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Abstract. This paper studies equivalence issues in inductive logic pro-
gramming. A background theory B is inductively equivalent to another
background theory B> if B; and B: induce the same hypotheses for
any given set of examples. Inductive equivalence is useful to compare
inductive capabilities among agents having different background theo-
ries. Moreover, it provides conditions for optimizing background theories
through appropriate program transformations. In this paper, we consider
three different classes of background theories: clausal theories, Horn logic
programs, and nonmonotonic extended logic programs. We show that
logical equivalence is the necessary and sufficient condition for inductive
equivalence in clausal theories and Horn logic programs. In nonmonotonic
extended logic programs, on the other hand, strong equivalence is nec-
essary and sufficient for inductive equivalence in general. Interestingly,
however, we observe that several existing induction algorithms require
weaker conditions of equivalence under restricted problem settings. We
also discuss connection to equivalence in abductive logic and conclude
that the notion of strong equivalence is useful to characterize equivalence
of non-deductive reasoning.

1 Introduction

The issue of equivalence between logic programs is receiving increasing attention.
In knowledge representation, a logic program is used for representing knowledge
of a problem domain. The same problem may be encoded in different manners by
different experts. Equivalence of two programs is then useful to identify different
knowledge bases. In program development, one program may give a declara-
tive specification of some problem and another program may give an efficient
coding of it. In this case, equivalence of two programs guarantees a correct im-
plementation of the given specification. Various criteria for program equivalence
are proposed in the literature [BITOT3ITAITHI25]. Of these, weak equivalence and
strong equivalence of two programs are widely studied. Two logic programs P;
and P, are weakly equivalent if they have the same declarative meaning. On
the other hand, P; and P» are strongly equivalent if for any logic program R,
P; UR and P> U R have the same declarative meaning. By the definition, strong
equivalence implies weak equivalence.
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Equivalence relations presented above are intended to compare capabilities
of deductive reasoning between programs. When we consider realizing intelligent
agents that can perform commonsense reasoning, however, comparing capabili-
ties of mon-deductive reasoning between programs is also necessary and impor-
tant. Recently, Inoue and Sakama argue equivalence in abductive logic [11]. They
introduce two different types of abductive equivalence: explainable equivalence
and explanatory equivalence. The former considers whether two theories have
the same explainability for any observation, while the latter considers whether
two theories have the same explanations for any observation. These two notions
compare capabilities of abductive reasoning among agents, and [I1] provides nec-
essary and sufficient conditions for abductive equivalence in first-order logic and
abductive logic programming [4]. Induction is also known as non-deductive rea-
soning, which is often distinguished from abduction [6]. In computational logic,
induction is realized by inductive logic programming (ILP) [19121]. A typical ILP
problem is to induce new rules which explain given examples together with a
background theory. There are several parameters which should be considered in
defining equivalence notions in ILP. Several questions then arise, for instance:
When can we say that induction with a background theory is equivalent to
induction with another background theory? When can we say that induction
from a set of examples is equivalent to induction from another set of examples?
When can we say that induced hypotheses are equivalent to another induced
hypotheses? Do conditions for these equivalence depend on underlying logics?
These equivalence issues are important and meaningful for comparing different
induction tasks, but no study answers these questions as far as the authors know.

This paper focuses on the first question presented above. A background the-
ory By is said inductively equivalent to another background theory Bs if By and
Bs induce the same hypothesis H (under the same hypothesis language) in face
of an arbitrary set F of examples. Intuitively, if an agent has a background theory
B that is inductively equivalent to another background theory Bs of another
agent, then these two agents are considered equivalent with respect to inductive
capability. In this case, we can identify those two agents as far as induction is
concerned. On the other hand, if a theory Bj is transformed to another syntacti-
cally different B, inductive equivalence of two theories guarantees identification
of results of induction from each theory. This provides guidelines for optimiz-
ing background theories in ILP. The problem of interest is syntactic/semantic
conditions for inductive equivalence in ILP. Conditions for inductive equivalence
are arguable in different logics of background theories. In this paper, we con-
sider three different classes of background theories — clausal theories, Horn logic
programs, and nonmonotonic extended logic programs. We show that logical
equivalence is the necessary and sufficient condition for inductive equivalence
in clausal theories and Horn logic programs. In nonmonotonic extended logic
programs, on the other hand, strong equivalence is necessary and sufficient for
inductive equivalence in general. Interestingly, however, we observe that several
induction algorithms require weaker conditions of equivalence between programs
under restricted problem settings. We also discuss connection to equivalence in
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abductive logic, and conclude that the notion of strong equivalence is useful to
characterize equivalence of non-deductive reasoning.

The rest of this paper is organized as follows. Section 2 introduces the notion
of inductive equivalence. Section 3 and Section 4 present inductive equivalence in
clausal theories and Horn logic programs, respectively. Section 5 provides results
in nonmonotonic extended logic programs. Section 6 discusses related issues and
Section 7 summarizes the paper.

2 Inductive Equivalence

In this paper, we consider logical theories whose domain is given as the Herbrand
universe and interpretations/models are defined as subsets of the Herbrand base
HB. Given a logical theory B, let Mod(B) be the set of all (Herbrand) models
of B, and SEM (B) the set of all canonical models of B. Canonical models are
models that are selected from Mod(B) based on some preference criterion, and
the relation SEM(B) C Mod(B) holds. Let L be a logic of a theory B whose
semantics is given by SEM(B). Then, a theory B entails a formula F under
L (written as B = F) if F is true in any I € SEM(B). B entails a set G of
formulas under L (written as B =1, G) if B entails every formula in G under L.

Remark: The meaning of the entailment relation = depends on underlying
logic L. In this paper, different entailment relations are considered based on
different logic L. As a special case, we use the reserved symbol |= for logical
entailment in first-order logic.

The induction problem considered in this paper is described as follows{]

Given: a background theory B, and a set E of examples;
Find: a hypothesis H such that B U H is consistent and

BUH L E. (1)

When H satisfies the relation (), we say that a hypothesis H explains E with
respect to B (under L). Throughout the paper, a background theory B is as-
sumed to be consistent. The examples F are positive examples and we do not
consider negative examples in this paper.

When two different theories By and Bs are compared, they are assumed to
have the common underlying (hypothesis) language. In logic programming, there
are different notions of equivalence between theories. In this paper, we consider
three different types of equivalence relations. Two theories By and By are:

— logically equivalent (written as B; = Bs) if Mod(B1) = Mod(Bs).
— weakly equivalent (written as By =, Bq) if SEM (B1) = SEM (Bs3).

! This type of induction is called explanatory induction. An alternative type is con-
sidered in Section
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— strongly equivalent (written as By =5 Bq) if B1UQ =, B2UQ for any theory
(@ under the same language.

By the definition, By =4 Bs implies By =,, Bs. In particular, when SEM (B) =
Mod(B) holds in first-order logic, three equivalence relations coincide [5]. As
canonical models, minimal models are often considered. The set of all minimal
models of B (denoted by MM (B)) is defined as MM (B) = {M € Mod(B) |
-3N € Mod(B) s.t. N C M }. We first show that logical equivalence coincides
with strong equivalence when SEM (B) = M M (B) in first-order logic. In what
follows, M* = M U{—-A | A€ HB\ M }. Then, any M(C HB) is a model of
B if BU M* is satisfiable.

Proposition 2.1. For any first-order theories By and By, By = Bs iff MM (B
UQ)=MM(B2UQ) for any first-order theory Q.

Proof. The only-if part is obvious. Let MM (B; U Q) = MM (By U Q) for any
Q. If By # By, there is M € Mod(By) \ Mod(B3). Since M is not a model of
By, B, U M* is unsatisfiable. Thus, MM (Bs U M*) = ). On the other hand,
M € Mod(By UM*), so MM (By U M*) # (). This contradicts the assumption.
Hence, B; = Bs. O

By contrast, logical equivalence does not coincide with weak equivalence when
SEM(B) = MM(B).

Example 2.1. Consider two propositional theories:

By: aVvb, cV-a, cV-b,
Bs: aVb, ec

If we set SEM(B;) = Mod(B;) for i = 1,2, then Mod(By) = Mod(Bs) =
{{a,c},{b,c},{a,b,c}}. Hence, By = By and By =; By. On the other hand,
consider

Bs: aVvb, —-aV-b ec

Then, By # Bs and By # Bs. If we set SEM(B;) = MM (B;) for i = 1,2,3,
then MM (By) = MM(Bs) and MM (By) = MM(Bs). Hence, B; =, B3 and
By, =, Bs. By contrast, By #s B3 nor Bs #; Bj because the addition of
Q@ = {a, b} makes B3 inconsistent.

The next definition provides a general framework of inductive equivalence
between two theories.

Definition 2.1. Two theories By and By are inductively equivalent under a
logic L if it holds that By UH =y, F iff ByUH =, E for any set E of examples
and for any hypothesis H such that By U H and By U H are consistent.

By the definition, inductive equivalence presents that two background theo-
ries have the same explanation power for any example. Background theories can
be represented by different logics, so that conditions of inductive equivalence
are argued in respective logic L. In the following sections, we provide general
conditions for inductive equivalence in different logics, and argue the issue in
specific ILP algorithms.
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3 Clausal Theories

We start with clausal theories in general. A clausal theory B is a set of clauses
of the form:
ALV NV Ap V aApg V-V DA,

where A; (1 <i < n) are atoms. In the context of logic programming, it is also
written as
Al\/"'\/AmHAm+1,...,An. (2)

If m < 1 for every clause @) in B, B is a Horn logic program. A Horn logic
program B is definite if m = 1 for every clause (@) in B. Horn logic programs
are handled in detail in Sectiondl A theory, a clause or an atom is ground if it
contains no variable. A theory or a clause with variables stands for the set of its
ground instances. A propositional theory is a finite set of ground clauses.

Given a background theory B as a clausal theory and a set F of clauses as
examples, induction produces a set H of clauses as hypothesis. As usual, a set
of clauses is identified with the conjunction of clauses included in the set. We
first set SEM(B) = Mod(B). In this case, logical equivalence of background
programs is necessary and sufficient

Theorem 3.1. Two clausal theories By and By are inductively equivalent under
clausal logic iff By = Bs.

Proof. By and B are inductively equivalent under clausal logic

iff BIUH = E & ByUH [ E for any set E of clauses and for any set H of
clauses such that B; U H and By U H are consistent

iff B H —>E & By = H— FE for any H and E such that B; U H and
By U H are consistent

iff By = Bs. O

Since logical equivalence coincides with strong/weak equivalence under the
setting SEM(B) = Mod(B) in clausal logic, the above result implies that
strong/weak equivalence of two theories is also necessary and sufficient.

Next, we set SEM(B) = MM (B) for the semantics of a clausal theory B.
Such a setting is considered as the minimal model semantics of disjunctive logic
programs [I7] or circumscription [16]. Then, we write B |=pr C if a clause C
is satisfied in any I € M M (B). For any set D of clauses, we write B |=arp D if
B Eum C for every clause C in D. Under the setting, the notion of inductive
equivalence under the minimal model semantics is defined in the same manner
as Definition [2]] with the only difference that the entailment relation =p is
replaced by =asas. In this case, we have the next result.

Theorem 3.2. Two clausal theories By and By are inductively equivalent under
the minimal model semantics iff B1 = Bs.

2 This result is also obtained as a special case of explanatory equivalence of abductive
frameworks by allowing any clause as a candidate hypothesis in [I1, Theorem 3.6].
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Proof. Suppose that B; and By are inductively equivalent under the minimal
model semantics. Then, B1 U H f=yum E iff Bo UH =ypy E for any set H
and for any set F of clauses such that By U H and Bs U H are consistent. By
putting £ = B; U H, it holds that By U H ):MM BiUH iff BbUH ':IMM
B; U H. By putting E = By U H, it holds that By U H =y Be U H iff
By, UH ):]MM BoUH. As BiUH ):MM By UH and B UH ':IMM By UH
always hold, By UH Eyy Be UH and Bo UH [y B U H also hold. By
B UH Epym B U Hy any minimal model M of By U H satisfies every clause
in BpUH.If M ¢ MM(ByU H), there is a minimal model N € MM (Bs U H)
such that N C M and N satisfies By U H. By Bo UH =py B1UH, N satisfies
every clause in B; U H. But this is impossible because M is a minimal model
of By UH. Hence, M € MM (B2 U H). Likewise, M € MM (B U H) implies
M € MM (B1UH). Therefore, MM (B1UH) = MM (B2 U H), so that By = By
by Proposition 211

Conversely, if By = Ba, MM (By UH) = MM (Bs U H) holds for any set H
of clauses (Proposition 21]). Then, By U H =y E iff BoU H [=p E for any
set F of clauses and By U H is consistent iff By U H is consistent. Hence, B; and
Bs are inductively equivalent. ]

Theorem and Proposition 2Tl imply that strong equivalence of two theo-
ries is also necessary and sufficient for inductive equivalence under the minimal
model semantics. Note that weak equivalence of two theories is not sufficient for
inductive equivalence.

Example 3.1. Two theories By = {p(z) V =¢(z), r(a)} and By = {r(a)}
have the same minimal model {r(a)}, thereby weakly equivalent. However, they
are not inductively equivalent. In fact, for the example E = {p(a)}, the clause
H = (q(z) V =r(z)) explains p(a) in By, but not in Bs.

Theorems [3.1] and imply that in full clausal theories the notion of in-
ductive equivalence under SEM (B) = Mod(B) and the one under SEM (B) =
MM (B) coincide.

Corollary 3.3. Two clausal theories are inductively equivalent under clausal
logic iff they are inductively equivalent under the minimal model semantics.

Given two propositional clausal theories By and Bs, the problem of testing
By = By is equivalent to the problem of testing unsatisfiability of B; A —Bs,
which is coNP-complete. Then, the next result follows by Theorems [3.1] and

Corollary 3.4. Deciding inductive equivalence of two propositional clausal the-
ories is coNP-complete.

In what follows, we pick up two induction methods for full clausal theories
and investigate conditions for inductive equivalence.

3.1 CF-Induction

Inoue [9] provides a method for induction from full clausal theories. It is based
on the technique of consequence finding (CF). Given a background theory B as
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a clausal theory and a set E of examples as clauses, CF-induction computes a
hypothesis H as follows: First, the condition BU H = E of () is converted to

BU{-E} E -~H

where —F is a formula in a disjunctive normal form. The above relation is in-
terpreted as BU {-E} i CC(B,FE) and CC(B,E) = ~H with some clausal
theory CC(B, E). The relation CC(B, E) |= —~H is then rewritten as

H = ~CC(B,E).

Then, a hypothesis H is constructed as a clausal theory which entails
-CC(B,E)Y CC(B,E) is a set of clauses that are computed by the charac-
teristic clauses of BU{—FE}. The characteristic clauses of a set X of clauses are
defined as follows. A clause C subsumes a clause D if C§ C D for some substi-
tution 0. C properly subsumes D if C' subsumes D but D does not subsume C.
Then,

Carc(X)={C e€Th(X) | -3 D € Th(X) s.t. D properly subsumes C'}.

That is, each characteristic clause is a theorem of Y that is not properly sub-
sumed by any clause in the set of theorems. Then, it holds that

Carc(BU{—-E}) E CC(B,E).

Inductive equivalence under CF-induction is then defined as follows.

Definition 3.1. Let By and By are two clausal theories. Then, By and Bs are
inductively equivalent under CF-induction if Carc(By U {—=E}) = Carc(Bs U
{=E}) for any set E of clauses.

Then, we have the next result.

Theorem 3.5. Let By and By be two clausal theories. Then, By and By are
inductively equivalent under CF-induction iff By = Bs.

Proof. It Carc(B1U{—E}) = Carc(B2U{—E}) for any set E of clauses, Carc(B7)
= Carc(B3) by putting E = (). This implies By = Bs. The converse is straight-
forward. O

The above result, together with Theorem [B.1] implies that By and By are in-
ductively equivalent under clausal logic iff they are inductively equivalent under
CF-induction.

3.2 Confirmatory Induction

Confirmatory induction (or descriptive induction) is an alternative framework
of induction [2]. In this framework, a hypothesis H explains an example E with
respect to a background theory B iff H is satisfied by every I € SEM (B U E).

3 This extends Muggleton’s inverse entailment in Horn theories. Muggleton’s method
is explained in Section
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The system CLAUDIEN [3] realizes this type of induction under the minimal
model semantics SEM = M M.

The notion of inductive equivalence in this context is distinguished as con-
firmatorily inductive equivalence (c-inductive equivalence, for short). The notion
of c-inductive equivalence is defined as follows.

Definition 3.2. Two theories By and Bs are c-inductively equivalent under a
logic L if it holds that By UFE =1 H iff ByUE =, H for any set E of examples
and for any hypothesis H such that By U H and By U H are consistent.

When a background theory is given as a clausal theory, c-inductive equiva-
lence under the minimal model semantics is characterized as follows.

Theorem 3.6. Two clausal theories By and Bs are c-inductively equivalent un-
der the minimal model semantics iff By = Bs.

Proof. Suppose that B; and Bs are c-inductively equivalent under the minimal
model semantics. Then, BiUE =y H iff BoUE =y H for any set E and for
any set H of clauses such that By UH and BoU H are consistent. Then, By = B»
holds by Theorem The converse is shown in a straightforward manner. O

The above theorem presents that in clausal theories two notions of inductive
equivalence coincide (under the minimal model semantics). That is, By and
B are inductively equivalent in explanatory induction iff they are inductively
equivalent in confirmatory induction.

4 Induction in Horn Logic Programs

Next we consider the case where a background theory, examples, and hypotheses
are all Horn logic programs. A lot of ILP systems handle Horn logic programs
and some algorithms are known for Horn ILP. So we discuss here inductive
equivalence in Horn logic programs apart from Section [3

The declarative semantics of a Horn logic program is given by the unique
minimal model, called the least model. Thus, for any Horn logic program B,
SEM(B) = MM (B) and we write MM (B) as LM (B). We write B |=ry C if
a Horn clause C is satisfied in LM (B). For a set D of Horn clauses, we write
B v D if B =y C for every Horn clause C' in D. Notice that =y does
not coincide with |=. For instance, given B = {p < ¢}, B =rm —p but B}~ —p.
Thus, =1 has the effect of the closed world assumption.

Definition 4.1. Two Horn logic programs By and Bs are inductively equivalent
(under the least model semantics) if it holds that BiUH [=pp E iff BoUH E=p
E for any set E of examples and for any hypothesis H such that By U H and
By U H are consistent.

For inductive equivalence in Horn logic programs, the next result follows by
Theorem
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Theorem 4.1. Let By and By be two Horn logic programs. Then, By and Bs
are inductively equivalent iff By = Bs.

Logical equivalence of two propositional Horn logic programs is tested in
polynomial-time, so that:

Proposition 4.2. Deciding inductive equivalence of two propositional Horn
logic programs is done in polynomial-time.

Several algorithms are known for induction in Horn logic programs. We in-
vestigate conditions for inductive equivalence in two popular algorithms.

4.1 Relative Least General Generalization

Plotkin’s relative least general generalization [24] is a well-known algorithm for
induction, which is used in the Horn ILP system GOLEM [18]. We first remind
terms and basic results. A clause C7 subsumes another clause Cy relative to
a program B, denoted by C; >p (5, if there is a substitution 6 such that
B = C10 — Cs. A clause D is a relative least general generalization (RLGG) of
C4 and Cy with respect to B if D is the least upper bound of C7 and C5 under
the ordering = over the clausal language. The RLGG does not always exist but
exists when B is a ground program.

Inductive equivalence under RLGG is defined as follows. Given a ground
Horn logic program B and a set E of ground Horn clauses, let RLGG(B, E) be
the set of clauses which are the RLGG of clauses in E with respect to B.

Definition 4.2. Let By and By be two ground Horn logic programs. Then,
B; and Bj are inductively equivalent under RLGG if RLGG(B1,E) = RLGG
(B2, E) for any set E of ground Horn clauses.

Given a ground Horn logic program B and examples E as a set of ground
Horn clauses, GOLEM constructs inductive hypothesis H as follows:

BUHEE
< HEB-—E
< EH-—(-BVE).

At this point, GOLEM replaces B with the conjunction of ground atoms in-
cluded in a finite subset of LM (B). Here we suppose that the LM (B) is finite.
Then, we replace B with LM (B) as GOLEM does. Let E = {C1,...,Cy}.
Then, the RLGG of F with respect to B is computed as the least general
generalization (LGG) of clauses (Cy V -LM(B)),...,(Cx V ~LM(B)), where
~LM(B) =V 4,crm ) "Ai, which becomes a solution H. Then, we have the

following result

Theorem 4.3. Let By and By be two ground Horn logic programs. Then, By
and By are inductively equivalent under RLGG iff B1 = Bo.

4 We assume the result in the context of GOLEM.
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Proof. Suppose that B; and By are inductively equivalent under RLGG. Then,
for any set E = { C4,...,Cy } of ground clauses, RLGG(B1,E) = RLGG(By, E)
implies LGG(Cy V ~LM(B;),...,Cy ¥V -LM(B1)) = LGG(C1 V ~LM(Bs), ...,
Cr V ~LM(Bs)). Put E = {A} for any ground atom A. Then, LGG(A V
~LM(B1)) = AV ~LM(B;) and LGG(AV ~LM(By)) = AV —~LM(B), so
LGG(AV ~LM(By)) = LGG(A V —~LM(B,)) implies LM (By) = LM (B).
Hence, B; =, Bs.

Conversely, if By =, Bs, LM(B1) = LM(Bs). Then, for any set £ =
{C1,...,Cy } of ground clauses, LGG(Cy V LM (By),...,Cy V ~LM(By))
LGG(Cy VvV ~LM(Bsg),...,C, V-LM(B3)), so RLGG(Bl, E) = RLGG(B2, E
Hence, the result holds.

Dvll

Example 4.1. Consider two programs:

Bj : has-wings(joe) — bird(joe),
bird(tweety) «—
bird(polly) «—

Bs : bird(tweety)
bird(polly) —

Given the example E = { flies(tweety), flies(polly) }, both the RLGG of E
wrt By and the RLGG of E wrt By become

flies(x) « bird(z) .

This means that the first clause in B; is of no use for induction under RLGG.
Note that B; and By are not strongly equivalent.

4.2 Inverse Entailment

Next, we consider Muggleton’s inverse entailment (IE) algorithm which is used
in the Horn ILP system PROGOL [20]. Given a Horn logic program B and a
ground Horn clause F as an example, suppose a Horn clause H satisfying

BU{H} F E.
By inverting the entailment relation it becomes
BU{-E} = -H.

Put —Bot(B, E) as the conjunction of ground literals which are true in every
model of BU {=FE}. Then, a clause H is induced by inverse entailment (IE) if
H | Bot(B,E).

Remark: The process of inverting entailment is similar to CF-induction in
clausal theories [9], but IE supposes a Horn logic program B, and a single Horn
clause H and E. Another difference is that CF-induction is sound and complete
for finding hypotheses, but IE is sound but not complete in general [27].
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Given a Horn logic program B and a ground Horn clause E, let IE(B, E)
be the set of clauses which is induced by IF from E with respect to B. Then,
inductive equivalence under I E' is defined as follows.

Definition 4.3. Two Horn logic programs By and Bs are inductively equivalent
under IE if IE(B1,FE) = IE(Bs, E) for any ground Horn clause E.

Then, we have the following result.

Theorem 4.4. Two Horn logic programs By and Bs are inductively equivalent
under IE iff By = Bs.

Proof. By and By are inductively equivalent under IE iff Bot(By,E) = Bot
(B2, E) for any E. Then, By U{-E} & L iff B, U{-E} | L for any ground
Horn clause E and for any literal L. Put £ = Ay «— Ai,...,A,. Then, By U
{—4p,A1,..., A} E Liff BoU{-Ap, A1,..., A} E L for any { —Ap, 44,...,
Ay, }. Thus, for any set F' of ground atoms B; UF and BsUF have the same least
model. Hence, By =5 Bs, thereby By = By (by Proposition [2]). The converse
is straightforward. O

The results of Sections [£1] and show that inductive equivalence under
RLGG requires a weaker condition of equivalence than IE.

5 Induction in Nonmonotonic Logic Programs

Nonmonotonic logic programs are logic programs with negation as failure [I].
We consider the class of extended logic programs [8] in this paper. An extended
logic program (ELP) is a set of rules of the form:

Ly «— L1, ..., Ly, not Lyyy1, ..., not L, (n>m) (3)

where each L; is a literal and not represents negation as failure (NAF). The
literal Lg is the head and the conjunction Lq, ..., L., not Ly,41, ..., not L, is
the body. A rule with the empty head of the form:

— Ly, ..., Ly, not Lypy1, ..., not L, (n>1) (4)

is an integrity constraint. A rule with the empty body L «— is a fact and
identified with the literal L. An ELP is called a normal logic program (NLP) if
every literal appearing in the program is an atom. Let Lit be the set of all ground
literals in the language of a program. Any element in Litt = Lit U {not L |
L € Lit} is called an LP-literal and an LP-literal not L is called an NAF-literal.
A rule is NAF-free if it contains no NAF-literal. A program is NAF-free if it
consists of NAF-free rules. A program, a rule or an LP-literal is ground if it
contains no variable. A program or a rule with variables stands for the set of its
ground instances. A propositional program is a finite set of ground rules.

Remark: A primary difference between nonmonotonic logic programs and
clausal theories is that a rule @) is not a clause even if it is NAF-free. For
instance, a rule L1 < Lo has meaning different from —Ls < =L or L1V = Ls.
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A set S(C Lit) satisfies a ground rule R of the form @) if {L1,..., Ly} C S
and { Lyyt1,...,Lp } NS =0 imply Ly € S. In particular, S satisfies a ground
integrity constraint of the form ®) if {L1,..., L} € S or { Liny1,.--, Ln} N
S # (). When a rule R contains variables, S satisfies R if S satisfies every ground
instance of R. The semantics of ELPs is given by the answer set semantics [g].
First, let B be an NAF-free program and S C Lit. Then, S is an answer set
of B if (i) S is a minimal set which satisfies every ground rule in the ground
instantiation of B, and (ii) S does not contain both L and —L for any L € Lit.
Next, let B be any ELP and S C Lit. Then, define the NAF-free program
B as follows: a rule Ly « Li, ..., Ly, is in B® iff there is a ground rule
Ly «— Ly, ..., Ly, not Ly,11, ..., not L, in the ground instantiation of B such
that { Lynt1, ..., Ln } NS = 0. Here, Lg is possibly empty. Then, S is an answer
set of B if S is an answer set of B°. In NLPs, answer sets coincide with stable
models [7]. An ELP may have none, one, or multiple answer sets. The set of
all answer sets of B is denoted by AS(B). An ELP B is consistent if it has an
answer set; otherwise B is inconsistent. An ELP B is called categorical if it has
the unique answer set [I]. If a ground rule R is satisfied in every answer set of
B, it is written as B a5 R. In particular, B =45 L if a ground literal L is
included in every answer set of B. For a set E of ground rules/literals, we write
B):AsEifB |:A5RforanyREE.

An induction problem considered in this section is stated as follows. Given a
consistent ELP B as a background theory and a set F of rules as examples, find
a set H of rules such that B U H is consistent and

BUH =45 E. (5)
We put SEM(B) = AS(B) in this section.

Definition 5.1. Two ELPs B; and Bs are inductively equivalent (under the
answer set semantics) if it holds that By U H Fas E iff BoU H =45 F for any
set F of examples and for any hypothesis H such that By U H and By U H are
consistent.

We proceed to build conditions for inductive equivalence in ELPs. In what
follows, we assume the underlying language of programs is function-free and Lit
is finite. In this setting, every answer set is a finite set of ground literals.

Theorem 5.1. Let By and Bs be two ELPs. Then, By and Bs are inductively
equivalent iff By =5 Bs.

Proof. When B; and Bz are inductively equivalent, it holds that BiUH a5 F
ifft By UH |Eas E for any set E of rules and any set H of rules such that
By U H and B; U H are consistent. Suppose that there is a set S such that
S e AS(B1UH)\ AS(B2UH) for some H. Let S ={L4,..., Ly} and Lit\ S =
{Lm+1,---,Ln}. Put E={« Lq,..., Ly, not Ly41,...,n0t L, }. Then, every
answer set of By U H satisfies E, but .S does not satisfy E. This contradicts the
assumption. Thus, no such S exists for any H and AS(B1 UH) = AS(B; U H).
Hence, B; =5 Bs. The converse is proved in a straightforward manner. O
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The complexity of testing strong equivalence of two propositional ELPs is
coNP-complete [I4]. This implies the next result.

Proposition 5.2. Deciding inductive equivalence of two propositional ELPs is
coNP-complete.

5.1 Induction from Answer Sets

Sakama [20] introduces an algorithm called induction from answer sets (IAS).
He provides procedures for handling positive/negative examples, and we review
the procedure for positive examples here.

Some notions are defined. For any LP-literal L, pred(L) denotes the predicate
of L and const(L) denotes the set of constants appearing in L. A rule () is
negative-cycle-free if pred(Lg) # pred(L;) for any i = m +1,...,n. Let L be a
ground LP-literal and S a set of ground LP-literals. Then, L; in S is relevant
to L if either (i) pred(L1) = pred(L) and const(L1) = const(L), or (ii) for some
LP-literal L in S, const(L1) Nconst(La) # ) and Ly is relevant to L. A ground
NAF-literal not L is involved in B if L appears in the ground instance of B.
For simplicity reasons, the following conditions are assumed; a function-free and
categorical ELP B as a background program; and a positive example as a ground
literal L such that B [£4s L and pred(L) appears nowhere in B.

Suppose that B has the answer set S. Then, construct a rule L < I" where
I SU{notL | L € Lit\ S} and every element in I is relevant to L and is
involved in B. Next, the rule L « I" is generalized to R as R§ = (L « I') with
some substitution 6.

Example 5.1. (J26]) Suppose the background program B

B : bird(z) « penguin(x),
bird(tweety) «,
penguin(polly) — .

E : flies(tweety),

which has the answer set
S = { bird(tweety), bird(polly), penguin(polly)}.
Given the example L = flies(tweety), the rule L « I" becomes
flies(tweety) «— bird(tweety), not penguin(tweety) .
Replacing tweety by a variable x, the rule
R: flies(x) < bird(x), not penguin(x)

becomes a solution.
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It is shown in [20] that the rule H = {R} satisfies the condition (&l for
E = {L} if R is negative-cycle-free.

Let IAS(B, L) be the set of rules which is computed by the above procedure
using B and L. Then, inductive equivalence under IAS is defined as follows.

Definition 5.2. Two function-free categorical ELPs B; and Bsy are inductively
equivalent under IAS if IAS(B1, L) = IAS(Bs, L) for any ground literal L.

The necessary and sufficient condition for inductive equivalence under TAS
is as follows.

Theorem 5.3. Two function-free categorical ELPs By and By are inductively
equivalent under I AS iff By =, Bs.

Proof. Since the rule R is constructed by the answer set of a program, the result
immediately follows. ]

5.2 Induction of Stable Models

Otero [22] characterizes induction problems in normal logic programs (NLPs)
under the stable model semantics. He introduces different types of induction for
positive/negative examples, but here we consider the so-called induction from
non-complete sets which is the usual ILP setting for positive examples.

Suppose a background program B as an NLP, and a set E of ground atoms
as positive examples such that B [£4g EH The goal is to find a set H of rules
satisfying the relation (B). An interpretation M is a monotonic model of an NLP
if M satisfies every rule in B. Given a set E of examples, an interpretation M
(of BUE) is an extension of E iff E C M. He then captures H satisfying (5) as
an extension M of F that becomes a stable model of B U M. Note that in this
definition a hypothesis H is given as a set of ground atoms.

Let ISM (B, E) be the collection of H defined as above. Then, inductive
equivalence under I.SM is defined as follows.

Definition 5.3. Two NLPs B; and By are inductively equivalent under ISM if
ISM(B1,E) = ISM(By, E) for any set E of ground atoms.

Lemma 5.4. [22] Given an NLP B, M is a monotonic model of B iff M is a
stable model of BU M.

Let MonMod(B) be the set of monotonic models of B. Then, we have the
following result.

Theorem 5.5. Two NLPs By and By are inductively equivalent under ISM iff
MonMod(B1) = MonMod(Bs).

Proof. Suppose that B; and Bs are inductively equivalent under ISM. For any
M € ISM (B, E), M is a stable model of By UM and a monotonic model of
B; (Lemma [B4). Then, ISM(B;, E) = ISM (B3, E) implies MonMod(B;) =
MonMod(Bz). The converse is proved in a similar manner. O

5 Recall that answer sets coincide with stable models in NLPs.



326 C. Sakama and K. Inoue

Example 5.2. Let By = {p < notq} and Ba = {q « notp}. For E = {p},
put its extension as M = {p}. Then, H = {p < } becomes a solution in both
B; and Bs. Note that By #,, Bs but MonMod(B1) = MonMod(Bs).

6 Discussion

Equivalence of logic programs has been studied in various aspects, but to our best
knowledge, equivalence issue in inductive logic programming has never been dis-
cussed. Recently, Inoue and Sakama study equivalence of abductive frameworks
[11]. They introduce two different types of abductive equivalence: explainable
equivalence and explanatory equivalence. Given a background theory B and a
set H of candidate hypotheses (called abducibles), an abductive framework is
defined as a tuple (B, H). Two abductive frameworks (By, H1) and (B, Hy) are
called ezxplainable equivalent if, for any observation O, there is an explanation of
O in (By, Hy) iff there is an explanation of O in (Bs, Hz). On the other hand,
two programs are called explanatorily equivalent if, for any observation O, E is
an explanation of O in (By, Hy) iff F is an explanation of O in (Ba, Hz). Ex-
planatory equivalence is stronger than explainable equivalence, and the former
implies the latter.

Comparing [I1] with our present work, some interesting connections are ob-
served. When underlying logic is first-order logic, logical equivalence of two the-
ories is a necessary and sufficient condition for explanatory equivalence. When
a background theory is represented by a (nonmonotonic) logic program, on the
other hand, (B, H) and (B, H) are explanatorily equivalent iff B; and Bs
are strongly equivalent. Those results have connection to the results of Theo-
rems [B.1] 3.2], £ and [5.1] of this paper. In particular, in clausal logic the notion
of inductive equivalence coincides with the notion of explanatory equivalence if
one permits arbitrary clauses as abducibles. However, there is an important dif-
ference between explanatory equivalence in abductive frameworks and inductive
equivalence in this paper, which stems from the difference between abduction
and induction. In an abductive framework, a hypothesis space is prespecified
as H and possible explanations for a given observation are constructed as a
subset of abducibles. The existence of H in abductive logic programs results in
characterization by relative strong equivalence, i.e., B1 and By are explanatory
equivalent iff they are strongly equivalent with respect to H. Moreover, in ab-
ductive logic programming, abducibles and observations are usually restricted
to (ground) literals. In ILP, on the other hand, hypotheses and examples are
general rules rather than facts. Besides these differences, both abduction and
induction require strong equivalence of two (nonmonotonic) logic programs to
identify the results of abductive/inductive inference. The essence of this lies in
the fact that abduction and induction are both ampliative reasoning and extend
theories. Strong equivalence takes the influence of addition of a rule set to each
program into account, so that it succeeds in characterizing the effect of abduc-
tion/induction that are not captured by weak equivalence of programs. In [13], it
is argued that strong equivalence is useful to simplify a part of a program with-
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out looking at the other parts. On the other hand, the study [I1] and the result
of this paper reveal that strong equivalence has another important applications
for testing equivalence in abductive and inductive logic programming.

From the computational viewpoint, testing strong equivalence of proposi-
tional nonmonotonic logic programs is converted to the problem of propositional
entailment in classical logic [14]. The problem of testing strong equivalence is
then solved using existing SAT solvers. For predicate programs without function
symbols, strong equivalence testing is also possible by instantiating a program
into a finite propositional one. There is a system for testing strong equivalence of
function-free nonmonotonic logic programs, e.g., [I12]. Existence of no procedure
for testing strong equivalence of logic programs with functions would restrict
practical application of inductive equivalence in ILP. Nevertheless, inductive
equivalence is useful when background knowledge is given as a function-free
Datalog or a database that is a collection of propositional sentences.

Apart from the general ILP setting, we have shown that several existing ILP
algorithms require weaker conditions of equivalence between programs. Each
algorithm is designed to work in some restricted problem setting for theoreti-
cal/practical reasons, and such restriction has the effect of relaxing conditions of
inductive equivalence. Note that it may happen that some algorithm may pro-
duce different hypotheses from two background theories due to its incomplete-
ness. Thus, if two strongly equivalent programs produce different hypotheses
in face of some common examples, it indicates that the algorithm is incom-
plete or incorrect. Thus, inductive equivalence would be used for testing correct-
ness/completeness of an algorithm. In this respect, inverse entailment in Horn
logic programs is incomplete, but Theorem [£4] guarantees that under the re-
stricted problem setting the algorithm correctly judges inductive equivalence of
two Horn logic programs. For another application, inductive equivalence would
be used for comparing different induction algorithms under the common prob-
lem setting. Let «(B, E) be the set of hypotheses induced by an algorithm «
using a background theory B and examples E. For two different algorithms oy
and ao in the common problem setting, suppose that a;1(B1, F) = a1(B2, E)
implies a2 (B1, E) = as(Bs, E), but not vice versa. In this case, ay is considered
inductively more sensitive than as in the sense that a; may distinguish different
background theories that are not distinguished by as. For instance, suppose any
ground Horn logic program B and any ground Horn clause F. In this problem
setting, we can say that IFE is inductively more sensitive than RLGG by the
result of Section @ Thus, the notion of inductive equivalence is also useful to
compare capabilities of different induction algorithms.

From the viewpoint of program development, it is known that some basic
transformations including unfolding/folding do not preserve strong equivalence
of logic programs [23]. This fact, together with the result of this paper, implies
that such basic program transformations are not applicable to optimize back-
ground theories in ILP. If applied, the result of induction may change in general.
Those transformations are still effective as far as one uses induction algorithms
that require the condition of weak equivalence.
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7 Conclusion

This paper has studied equivalence issues in inductive logic programming. We
introduced the notion of inductive equivalence which compares inductive capabil-
ities between different background theories. Three different logics are considered
— clausal theories, Horn logic programs, and nonmonotonic extended logic pro-
grams. Logical equivalence is necessary and sufficient for inductive equivalence
in clausal theories and Horn logic programs, while strong equivalence is neces-
sary and sufficient in nonmonotonic extended logic programs. Under restricted
problem settings, on the other hand, we also observed that several existing ILP
algorithms require weaker conditions of equivalence. The results of this paper,
together with those of [I1], reveal that the notion of strong equivalence is useful
to characterize equivalence in non-deductive reasoning.

In the introduction, we posed several questions on equivalence issues which
may arise in ILP. This paper has answered one question regarding equivalence
of background theories. Answering other questions is left for future study.
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