case, the distribution of the random
variable h ≡ hT ,J→o must satisfy the distributional equation (3.2.13). Correspondingly,
the Bethe free-energy Φν,ψ only depends on h through the law of h. With a slight abuse
of notation Φν,ψ(h) = ΦP,ψ(Lh) where Lh is the law of the random variable h and

ΦP,ψ(λ) ≡ EKEh1,··· ,hK log
{∑
σ∈X

ψv(σ)

K∏
i=1

( ∑
σi∈X

ψe(σ, σi)hi(σ
′)
)}

(3.2.35)

− 1

2
E(K)Eh1,h2 log

{ ∑
σ1,σ2∈X

ψe(σ1, σ2)h1(σ1)h2(σ2)
)}

. (3.2.36)

Here expectations are with respect to K ∼ P and h1,h2, . . . , i.i.d. with common distribu-
tion λ.

3.3 Beyond Bethe approximation

46



Chapter 4

The second moment method

The moment methods aims at characterizing the asymptotic free energy density limn→∞ φ(Gn, ψ)
for sequences of random graph {Gn}n≥0. Ideally one would try to compute –say– the ex-
pectaton Eφ(Gn, ψ) but this is often as hard as the original task. The basic observation is
that it is simpler to compute moments of the partition function Z(Gn, ψ). In particular,
if the second moment is roughly the square of the first moment, one can conclude that
φ(Gn, ψ) ≈ (1/n) logEZ(Gn, ψ).

While the basic idea is very simple, the moment calculations are very insightful. Fur-
ther, it is instructive to undestand the cases in which the second moment approach breaks
down, namely E{Z(Gn, ψ)2} becomes exponentially larger than (EZ(Gn, ψ))2. Finally,
various refinements have been developed of the basic second moment approach.

This chapter is organized as follows. Section 4.1 lays down the general foundations of the
second moment method. Section 4.2 carries out the moment calculation for random regular
graphs. Section 4.3 discusses two applications of the second moment method. The first
one is successful and allows to compute the asymptotic free energy of ferromagnetic Ising
models on random regular graphs. The second is only partially successful, and concerns
the independent sets model. We then discuss the fundamental reasons for this failure.
We conclude in Section 4.4 by introducing two techniques that refine the second moment
method and allow to overcome some of its failures.

4.1 General approach

Our starting point is the following general bound, which is an immediate application of
Paley-Ziegmund inequality (which in turn is a simple corollary of Cauchy-Schwarz inequal-
ity).

Lemma 4.1.1. Let {Gn}n≥0 be a sequence of random graphs anf ψ a specification. Define
φann(n, ψ) ≡ (1/n) logEZ(Gn, ψ). Then, letting γ0 = 4E{Z(Gn, ψ)2}/E{Z(Gn, ψ)}2, we
have

P
{
|φ(Gn, ψ)− φann(n, ψ)| ≤ 1

n
log γ0

}
≥ 1

γ0
(4.1.1)

Proof. Let Z = Z(Gn, ψ). The probability that φ(Gn, ψ) ≥ φann(n, ψ)+(log γ)/n is upper
bounded by Markov inequality. For γ > 1;

P(Z ≥ γEZ) ≤ 1

γ
. (4.1.2)
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The probabilty that φ(Gn, ψ) ≤ φann(n, ψ)− (log γ)/n is instead upper bounded by Paley-
Ziegmund inequality1:

P(Z ≤ γ−1EZ) ≤ 1− (1− γ−1)2 (EZ)2

E(Z2)
. (4.1.3)

The claim follows using union bound on Eqs. (4.1.2), (4.1.3), and selecting γ = γ0 as
prescribed.

This Lemma implies that φ(Gn, ψ) is close to φann(n, ψ) with probability of order
E(Z)2/E(Z2). We use concentration of measure to boost this probability.

Proposition 4.1.2. Assume that e−ξ ≤ ψe(σ, σ
′) ≤ eξ for all σ, σ′ ∈ X . If Gn is a

uniformly random k-regular graph then, for any t > 0

P
{
|φ(Gn, ψ)− Eφ(Gn, ψ)| ≥ t

}
≤ 2 e−nt

2/(64kξ) . (4.1.4)

Proof. Let m = nk/2 denote the number of edges. With a slignt abuse of notation, we let
Gn denote the graph in which edges have been labeled, for instance uniformly at random.
We also let Gn(`) be the subgraph induced by the first ` edges and define the random
variables (X`)0≤`≤m by

X` ≡ E{logZ(Gn, ψ)|Gn(`)} . (4.1.5)

Note that (X`)0≤`≤m is a martingale. The claim follows from Azuma-Hoeffding inequality
if we can prove that, almost surely

|X` −X`−1| ≤ 8ξ . (4.1.6)

We have

|X` −X`−1| =
∣∣E{logZ(Gn, ψ)|Gn(`)} − E{logZ(Gn, ψ)|Gn(`− 1)}

∣∣ (4.1.7)

≤ max
(Gn(`),G′n(`))∈P

∣∣E{logZ(Gn, ψ)|Gn(`) = Gn(`)} (4.1.8)

− E{logZ(Gn, ψ)|Gn(`) = G′n(`)}
∣∣ (4.1.9)

where the maximum is over the graph pairs (Gn(`), G′n(`)) that differ only in one edge,

namely the edge with label `. Let (G
(1)
n ,G

(2)
n ) be a coupling of the conditional law of Gn

given Gn(`) = Gn(`) and the conditional law of Gn given Gn(`) = G′n(`). We then have

|X` −X`−1| ≤ max
(Gn(`),G′n(`))∈P

∣∣E{ logZ(G(1)
n , ψ)− logZ(G(2)

n , ψ)
}∣∣ (4.1.10)

≤ ξ max
(Gn(`),G′n(`))∈P

E∆(G(1)
n ,G(2)

n ) , (4.1.11)

where ∆(G
(1)
n ,G

(2)
n ) is the number of edges in which the two graphs differ (formally, the

cardinality of the symmetric difference of the edge sets), and the last bound follows from
Lemma 2.1.2.

The proof is completed by showing that there exists a coupling (G
(1)
n ,G

(2)
n ) such that

∆(G
(1)
n ,G

(2)
n ) ≤ 8. In order to prove this claim, consider the unique edge in which

1This follows from Cauchy-Schwarz since (1 − γ−1)EZ ≤ E{ZI(Z ≥ γ−1EZ)} ≤ E(Z2)1/2P(Z ≥
γ−1EZ)1/2

48



Gn(`) and G′n(`) differ, and assume first that this edge is (i, j) (for Gn(`)) and (i, j′)
(for G′n(`)): i.e. that the edge is incident on a common vertex i in the two graph. In

order to construct the coupling, let (i′, j′) the lowest order edge in G
(1)
n after the `-

th one, that is incident on j′ (check that such an edge exists indeed). In other words

E(G
((1)
n ) = E(Gn(`−1))∪{(i, j), (i′, j′)}∪E′. We then constructG

(2)
n by letting E(G

((1)
n ) =

E(Gn(` − 1)) ∪ {(i, j′), (i′, j)} ∪ E′. The reader can check that this is indeed distributed

uniformly conditional on G′n(`). Of course we have ∆(G
(1)
n ,G

(2)
n ) ≤ 4 almost surely.

The general case in Gn(`) and G′n(`) differ in an arbitrary vertex can be treated by
triangular inequality.

Theorem 5. Let {Gn} be a sequence of random regular graphs from the configuration
model, and ψ a specification with ψe(σ, σ

′) > 0 for all σ, σ′ ∈ X . Further assume that

lim
n→∞

1

n
logEZ(Gn, ψ) = lim

n→∞

1

2n
logE{Z(Gn, ψ)2} = φ . (4.1.12)

Then, almost surely

lim
n→∞

φ(Gn, ψ) = φ . (4.1.13)

Proof. Follows immediately from the previous Lemma and Proposition.

Exercise 4.1.1. Generalize Proposition 4.1.2 to permissive specifications.

Exercise 4.1.2. Generalize Proposition 4.1.2 to configuration-model random graphs with
given degree distribution.

We state a generalization of the above that follows immediately from the solution of
Exercises 4.1.1 and 4.1.2.

Theorem 6. Let P be a probability distribution over N with EP {K} <∞ and, for each n,
let Gn be a random graph from the configuration model with degree distribution P . Further
assume that ψ is a permissive specification.

Then the conclusion of Theorem 5, namely Eq. (4.1.12) implies Eq. (4.1.13).

4.2 The case of random regular graphs

While the second moment method can be very general, it works best when the random
graph has little variability. Also, moment calculations becomes more difficult for more
complicate graph distributions. We shall therefore assume hereafter that Gn is a random
regular graph of degree k from the configuration model. Note that such set is non-empty
if and only if kn is even, which will be assumed thoughout.

As often, rather than using uniformly random regular graphs, is much more convenient
to work with regular graphs of degree k distributed according to the configuration model,
as introduced in Section 2.3.2. By proposition 2.3.3, any property that holds with high
proability for the configuration model, holds with high probability for the uniform model
as well.
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4.2.1 First moment

The application of the second moment to random regular method is based on a combina-
torial calculation that we will carry out in some generality in Lemma 4.2.1 below.

Before proceeding, let us introduce some combinatorial notation. For 2M an even
integer, we denote by P(2M) the number of pairings of 2M objects, namely:

P(2M) =
(2M)!

2M (M !)
. (4.2.1)

Note that there are exactly P(kn) configuration-model graphs over n vertices Vn with
uniform degree k. Indeed, these graphs are in one-to-one correspondence with the set of
pairings of 2|En| objects, and 2|En| = kn in the case of regular graphs.

Given an integer N , and a function M : S → N defined on a finite set S, with∑
s∈SM(s) = N , we define the binomial coefficient(

N

M( · )

)
≡ N !∏

s∈SM(s)!
(4.2.2)

Lemma 4.2.1. Let Gn be a configuration-model random regular graph of degree k, and ψ
a specification. Then

EZ(Gn, ψ) =
1

P(kn)

∑
m∈Mn,k

Zn,k(m)
∏

σ,σ′∈X
ψe(σ, σ

′)m(σ,σ′)/2
∏
σ∈X

ψv(σ)m1(σ) , (4.2.3)

where the sum is over the set Mn,k of matrices m = (m(σ, σ′))σ,σ′∈X ∈ NX×X satisfying:

1. m(σ, σ′) = m(σ′, σ) for all σ, σ′ ∈ X , and m(σ, σ) is even.

2. Defining

m1(σ) =
∑
σ′

m(σ, σ′) , (4.2.4)

we have m1(σ) ∈ kN and
∑

σ∈X m1(σ) = nk.

Finally

Zn,k(m) ≡
(

n

m1( · )/k

) ∏
σ∈X

(
m1(σ)

m(σ, · )

) ∏
σ∈X

P(m(σ, σ))
∏

(σ,σ′)

m(σ, σ′)! , (4.2.5)

where the product is over unordered pairs (σ, σ′) with σ 6= σ′.

Proof. In order to simplify notation, we will drop the subscript n from Gn, and similar.
The factor 1/P(kn) is the probability that G takes any specific value. We therefore

need to prove that the remaining sum is the sum over all the (multi-)graphs G in the
configuraton model, of the partition function Z(G,ψ).

Given a (multi-)graph G = (V,E), and a spin configuration σ ∈ X V , we let, for
σ1, σ2 ∈ X

mσ,E(σ1, σ2) =
∑

(i→j)∈D(Gn)

I
(
(σi, σj) = (σ1, σ2)

)
. (4.2.6)
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Here it is understood that, for each self-loop (i, i), the corresponding edge (i → i) is
counted twice. For each normal edge (i, j), counted with its multiplicity, we have two
directed edges (i → j) and (j → i). Note that mσ,E( · , · ) satisfies both conditions 1 and
2 in the statement, i.e. mσ,E ∈ Mn,k. Let Cn,k be the set og graphs in the configuration
model, and define

Cn,k(m) ≡
{
G, σ) : G ∈ Cn,k , σ ∈ X V , mE,σ = m

}
, (4.2.7)

Zn,k(m) ≡
∣∣Cn,k(m)

∣∣ . (4.2.8)

For any (G, σ) ∈ Cn,k(m), we have∏
(i,j)∈E

ψe(σi, σj)
∏
i∈V

ψv(σi) =
∏

σ,σ′∈X
ψe(σ, σ

′)m(σ,σ′)/2
∏
σ∈X

ψv(σ)m1(σ) . (4.2.9)

Therefore

EZ(Gn, ψ) =
1

P(kn)

∑
G∈Cn,k

∑
σ∈XV

∏
(i,j)∈E

ψe(σi, σj)
∏
i∈V

ψv(σi) (4.2.10)

=
1

P(kn)

∑
m∈Mn,k

∑
(G,σ)∈Cn,k(m)

∏
(i,j)∈E

ψe(σi, σj)
∏
i∈V

ψv(σi) (4.2.11)

=
1

P(kn)

∑
m∈Mn,k

∣∣Cn,k(m)
∣∣ ∏
σ,σ′∈X

ψe(σ, σ
′)m(σ,σ′)/2

∏
σ∈X

ψv(σ)m1(σ) . (4.2.12)

We are left with the task of showing that |Cn,k(m)| = Zn,k(m) is given by Eq. (4.2.5). In
words, an element of Cn,k(m) is a graph/spin configuration pair, whereby exactly m1(σ)/k
vertices i have spin σi = σ for each σ ∈ X , and m(σ, σ′) directed edges have endpoints
σi = σ, σj = σ′. The formula (4.2.5) corresponds to the construction of a such a pair:

• We first gave to assign spin values to the vertices. The first multinomial coefficient
counts the distinct ways of doing this.

• For each σ ∈ X , and each half-edge leaving a vertex with spin σ (there is m1(σ)) we
have to assign it a second spin value σ′ ∈ X . The corresponding directed edge will
be of type (σ, σ′). The number of ways of doing this is given by the second product
of multinomial coefficients.

• Finally we have to pair half-edges, consistently with the spin value assignments. If
the spin values are distinct (σ, σ′), there is m(σ, σ′)! of doing that. If they coincide
(σ, σ), then the number of ways is P(m(σ, σ)).

The sum in Eq. (4.2.3) can be evaluated by the saddle point method. The result can be
stated in terms of the dual Bethe free energy for k-regular trees introduced in the previous
chapter. This is the function Φ∗k,ψ : Hloc

reg,k → R given by Eq. (4.2.13), that we copy here
for the reader’s convenience

Φ∗k,ψ(b) = Eb1 logψv(σ) +
k

2
Eb logψe(σ1,σ2) +H(b1) +

k

2
H(b‖b1 × b1) . (4.2.13)

Here Hloc
reg,k ≡ { b ∈ ∆X×X : b(σ, σ′) = b(σ′, σ)} is the local polytope for the regular tree,

and b1(σ) =
∑

σ′∈X b(σ, σ
′).
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Theorem 7. Let Gn be a configuration-model random regular graph of degree k, and ψ a
specification. Then

lim
n→∞

1

n
logEZ(Gn, ψ) = max

b∈Hloc
reg,k

Φ∗k,ψ(b) . (4.2.14)

Proof. First notice that |Mn,k| is polynomial in n. Therefore, to leading exponential order

EZ(Gn, ψ) =
1

P(kn)
max

m∈Mn,k

Zn,k(m;ψ) , (4.2.15)

Zn,k(m;ψ) ≡ Zn,k(m)
∏

σ,σ′∈X
ψe(σ, σ

′)m(σ,σ′)/2
∏
σ∈X

ψv(σ)m1(σ) . (4.2.16)

Let b(σ, σ′) ≡ m(σ, σ′)/(nk), b1(σ) ≡ m1(σ)/(nk). Notice that, for m ∈ Mn,k, we have
b ∈ Hloc

reg,k. Further, we claim that

Zn,k(m;ψ) = exp
{
nΦ∗k,ψ(b) + o(n)

}
, (4.2.17)

where the o(n) is uniform2 with respect to b ∈ Hloc
reg,k. Together with Eq. (4.2.15) this

implies the desired result (noting that the set {b ∈ Hloc
reg,k : (nk b) ∈Mn,k} becomes dense

in Hloc
reg,k as n→∞).

The last claim (4.2.17) simply follows by recalling standard approximations of the
binomial coefficients. In particular, for any probability distribution p on a finite set S, we
have [CT12], uniformly in p ∈ ∆S ,(

N

N p( · )

)
= exp

{
N H(p) + o(N)

}
. (4.2.18)

Further

P(2N) = exp
{
N log(2N) + o(N)

}
. (4.2.19)

Substituting these formulae in Eq. (4.2.15) yiends the desired result.

Surprisingly, the moment calculation yields as a result the Bethe free enenrgy!

By Markov inequality, we also obtain an upper bound on the almost sure limit of the
free energy density.

Corollary 4.2.2. Let Gn be a configuration-model random regular graph of degree k, or a
uniformly random regular graph of degree k, and ψ a specification. Then almost surely

lim sup
n→∞

1

n
logZ(Gn, ψ) ≤ max

b∈Hloc
reg,k

Φ∗k,ψ(b) . (4.2.20)

Proof. For the configuration model, this follows follows from Theorem 7, together with
Markov inequality (4.1.2). For the uniformly random regular graph it follows by the general
relation between configuration model and random regular graphs, see Section 2.3.2.

2This means that there exists a function f(n) = o(n) independent of b such that exp{nΦ∗k,ψ(b)−f(n)} ≤
Zn,k(m;ψ) ≤ exp{nΦ∗k,ψ(b) + f(n)}.
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Thanks to the correspondence between dual Bethe free energy and Bethe free energy,
we can restate the last results in terms of the latter. This is often more convenient for
calculations. Recall that in the present case, the Bethe free energy is the function Φk,ψ :
∆X → R given by

Φk,ψ(h) ≡ log
{∑
σ∈X

ψv(σ)
( ∑
σ′∈X

ψe(σ, σ
′)h(σ′)

)k}
− k

2
log
{ ∑
σ1,σ2∈X

ψe(σ1, σ2)h(σ1)h(σ2)
}
.

(4.2.21)

Corollary 4.2.3. Let Gn be a configuration-model random regular graph of degree k, and
ψ a specification. Then

lim
n→∞

1

n
logEZ(Gn, ψ) = max

h∈H∗ψ,k
Φk,ψ(h) , (4.2.22)

where H∗ψ,k ⊆ ∆X is the set of BP fixed points, i.e. the set of solution of equation (3.2.10),
that we copy here for the reader’s convenience

h(σ) =
1

z
ψv(σ)

(∑
σ′∈X

ψe(σ, σ
′)h(σ′)

)k−1

. (4.2.23)

4.2.2 Second moment

At first sight, the second moment calculation might appear too involved. Fortunately, it
can be reduced to the first moment calculation by a simple remark. Given a specification
ψ on X , we define the specification ψ⊗2 on X × X by letting

ψ⊗2
v ((σ(1), σ(2))) ≡ ψv(σ(1))ψv(σ(2)) , (4.2.24)

ψ⊗2
e ((σ(1), σ(2)), (τ (1), τ (2))) ≡ ψe(σ

(1), τ (1))ψe(σ
(2), τ (2)) . (4.2.25)

Then

Z(G,ψ)2 =
∑

σ(1),σ(2)∈XV

∏
(i,j)∈E

ψe(σ
(1)
i , σ

(1)
j )

∏
i∈V

ψv(σ
(1)
i ) (4.2.26)

·
∏

(i,j)∈E

ψe(σ
(2)
i , σ

(2)
j )

∏
i∈V

ψv(σ
(2)
i ) = Z(G,ψ⊗2) . (4.2.27)

In other words, we can write the square of the partition function of a factor model as the
partition function a new factor model with the same graph and a larger alphabet.

Using this remark, the results of the previous section can be ‘exported’ to the compu-
tation of the second moment.

Corollary 4.2.4. Let Gn be a configuration-model random regular graph of degree k, and
ψ a specification. Then

lim
n→∞

1

n
logE{Z(Gn, ψ)2} = max

b∈Hloc
reg,k(X×X )

Φ∗k,ψ⊗2(b) (4.2.28)

= max
h∈H∗

ψ⊗2,k
(X×X )

Φk,ψ⊗2(h) , (4.2.29)

53



where we recall that Hloc
reg,k(X×X ) in the first line denotes the local polytope for the alphabet

X ×X . Further H∗ψ⊗2,k(X ×X ) ⊆ ∆X×X is the set of BP fixed points for the specification

ψ⊗2, i.e. the set of solution of the equation

h(σ1, σ2) =
1

z
ψv(σ1)ψv(σ2)

 ∑
σ′1,σ

′
2∈X

ψe(σ1, σ
′
1)ψe(σ2, σ

′
2)h(σ′1, σ

′
2)

k−1

. (4.2.30)

In words, the second moment of the partition function is computed by solving a statis-
tical mechanics model whose configurations correspond to two copies of the original model.
Following the spin-glass literature, we will call these copies replicas.

It is an important to note that the set of BP fixed points for the specification ψ, i.e.
H∗ψ,k, can be embedded in a natural way in the set of fixed points of ψ⊗2, H∗ψ⊗2,k.

Proposition 4.2.5. For b ∈ Hloc
reg,k(X ), define b⊗2 ∈ Hloc

reg,k(X ) by letting

b⊗2((σ(1), σ(2)), (τ (1), τ (2))) = b(σ(1), τ (1)) b(σ(1), τ (1)) . (4.2.31)

Then

Φ∗k,ψ⊗2(b⊗2) = 2Φ∗kψ(b) . (4.2.32)

Further, for h ∈ ∆X , define h⊗2 ∈ ∆X×X by letting h⊗2(σ, σ′) ≡ h(σ)h(σ′).

If h ∈ H∗ψ,k, then h⊗2 ∈ H∗ψ⊗2,k and

Φk,ψ⊗2(h⊗2) = 2Φk,ψ(h) . (4.2.33)

Proof. The proof is a straightforward calculation by applying the definitions.

Fixed points of the form h⊗2 with h ∈ H∗ψ,k describe a situation in which the two replicas
are –asymptotically– independent. The common randomness between the two replicas is
not sufficient to create dependence, and therefore E{Z(Gn, ψ)2} ≈ E{Z(Gn, ψ)}2.

Recall that the second moment methos succeeds if the limit of (1/n) logE{Z(Gn, ψ)2}
is twice the limit of (1/n) logE{Z(Gn, ψ)}. Using Theorem 6, and Corollaries 4.2.3 and
4.2.4, we obtain the following general result.

Theorem 8. Let {Gn} be a sequence of random regular graphs from the configuration
model, and ψ a permissive specification. Let H∗ψ,k be the set of BP fixed points and

(H∗ψ,k)⊗2 = {h⊗2 ∈ ∆X×X : h ∈ H∗ψ,k}, (H∗ψ,k)⊗2 ⊆ H∗ψ⊗2,k.

If the maximum of Φk,ψ⊗2(h) over H∗ψ⊗2,k is achieved on (H∗ψ,k)⊗2 ⊆ H∗ψ⊗2,k, then
almost surely

lim
n→∞

1

n
logZ(Gn, ψ) = max

h∈H∗ψ,k
Φk,ψ(h) = max

b∈Hloc
reg,k

Φ∗k,ψ(b) . (4.2.34)

The same conclusion holds if the maximum of Φ∗k,ψ⊗2(b) over b ∈ Hloc
reg,k(X ×X ) is achieved

for b = b̃⊗2 where b̃ ∈ Hloc
reg,k(X ).
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4.2.3 Simplifications

The most difficult part in applying Theorem 8 is tocharacterize the maximizer of Φk,ψ⊗2(h)
or the maximizer of Φ∗k,ψ⊗2(b). The lemma below yields a useful constraint.

We say that b ∈ Hloc
reg,k(X ×X ) has positive correlation if, for any function f : X ×X →

R, we have

Eb(f ⊗ f)− Eb(f ⊗ 1)Eb(1⊗ f) ≥ 0 . (4.2.35)

Here f⊗g
(
(σ(1), σ(2)), (τ (1), τ (2))

)
≡ f(σ(1), τ (1))·g(σ(2), τ (2)), and 1 represents the function

that is identically equal to 1.

Lemma 4.2.6. There exists a convec combination of maximizer of Φ∗k,ψ⊗2(b) over b ∈
Hloc

reg,k(X × X ) that has positive correlation.

Proof. Let Oreg,k(X × X ) ⊆ Hloc
reg,k(X × X ) be the convex hull of set of maximizers of

Φ∗k,ψ⊗2(b). It follows from continuity of Φ∗k,ψ⊗2(b) that this is a closed set.

Define the shorthand, for σ ∈ X V ,

ψG(σ) ≡
∏

(i,j)∈E

ψe(σi, σj)
∏
i∈V

ψv(σi) . (4.2.36)

Further, for σ(1), σ(2) ∈ X V , we define the empirical edge distribution in analogy to
Eq. (4.2.6)

mσ(1),σ(2),E(s, t) =
∑

(i→j)∈D(Gn)

I
(
(σ

(1)
i , σ

(2)
i ) = s

)
· I
(
(σ

(1)
j , σ

(2)
j ) = t

)
, (4.2.37)

and introduce the average b(n) =
(
b(s, t)

)
s,t∈X×X by letting

b(n) =
1

(kn)E{Z(G, ψ)2}
∑

σ(1),σ(2)

E
{
ψG(σ(1))ψG(σ(2))mσ(1),σ(2),E(G)

}
. (4.2.38)

By construction b(n) ∈ Hloc
reg,k(X ×X ). We claim that b(n) has positive correlation. Indeed

for any two functions f , g : X × X → R, and letting (i(1), j(1)) denote the first directed
edge in D(G),

Eb(n){f ⊗ g} =
1

E{Z(G, ψ)2}
∑

σ(1),σ(2)∈Xn
E{ψG(σ(1))ψG(σ(2))f(σ

(1)
i(1), σ

(1)
j(1))g(σ

(2)
i(1), σ

(1)
j(2))}

= E′
{
µG,ψ

(
f(σ

(1)
i(1),σ

(1)
j(1))

)
µG,ψ

(
g(σ

(1)
i(1),σ

(1)
j(1))

)}
(4.2.39)

where E′ denotes expectation with respect to the probability measure over graphsG defined
by the Radon-Nykodim derivative

dP′

dP
(Gn) =

Z(Gn, ψ)2

E{Z(Gn, ψ)2}
. (4.2.40)

We therefore have

Eb(n){f ⊗ f} − Eb(n){f ⊗ 1}Eb(n){1⊗ f} = E′
{
µG,ψ

(
f(σ

(1)
i(1),σ

(1)
j(1))

)2}− E′
{
µG,ψ

(
f(σ

(1)
i(1),σ

(1)
j(1))

)}2 ≥ 0 .

(4.2.41)
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Since b(n) belongs to a convex set, we have b(n`) → b(∞)Hloc
reg,k(X ) along some subsequence

{n`}. Further, b(∞) must be positively correlated. The same proof of Theorem 7 and
Corollary 4.2.4 implies that b(∞) ∈ Oreg,k(X × X ) which imples the claim.

Next we state a useful condition for the case of multiple maximizers.

Lemma 4.2.7. Let (ψβ)β be a family of specifications parameterized by β ∈ R with

ψβe (σ1, σ2) = ψ0
e (σ1, σ2) eβξe(σ1,σ2), ψβv (σ) = ψ0

v(σ), and assume minσ1,σ2∈X ψ
0
e (σ1, σ2) > 0,

minσ∈X ψ
0
v(σ) > 0.

We call β ∈ R ‘exceptional’ if the following happens. There is two global maximizers b,
b′ ∈ Hloc

k,reg(X ) of Φ∗k,ψ such that

Ebξe(σ1,σ2) 6= Eb′ξe(σ1,σ2) . (4.2.42)

Then the set of exceptional points is at most countable.

Proof. Write, with a slight abuse of notation, Φ∗k,β(b) = Φ∗
k,ψβ

(b) for the Bethe free energy

with specification ψβ. This takes the form

Φ∗k,β(b) = Φ∗k,0(b) + βEbξe(σ1,σ1) . (4.2.43)

Let v1 ≡ minb∈Hlocreg,k Ebξe(σ1,σ1), v2 ≡ maxb∈Hlocreg,k Ebξe(σ1,σ1), and, for any β ∈ R,
define

v+(β) ≡ sup
{
Ebξe(σ1,σ1) : b ∈ arg max

b∈Hloc
reg,k

Φ∗k,β(b)
}
, (4.2.44)

v−(β) ≡ inf
{
Ebξe(σ1,σ1) : b ∈ arg max

b∈Hloc
reg,k

Φ∗k,β(b)
}
. (4.2.45)

Our claim is then equivalent to the claim that v+(β) = v−(β) for all β apart from a
countable set. The claim follows from checking the following properties (that are straight-
forward):

• For any β ∈ R, v1 ≤ v+(β) ≤ v−(β) ≤ v2.

• v+(β), v−(β) are non-decreasing. Further v+(β) is right-continuous, and v−(β) is
left-continuous.

• For any β0 ∈ R, we have v−(β) ↓ v+(β0) as β ↓ β0, and v+(β) ↑ v−(β0) as β ↑ β0.

Hence the set of exceptional points coincides with the set of discontinuity points of the
non-decreasing bounded function v+, and this is necessarily countable.

4.3 Applications

4.3.1 The ferromagnetic Ising model

As a simple successful applications of the method developed in the previous section, we can
consider the ferromagnetic Ising model in zero magnetic field. In this case X = {+1,−1},
ψv(σ) = 1 and ψe(σ, σ

′) = exp(βσσ′).
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Figure 4.1: Left frame: graphical solution of the stationarity condition for the free energy
of ferromagnetic Ising model, Eq. (4.3.2). Here k = 4 and the three curves refer to different
values of β. From bottom to top in the right part of the plot: (β/βc) = 0.4, 1, 1.6. Here
βc = atanh(1/(k − 1)) ≈ 0.34657. Right frame: free energy functional Φk,β(x) − Φk,β(0),
for the same values of β. From bottom to top (β/βc) = 0.4, 1, 1.6. We subtract the value
Φk,β(0) for clarity.

It is convenient and customary to parameterize h ∈ ∆X as

h(σ) =
exσ

2 coshx
=

1

2

(
1 + σ tanhx

)
, (4.3.1)

with x ∈ R (recall that R = R ∪ {+∞,−∞} denotes the completed real line). In terms of
this variable, and letting θ = tanhβ, Eq. (4.2.23) reads

x = (k − 1)atanh(θ tanhx) . (4.3.2)

With a slight abuse of notation, we will write H∗β,k for the set of solutions of this equation,
see Fig. ???.

The function x 7→ f(x) ≡ (k − 1)atanh(θ tanhx) is antisymmetric (f(−x) = −f(x))
and concave on R≥0. Further f ′(0) = (k − 1)θ and limx→+∞ f(x) = (k − 1)β < ∞. Ths
implies immediately the following picture:

1. For (k− 1) tanhβ ≤ 1, Eq. (4.3.2) admits a unique solution b = 0, and hence H∗β,k =
{0}.

2. For (k − 1) tanhβ > 1, b = 0 still solves Eq. (4.3.2) but in addition we have two
symmetric solutions, i.e. H∗β,k = {−b∗, 0, b∗} for some b∗ = b∗(β) > 0.

The free-energy (4.2.21) can be written explicitely in terms of b as

Φk,β(x) ≡ k

2
log coshβ + log

{
(1 + θ tanhx)k + (1− θ tanhx)k

}
− k

2
log
{

1 + θ(tanhx)2
}
.

(4.3.3)

A simple study of this function shows that:
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1. For (k − 1) tanhβ ≤ 1, the function b 7→ Φk,β(b) has a unique global maximum at
b = 0, with value Φk,β(0) = log 2 + (k/2) log coshβ.

2. For (k − 1) tanhβ > 1, b = 0 is a local minimum of b 7→ Φk,β(b), while {+b∗,−b∗}
are degenerate global maxima.

It turns out that in this case thesecond moment method succeeds at all temperatures,
and allows to prove the following result.

Theorem 9. Let {Gn}n≥1 be a sequence of random k-regular graphs and ψ be the specifi-
cation of a ferromagnetic Ising model at inverse temperature β (i.e. ψe(σ, σ

′) = exp(βσσ′),
ψv(σ) = 1).

If (k − 1) tanhβ ≤ 1, then almost surely

lim
n→∞

φ(Gn, ψ) = log 2 +
k

2
log coshβ . (4.3.4)

If (k − 1) tanhβ > 1, then almost surely

lim
n→∞

φ(Gn, ψ) = Φk,β(b∗) , (4.3.5)

with Φk,β given by Eq. (4.3.3) and b∗ the only positive solution of Eq. (4.3.2).

Proof. The proof cosists in showing that the maximum of Φψ⊗2,k over H∗ψ⊗2,k is indeed

achieved on (H∗ψ,k)⊗2, and hence using Theorem 8.
By Lemma ??, we can write any element of H∗ψ⊗2,k as

h(σ, σ′) =
1

z
exp

(
bσ + bσ′ +Qσσ′

)
, (4.3.6)

with b ∈ H∗β,k. Correspondingly, we have H∗ψ⊗2,k = H0,∗
ψ⊗2,k

∪ H+,∗
ψ⊗2,k

where the partition

corresponds to b = 0 and b = +b∗ (the case −b∗ can be eliminated by symmetry).
We first consider the solutions in H+,∗

ψ⊗2,k
. We claim that, for b = b∗, the only solution of

Eq,. (4.2.30) of the form Eq. (4.3.6) has Q = 0. This can be proved by Griffiths inequality
(to be written).

Next consider the solutions in H0,∗
ψ⊗2,k

, i.e. the case b = 0. Equation (4.2.30) yields in
this case

Q = (k − 1) atanh(θ2 tanh(Q)) , (4.3.7)

i.e. the same equation as for b∗(β), excepth that θ is replaced by θ2. Hence for (k −
1)(tanhβ)2 ≤ 1,Q = 0 is the only soution, i.e. H0,∗

ψ⊗2,k
= (H∗ψ,k)⊗2. For (k−1)(tanhβ)2 ≤ 1,

two more solutions appear {+Q∗(β),−Q∗(β)} where, letting β2(β) ≡ atanh(tanh(β)2), we
have Q∗(β) = b∗(β2(β)) > 0. By symmetry we can focus on the positive solution +Q∗(β).

Let h+ ∈ H∗ψ⊗2,k be given by

hβ,+(σ, σ′) ≡ eQ∗(β)σσ′

4 coshQ∗(β)
. (4.3.8)

This is the only solution that is not in (H∗ψ,k)⊗2. We are left with the task of proving that

Φψ⊗2,k(hβ,+) ≤ 2Φβ,k(b∗(β)) for all (k− 1) tanh(β)2 > 1, with Φβ,k(b) given by Eq. (4.3.3).
A straightforward calculation yields

Φψ⊗2,k(hβ,+) = Φβ,k(b = 0) + Φβ2,k(b = b∗(β2)) , (4.3.9)
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with β2 = β2(β) < β. Note that Φβ,k(0) ≤ Φβ,k(b∗(β)). Further we claim that β 7→
Φβ,k(b∗(β)) is monotone increasing and therefore Φβ2,k(b = b∗(β2)) ≤ Φβ,k(b∗(β)) because
β2(β) < β.

To be written: Prove of last claim.

Another example/exercise: Independent sets on pipartite regular graphs.

4.3.2 The anti-ferromagnetic Ising model

Consider now the antiferromagnetic Ising case in zero field, namely ψv(σ) = 1, ψe(σ, σ
′) =

exp(−βσσ′), with β > 0. (Note that we changed parameterization so that β remains
positive.)

We will use the same parameterization introduced in Eq. (4.3.1) for h ∈ ∆X in terms
of b ∈ R, and let θ = tanh(β) > 0. We thus obtain the following equation that replaces
Eq. (4.3.2):

b = −(k − 1)atanh(θ tanh b) . (4.3.10)

The function f(x) = −(k − 1)atanh(θ tanhx) is antysimmetric (f(−x) = −f(x)) and
decreasing. Hence the only solution is b = 0, i.e. H∗β,k = {0}. The Bethe free enrgy
functional has the same form (4.3.3). Evaluating it at b = 0, we obtain the following
almost sure bound.

lim sup
n→∞

1

n
logZ(Gn, ψ) ≤ lim

n→∞

1

n
logEZ(Gn, ψ) = log 2 +

k

2
log coshβ . (4.3.11)

The second moment method does not allow to prove a matching lower bound in this case.

Theorem 10. Let {Gn}n≥1 be a sequence of random k-regular graphs and ψ be the specifi-
cation of a ferromagnetic Ising model at inverse temperature β (i.e. ψe(σ, σ

′) = exp(βσσ′),
ψv(σ) = 1).

If (k − 1) tanh(β)2 ≤ 1, then almost surely

lim
n→∞

φ(Gn, ψ) = log 2 +
k

2
log coshβ . (4.3.12)

Proof. To be written

Another example: Independent sets on random regular graphs.

4.4 Refining the second moment method

4.4.1 Truncation

While the second moment method is elementary, its implementation can become fairly
sophisticated using the trick in the next exercise.

Exercise 4.4.1. Prove that the conclusions of Theorem 5 and 6 continue to hold if
Eq. (4.1.12) is replaced by

lim
n→∞

1

n
logE{Z(Gn, ψ) I(Gn ∈ Gn)} = lim

n→∞

1

2n
logE{Z(Gn, ψ)2 I(Gn ∈ Gn)} = φ ,

(4.4.1)
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where Gn is a set of graphs such that P(Gn ∈ Gn) ≥ e−o(n).
Further, prove that, if (1/n)E logZ(Gn, ψ) has a limit, then there always exists sets

Gn such Eq. (4.4.1) holds, with P(Gn ∈ Gn) ≥ e−o(n). Unfortunately, te sets Gn are not
explicit.

4.4.2 Clustering
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Chapter 5

The weak convergence method

The second moment method has a few limitations:

1. It only applies to sequences of random graphs {Gn}n≥1.

2. It aims at computing the asymptotic free energy density and does not estabilish a
local limit for the measures µGn,ψ. While it is sometimes possible to use the limit
free energy to identify a specific local limit, there is no general technique to achieve
this goal.

3. The key condition under which the second moment method succeeds is E{Z(Gn, ψ)2}
.
= E{Z(Gn, ψ)}2. This condition often often holds for random regular graphs in a
weak-dependencies regime and sometimes beyond that regime. However, it generi-
cally does not holds for other graph models, such as Erdös-Renyi random graphs. The
intuition is that other random graph models have more ‘variability.’ For instance,
Bt(i;Gn) is asymptotically deterministic (as n → ∞) for random regular graphs.
It is instead random, and asymptotically distributed as a Galton-Watson tree (see
Proposition ????) for Erdös-Renyi random graph. This results in a much larger
variance for Z(Gn, ψ).

The domain of applicability of the second moment method can be expanded by using
truncation. However, the resulting calculations are significantly more complicated,
and there is no general guarantee that they yield matching first and second moment.

This chapter discusses a very different approach that is instead well-suited to deterministic
graph sequences {Gn} and directly addresses the problem of determining the local limit
of (Gn, µGn,ψ). As is often the case with weak convergence, one proceeds in two steps.
The first step estabilish, by a general soft argument, that the local limit of (Gn, µGn,ψ)
exists along subsequences. The second step is the most challenging and is model-specific.
One has to show that, among all the possible limt distributions, only one can be realized.
Hence all the subsequential limits coincide with that unique distribution and (Gn, µGn,ψ)
converges to it.

The first step of this procedure is explained, in some generality, in Section 5.1. The
second step is illustrated on two cases. The independent sets model is discussed in Section
??: in this case the approach allows to estabilish the local weak limit only in a ‘weakly
interacting’ regime. This is to be expected because in the ‘strongly interacting’ regime, the
behavior of this model depends on the global structure of the graph Gn, e.g. on whether
or not Gn is bipartite, cf. Sections ?? and 5.3 for further discussion. The ferromagnetic
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Ising model is considered in Section 5.3. In this case a nearly complete characterization
has been developed, although some interesting questions remain open.

5.1 General approach

The weak convergence method is based on the following general result. Note that this
statement holds for non-positive, non-permissive specifications, under the condition that
µGn,ψ is well-defined for all n, i.e. there is at least one configuration σ ∈ X Vn with non-zero
weight.

Theorem 11. Let {Gn}n≥1 be a graph sequence (not necessarily indexed by the number of
vertices) that converges locally to a random rooted tree (T ,o) ∼ ν. Let ψ a specification
such that Z(Gn, ψ) > 0 for all n. Then there exist a subsequence {n(k)}k≥1, limk→∞ n(k) =
∞, and a random marked rooted tree (T ,σ,o) such that (T ,o) ∼ ν and (Gn(k), µGn(k),ψ)
converges locally to (T ,σ,o).

Further, the limit (T ,σ,o) is unimodular and Gibbs with respect to ψ.

Proof. Let In a uniformly random vertex in Vn, and fix t ∈ N. Further, for each n, let
σn ∼ µGn,ψ. We claim that, for each sequence {m(k)}k∈N with limk→∞m(k) = ∞, there
exists a subsequence {n(k)}k∈N ⊆ {m(k)}k∈N with limk→∞ n(k) =∞, and a t-generations
marked tree (T t,ot,σt), such that

(Bt(In(k);Gn(k)), In(k),σ
n(k)
Bt(In(k);Gn(k))

)
d

=⇒ (T t,ot,σt) , (5.1.1)

along the subsequence {n(k)}k∈N.

In order to prove this claim, note the following. Let K∗(t,∆) ⊆ G∗ be the set of of
unlabeled rooted graph with radius (maximum distance of any vertex from the root) at most
t and maximum degree at most ∆. Clearly K∗(t,∆) is finite. Also, let maxdegt : G∗ → N
be the function such that maxdegt(G, o) is the maximum degree of the vertices of (G, o)
whose distance from the root is at most t. Clearly, maxdegt is continuous in the topology
of G∗.

Since Bt(In;Gn) converges in distribution, maxdegt(Bt(In;Gn)) also converges in dis-
tribution. Hence, for each ε > 0, there exists ∆(ε) <∞ such that maxdegt(Bt(In;Gn)) ≤
∆(ε) with probability at least 1− ε for all t. In other words Bt(In;Gn) ∈ K∗(t,∆(ε)) with
probability at least 1− ε. Define the shorthand K(ε) = K∗(t,∆(ε)) and let KX (ε) denote
the set of marked rooted graphs whose underlying unmarked graph is in K(ε). Note that
for each (G, o) ∈ K(ε) marks can be assigned in at most |X ||V (G)| ways. Since K(ε) is finite,
it follows that KX (ε) is finite as well and therefore compact in GX∗ . Therefore

{(Bt(Im(k);Gm(k)),σ
m(k)
Bt(Im(k);Gm(k))

)}k∈N (5.1.2)

is a tight family, whence the claim follows by Prohorov theorem.

The convergence of (Gn(k), µGn(k),ψ) is then obtained by a diagonal argument. Namely,
by the above, we can construct subsequences {n1(k)} ⊇ {n2(k)} ⊇ {n3(k)} ⊇ . . . such
that, along nt( · ),

(Bt(Int(k);Gnt(k)),σ
nt(k)
Bt(Int(k);Gnt(k))

)
d

=⇒ (T t,σT t). (5.1.3)
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By chosing n(k) = nk(k), we have, for any t <∞

(Bt(In(k);Gn(k)),σ
n(k)
Bt(In(k);Gn(k))

)
d

=⇒ (T t,σT t), (5.1.4)

whence the desired convergence follows by Lemma [Write a Lemma to clarify that it
is sufficient to check convergence over balls.].

We already proved unimodularity in ??? and the Gibbs property in Proposition 3.2.5.

The weak convergence method amounts to identify, among all possible limit probability
measures on GX∗ (i.e. all possible laws of (T ,σ,o)) a unique one, call it ν that can be
obtained as subsequential local limit of (Gn, µψ,Gn). If this happen, then (Gn, µψ,Gn)
converges locally to ν. Viceversa, Theorem 11 can be used to prove the existence of
unimodular Gibbs measures on (T ,o). We have the following immediate corollary.

Corollary 5.1.1. Let (T ,o) ∼ νG be a unimodular random rooted tree and ψ a specifica-
tion. Assume that there exists a sequence of finite graphs {Gn}n≥1 that converges locally to
(T ,o), and that, for all n, Z(Gn, ψ) > 0. Then there exists at least one unimodular prob-
ability measure on GX∗ that is Gibbs with respect to psi and such that the induced measure
on G∗ coincide with νG.

A particularly simple case is the one in which there exists a unique probability measure
on GX∗ that is unimodular and Gibbs with respect to ψ. In that case (Gn, µψ,Gn) converges
locally to this unique measure. This is stated formally below.

Corollary 5.1.2. Let {Gn}n≥1 be a graph sequence that converges to a random rooted tree
(T ,o), and ψ a specification. Assume that there exists a unique unimodular probability
measure νG on GX∗ that is Gibbs with respect to ψ. Then (Gn, µGn,ψ) converges locally to
ν.

In particular, this is the case if, (T ,o)-almost surely, there exists a unique Gibbs mea-
sure with specification ψ on (T ,o).

Proof. The first part of the statement (convergence if there exists a unique probability
measure on GX∗ that is unimodular and Gibbs) follows from Theorem 11 as per the discus-
sion above. The second part follows from the first part after proving the following claim:
if, (T ,o)-almost surely, there exists a unique Gibbs measure with specification ψ on (T ,o),
then there exists unique probability measure ν on GX∗ that is Gibbs with respect to ψ, and
such that the induced distribution on G∗ coincides with νG.

Indeed by Corollary 5.1.1, there exists at least one probability measure satisfying these
conditions. Assume by contradiction that there exists at least two distinct such probability
measures ν1 and ν2. By Lemma [Lemma on canonical representation of G∗] these can
be viewed as probability measures on C∗ × XN and hence admit the representation ν1 =

νT ⊗ ν
(1)
σ|T , ν2 = νT ⊗ ν

(2)
σ|T . Since th marginal νT coincides, we must have ν

(1)
σ|T ( · |(T, o)) 6=

ν
(2)
σ|T ( · |(T, o)) for all (T, o) ∈ S, where S ⊆ C∗ is such that νT (S) > 0. Since by Theorem

11 both ν
(1)
σ|T ( · |(T, o)) and ν

(2)
σ|T ( · |(T, o)) are Gibbs, this contradicts the hypotheses.

The Dobrushin criterion provides a simple sufficient condition for uniqueness of Gibbs
measure, and hence allows to check the conditions of Corollary 5.1.2. We specialize it here
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to the present setting. For each `, define the conditional distribution of a spin given its `
neighbors:

µ`(σ0|σ1, . . . , σ`) =
ψv(σ0)

∏`
i=1 ψe(σ0, σ`)∑

τ∈X ψv(τ)
∏`
i=1 ψe(τ, σ`)

. (5.1.5)

In words, this is the conditional distribution of the spin σ0 given σ1, . . . ,σ`, where the
joint distribution of σ0,σ1, . . . ,σ`, is given by the factor model µ` = µS`,ψ on the star
graph S` shown in Fig. ????. Explicitly S` = (V (S`), E(S`)) where V (S`) = (0, 1, 2, . . . , `)
and E(S`) = {(0, 1), (0, 2), . . . , (0, `)}. The influence coefficients quantify the effect on a
spin distribution, produced by conditioning on the neighbors of that spin. They are defined
defined, for each ` ≥ 1, by

c`(ψ) = max
σ1,σ2,...,σ`,σ

′
`

∥∥µ`( · |σ1, . . . , σ`)− µ`( · |σ1, . . . , σ
′
`)
∥∥

TV
. (5.1.6)

Corollary 5.1.3. Let {Gn}n≥1 be a graph sequence that converges to a random rooted tree
(T ,o), such that deg(o) ≤ ∆ almost surely. Let ψ be a specification such that

max
1≤`≤∆

` c`(ψ) < 1 . (5.1.7)

Then there exists almost surely a unique Gibbs measure ν on GX∗ with the prescribed
marginal of (T ,o), and (Gn, µGn,ψ) converges locally to ν.

Proof. It is a standard result in the theory of Gibbs measures [Add citation] that, for any
graph G = (V,E) with degree bounded by ∆, if ψ satisfies condition (5.1.7), then there is
a unique probability measure on X V that is Gibbs with respect to ψ. The claim therefore
follows from Corollary 5.1.2.

Example 5.1.1 (Independent set). Recall that the independent sets model is defined
byX = {0, 1}, ψv(σ) = λσ, ψe(σ, σ

′) = I((σ, σ′) 6= (1, 1)).
In order to evaluate the influence coefficient (5.1.6), note that∥∥µ`( · |σ1, . . . , σ`)− µ`( · |σ1, . . . , σ

′
`)
∥∥

TV
=
∣∣µ`(1|σ1, . . . , σ`)− µ`(1|σ1, . . . , σ

′
`)
∣∣ (5.1.8)

and that both terms on the right hand side vanish if at least one out od σ2,. . .σ` is equal
to 1. We therefore have

c`(ψ) =
∣∣µ`(1|0, . . . , 0, 0)− µ`(1|0, . . . , 0, 1)

∣∣ (5.1.9)

= µ`(1|0, . . . , 0, 0) (5.1.10)

=
λ

1 + λ
. (5.1.11)

Applying Corollary 5.1.3, we immediately have the following.

Corollary 5.1.4. Let {Gn}n≥1 be a graph sequence that converges to a random rooted
tree (T ,o) ∼ νT , such that deg(o) ≤ ∆, νT -almost surely. For each n, let µGn,ψ be the
indepedent sets measure for the fraph Gn with fugacity λ

Let λ ∈ [0, (∆ − 1)−1). Then there exists a unique probability ν on GX∗ that is Gibbs
for the independent sets model, and whose marginal on G∗ coincides with νT . Further,
(Gn, µGn,ψ) converges locally to ν.
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In Section 5.2 we discuss how this analysis can be sharpened to obtain the optimal
range of λ for which the same limit result applies.

Example 5.1.2 (Ising model). In this case X = {+1,−1}, ψv(σ) = eBσ, ψe(σσ
′) = eβσσ

′
.

For the sake of simplicity, we stick to the zero magnetic field case, B = 0. A simple
calculation yields∥∥µ`( · |σ1, . . . , σ`)− µ`( · |σ1, . . . , σ

′
`)
∥∥

TV
=
∣∣µ`(1|σ1, . . . , σ`)− µ`(1|σ1, . . . , σ

′
`)
∣∣ (5.1.12)

=
1

2

∣∣ tanh
(
y + βσ`

)
− tanh

(
y + βσ′`

)∣∣ , (5.1.13)

where x = β(σ1 + · · ·+σ`−1). Note that the function x 7→ tanh(x) is monotone increasing,
its derivative is maximized at x = 0, it is symmetric in x, is monotone increasing for x < 0
and decreasing for x > 0. It follows that the above difference is mazimized for y = 0 if ` is
odd, and y = β if ` is even. We get

c`(ψ) =

{
tanhβ if ` is odd,

(1/2) tanh(2β) if ` is even.
(5.1.14)

In particular c`(ψ) ≤ tanhβ for all ` and we have therefore the following. (Note that the
argument above applies to β < 0 as well and hence we state the next result generally.)

Corollary 5.1.5. Let {Gn}n≥1 be a graph sequence that converges to a random rooted tree
(T ,o) ∼ νT , such that deg(o) ≤ ∆, νT -almost surely. For each n, let µGn,ψ be the Ising
model on the graph Gn with inverse temperature β and magnetic field B = 0.

Assume tanhβ ∈ (−∆−1,∆−1). Then there exists a unique probability ν on GX∗ that
is Gibbs for the Ising model, and whose marginal on G∗ coincides with νT . Further,
(Gn, µGn,ψ) converges locally to ν.

The argument based on Dobrushin condition only admits a limited improvement in this
case, as demonstrated by the following remark.

Proposition 5.1.6. Let T = T reg,∆ = (V,E) be the infinite regular tree with degree ∆ ≥ 3,
and ψ be the specification for the Ising model with zero magnetic field B = 0 and inverse
temperature β. For tanhβ ∈ [−(∆ − 1)−1, (∆ − 1)−1] there exists a unique probability
measure on {+1,−1}V thatis Gibbs with respect to ψ.

Viceversa, it (∆−1) tanh |β| > 1, then there exists at least two distinct Gibbs measures
for ψ.

Proof. The proof of this statement is standard and hence we omit it referring, for instance,
to ???. In a nutshell, it amounts to considering the Gibbs measures constructed by taking
‘plus’ and ‘minus’ boundary conditions and proving that they are ditinct. The latter is
done by computing the probabilities that σo = +1 under the two measures (which can be
done by recursion) and proving that they are distinct.

Example 5.1.3 (Proper colorings). In this case X = {1, 2, . . . , q}, ψv(σ) = 1, and
ψe(σ, σ

′) = I(σ 6= σ′). Therefore µ`( · |σ1, . . . , σ`) is the uniform probability distribution on
X \ {σ1, . . . , σ`}. (In order for Dobrushin criterion to apply, it is necessary to take q > `.)
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5.2 The case of independent sets

In this section we outline a sharper analysis of the independent sets example in the previous
section. Let {Gn}n≥1 be a graph sequence that converges locally to a random rooted tree
(T ,o), with deg(o) ≤ k almost surely (and –as a consequence– (T ,o) has maximum degree
k amost surely).

Define

λu(k) ≡ (k − 1)k−1

(k − 2)k
. (5.2.1)

It was proved in [Wei06, Theorem 2.3] that, for λ < λu(k) there exists a unique Gibbs
measure on any tree with maximum degree k. Applying the last corollary, it follows that,
for λ < λu(k), (Gn, µGn,ψ) converges to that unique Gibbs measure.

While proving the result of [Wei06] goes beyond the scope of these lectures, it is easy
(and instructive) to prove this result for the k-regular tree T = T reg,k, T = (V,E). In the
rest of this section, we omit the arguments T and ψ since they are fixed throughout.

The key observation is that –on bipartite graphs– the independent sets model enjoys a
special monotonicity property.

Given σ(1), σ(2) ∈ X V = {0, 1}V , we write σ(1) � σ(2) if σ
(1)
i ≤ σ

(2)
i when d(o, i) is even

and σ
(1)
i ≥ σ

(2)
i when d(o, i) is odd. Given two probability measures µ(1), µ(2) on X V , we

write µ(1) � µ(2) if there exists a coupling µ(1,2) of these two measures, such that, letting
(σ(1),σ(2)) ∼ µ(1,2), (σ(1),σ(2)) ∈ X V ×X V , we have σ(1) � σ(2) almost surely.

The next lemma states the mentioned monotonicity property.

Lemma 5.2.1. Let t ∈ N and σ
(1)
V=t

, σ
(2)
V=t
∈ X V=t two configurations at level `.

If t is even and σ
(1)
V=t
� σ(2)

V=t
, then

µ( · |{σV=t = σ
(1)
V=t

) � µ( · |{σV=tx = σ
(1)
V=t

) . (5.2.2)

Viceversa, if t is odd and σ
(1)
V=t
� σ(2)

V=t
, then

µ( · |{σV=t = σ
(1)
V=t

) � µ( · |{σV=t = σ
(1)
V=t

) . (5.2.3)

It is useful to recall the definition of Gibbs measure on T with boundary condition f ,
cf. Definition 3.2.3.

5.3 The case of the Ising model

As we saw in the last section, the weak convergence method easily estabilishes the limit
tree distribution when the functions ψe( · , · ), ψv( · ) are close to constants.

In some cases however, one can use additional properties of the model to select one of
the Gibbs measures with respect to the specification ψ, even if multiple exist. In this section
we consider the special case of the ferromagnetic Ising model, i.e. ψe(σ, σ

′) = exp(βσσ′),
β > 0, and ψv(σ) = exp(Bσ). Without loss of generality we can assume

66



Chapter 6

Algorithmic aspects
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Appendix A

Proofs omitted from the main text

A.1 Proofs omitted from Chapter 2

A.1.1 Proof of Proposition 2.3.2

The proof amounts to checking the conditions of Erdös-Gallai theorem 1. Condition (a)
holds by construction.

As for condition (b), ww will assume that P` > 0 for some ` ≥ 2, because otherwise
the proof is trivial. We also will relabel vertices in such a way that the degree sequence

is decreasing d1 ≥ d2 ≥ d3 ≥ . . . . Let `max(n) = max{` : m
(n)
` > 0}. Assume that∑`max

`=`0+1m
(n)
` < k ≤

∑`max
`=`0

m
(n)
` , and let q ≡

∑`max
`=`0

m
(n)
` − k + 1 ≥ 1.

Let P =
∑

`≥0 `P`. First consider k ≥ 1 +
√
nP . Then

n∑
i=1

di =

`max∑
`=1

m
(n)
` ` ≤ nP ≤ k(k − 1) , (A.1.1)

which verify Erdös-Gallai condition in this case.
Next consider k ≤ 1 +

√
nP ≤

√
2nP . Then, by definition of k√
2nP ≥

`max∑
`=`0+1

bnP`c , (A.1.2)

which can only happen if `0 ≥ `0(n) with for some `0(n) dependent only on P and such
that `0(n)→∞ as n→∞. On the other hand

k∑
i=1

di =

`max∑
`=`0+1

m
(n)
` `+ q`0 (A.1.3)

≤ n
( ∞∑
`=`0

P``
)
. (A.1.4)

Since
∑∞

`=0 P`` <∞, we have limn→∞
∑∞

`=`0(n) P`` = 0, and hence
∑k

i=1 di = o(n). On the
other hand, consider the right hand side of the Erdös-Gallai condition, and fix ` independent
of n and such that P` > 0. Using the fact that `0(n) > ` for all n large enough, we have

n∑
i=k+1

min(di, k) ≥ m(n)
` = nP` + o(n) . (A.1.5)
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and therefore, for ll n large enough

k∑
i=1

di <

n∑
i=k+1

min(di, k) . (A.1.6)

This finishes the proof.

A.1.2 Finishing the proof of Proposition 2.4.2

In this appendix we provide the details of step (ii) in the proof of Proposition 2.4.2. This
requires to prove the mass-transportation principle (2.4.1) for the limiting random rooted
graph, given that it holds for the finite graphs (Gn, In).. First, notice that it is suggicient
to prove it for functions f such that f(G, u, v) = 0 unless dG(u, v) ≤M for some fixed M .
Indeed, any f can be obtained as monotone increasing limit of such functions, by setting
fM (G, u, v) = f(G, u, v) I(dG(u, v) ≤M).

Next define the set of simple functions

SF+(M) =
{ L∑
`=1

α` I
(
[G, u, v] ∈ A`

)
I(dG(u, v) ≤M) : α` ∈ R>0, A` ∈ B(G∗∗)

}
. (A.1.7)

Any function f supported on dG(u, v) ≤M can be obtained as monotone limit of gunctions
in SF+(M), and hence it is sufficient to prove the claim for such functions. By linearity, it
is sufficient to prove it for any f of the type f(G, u, v) = I

(
[G, u, v] ∈ A

)
I(dG(u, v) ≤M).

It is easy to check that the set of A’s for which it holds is closed by countable unions and
complements. Hence, it is sufficient to consider a collection of generators of the σ-algebra
B(G∗∗). We take this to be the collection of sets At,(H,i,j) = {(G, u, v) : Bt(u, v;G) '
(H, i, j)} where t ∈ N is arbitrary, and (H, i, j) is an arbitrary depth t doubly rooted
graphs with distance beteen the roots at most M .

For any set At,(H,i,j), the mass-transportation principle reads

E
[ ∑
v∈BM (o,G,)

I
(
Bt(G,o, v) ' (H, i, j)

)]
= E

[ ∑
v∈BM (o,G,)

I
(
Bt(G, v,o) ' (H, i, j)

)]
.

(A.1.8)

This only depends on the law of BM+t(G,o), and therefore holds that Gn converges locally
to (G,o).
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Appendix B

Summary of notations

|S| : the size of set S.
.
= : Equal to leading exponential order
∆S : The simplex of probability distributions over S
dG(i, j) : graph distance on G
∆S : The polytope of probability distributions over the finite set S.
R : The completed real line R = R ∪ {+∞,−∞}
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